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Purpose of this book

The purpose of this book is to provide students and young engineers with a guide to

help them develop the skills necessary to be able to use VHDL for introductory and

intermediate level digital design. These skills will also give you the ability and the

confidence to continue on with VHDL-based digital design. In this way, you will also

take steps toward developing the skills required to implement more advanced digital

design systems. Although there are many books and on-line tutorials dealing with

VHDL, these sources are often troublesome for several reasons. Firstly, much of the

information regarding VHDL is either needlessly confusing or poorly written. Material

with these characteristics seems to be written from the standpoint of someone who

is either painfully intelligent or has forgotten that their audience may be seeing the

material for the first time. Secondly, the common approach for most VHDL manuals

is to introduce too many topics and a lot of extraneous information too early. Most of

this material would best appear later in the presentation. Material presented in this

manner has a tendency to be confusing, is easily forgotten if misunderstood or simply

is never applied. The approach taken by this book is to provide only what you need

to know to quickly get up and running in VHDL. As with all learning, once you have

obtained and applied some useful information, it is much easier to build on what you

know as opposed to continually adding information that is not directly applicable to

the subjects at hand.

The intent of this book is to present topics to someone familiar with digital logic

design and with some skills in algorithmic programming languages such as Java or

C. The information presented here is focused on giving a solid knowledge of the

approach and function of VHDL. With a logical and intelligent introduction to basic

VHDL concepts, you should be able to quickly and efficiently create useful VHDL

code. In this way, you will see VHDL as a valuable design, simulation and test tool

rather than another batch of throw-away technical knowledge encountered in some
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forgotten class or lab.

Lastly, VHDL is an extremely powerful tool. The more you understand as you study

and work with VHDL, the more it will enhance your learning experience independently

of your particular area of interest. It is well worth noting that VHDL and other similar

hardware design languages are used to create most of the digital integrated circuits

found in the various electronic gizmos that overwhelm our modern lives. The concept

of using software to design hardware that is controlled by software will surely provide

you with endless hours of contemplation. VHDL is a very exciting language and

mastering it will allow you to implement systems capable of handling and processing

in parallel ns-level logic events in a comfortable software environment.

This book was written with the intention of being freely available to everybody. The

formatted electronic version of this book is available from the Internet. Any part of

this book can be copied, distributed and modified in accordance with the conditions

of its license.

DISCLAIMER: This book quickly takes you down the path toward understanding

VHDL and writing solid VHDL code. The ideas presented herein represent the core

knowledge you will need to get up and running with VHDL. This book in no way

presents a complete description of the VHDL language. In an effort to expedite the

learning process, some of the finer details of VHDL have been omitted from this book.

Anyone who has the time and inclination should feel free to further explore the true

depth of the VHDL language. There are many on-line VHDL reference books and free

tutorials. If you find yourself becoming curious about what this book is not telling

you about VHDL, take a look at some of these references.



1
Introduction To VHDL

VHDL has a rich and interesting history1. But since knowing this history is probably

not going to help you write better VHDL code, it will only be briefly mentioned here.

Consulting other, lengthier texts or search engines will provide more information

for those who are interested. Regarding the VHDL acronym, the V is short for yet

another acronym: VHSIC or Very High-Speed Integrated Circuit. The HDL stands

for Hardware Description Language. Clearly, the state of technical affairs these days

has done away with the need for nested acronyms. VHDL is a true computer language

with the accompanying set of syntax and usage rules. But, as opposed to higher-level

computer languages, VHDL is primarily used to describe hardware. The tendency for

most people familiar with a higher-level computer language such as C or Java is to view

VHDL as just another computer language. This is not altogether a bad approach if

such a view facilitates the understanding and memorization of the language syntax and

structure. The common mistake made by someone with this approach is to attempt to

program in VHDL as they would program a higher-level computer language. Higher-

level computer languages are sequential in nature; VHDL is not.

VHDL was invented to describe hardware and in fact VHDL is a concurrent lan-

guage. What this means is that, normally, VHDL instructions are all executed at

the same time (concurrently), regardless of the size of your implementation. Another

way of looking at this is that higher-level computer languages are used to describe

algorithms (sequential execution) and VHDL is used to describe hardware (parallel

execution). This inherent difference should necessarily encourage you to re-think how

you write your VHDL code. Attempts to write VHDL code with a high-level lan-

guage style generally result in VHDL code that no one understands. Moreover, the

tools used to synthesize2 this type of code have a tendency to generate circuits that

generally do not work correctly and have bugs that are nearly impossible to trace.

1VHDL-Wikipedia: http://en.wikipedia.org/wiki/VHDL
2Synthesis: the process of programming a device such as a FPGA or a CPLD

http://en.wikipedia.org/wiki/VHDL
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And if the circuit does actually work, it will most likely be inefficient due to the fact

that the resulting hardware was unnecessarily large and overly complex. This problem

is compounded as the size and complexity of your circuits becomes greater.

There are two primary purposes for hardware description languages such as VHDL.

First, VHDL can be used to model digital circuits and systems. Although the word

“model” is one of those overly used words in engineering, in this context it simply

refers to a description of something that presents a certain level of detail. The nice

thing about VHDL is that the level of detail is unambiguous due to the rich syntax

rules associated with it. In other words, VHDL provides everything that is necessary

in order to describe any digital circuit. Likewise, a digital circuit/system is any circuit

that processes or stores digital information. Second, having some type of circuit model

allows for the subsequent simulation and/or testing of the circuit. The VHDL model

can also be translated into a form that can be used to generate actual working circuits.

The VHDL model is magically3 interpreted by software tools in such a way as to create

actual digital circuits in a process known as synthesis.

There are other logic languages available to model the behavior of digital circuit

designs that are easy to use because they provide a graphical method to model cir-

cuits. For them, the tendency is to prefer the graphical approach because it has such

a comfortable learning curve. But, as you can easily imagine, your growing knowl-

edge of digital concepts is accompanied by the ever-increasing complexity of digital

circuits you are dealing with. The act of graphically connecting a bunch of lines on

the computer screen quickly becomes tedious. The more intelligent approach to digi-

tal circuit design is to start with a system that is able to describe exactly how your

digital circuit works (in other words, modeling it) without having to worry about the

details of connecting massive quantities of signal lines. Having a working knowledge

of VHDL will provide you with the tools to model digital circuits in a much more

intelligent manner.

Finally, you will be able to use your VHDL code to create actual functioning circuits.

This allows you to implement relatively complex circuits in a relatively short period

of time. The design methodology you will be using allows you to dedicate more time

to designing your circuits and less time “constructing” them. The days of placing,

wiring and troubleshooting multiple integrated circuits on a proto-board are gone.

VHDL is a very exciting language that can allow the design and implementation of

functions capable of processing an enormous amount of data by employing a relatively

low-cost and low-power hardware. Moreover, what is really impressive is that, via

simple VHDL modules, you can have direct access to basic ns-level logic events as

well as communicate using a USB port or drive a VGA monitor to visualize graphics

of modest complexity.

Modeling digital circuits with VHDL is a form of modern digital design distinct from

3It is not really magic. There is actually a well-defined science behind it.
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schematic-based approaches. The programmer writes a loose description of what the

final logic circuit should do and a language compiler, in this case called a synthesizer,

attempts to “infer” what the actual final physical logic circuit should be. Novice pro-

grammers are not always able to convince the synthesizer to implement something

that seems very clear in their minds. A somehow old-fashioned alternative to a de-

scriptive language such as VHDL is one in which the programmer simply interconnects

a finite number of digital blocks that he has pooled from a library in an attempt to

reach the same objective. This approach is not only very time consuming but also

inherently limiting and very error prone.

Modern digital design is more about appropriately modeling digital circuits and

maintaining a quality description of the circuit. All that is left now is to learn how to

properly use VHDL to describe what you want to implement.

1.1 Golden Rules of VHDL

Before you start, here are a couple of points that you should never forget when work-

ing with VHDL.

VHDL is a hardware-design language. Although most people have probably al-

ready been exposed to some type of higher-level computer language, these skills are

only indirectly applicable to VHDL. When you are working with VHDL, you are not

programming, you are “designing hardware”. Your VHDL code should reflect this

fact. What does this mean? It means that unless you are inside certain constructs,

your code lines will be executed almost all at once. If your VHDL code appears too

similar to code of a higher-level computer language, it is probably bad VHDL code.

This is vitally important.

Have a general concept of what your hardware should look like. Although

VHDL is vastly powerful, if you do not understand basic digital constructs, you will

probably be unable to generate efficient digital circuits. Digital design is similar to

higher-level language programming in that even the most complicated programming

at any level can be broken down into some simple programming constructs. There is a

strong analogy to digital design in that even the most complicated digital circuits can

be described in terms of basic digital constructs. In other words, if you are not able

to roughly envision the digital circuit you are trying to model in terms of basic digital

circuits, you will probably misuse VHDL, thus angering the VHDL gods. VHDL is

cool, but it is not as magical as it initially appears to be.

1.2 Tools Needed for VHDL Development

VHDL is a programming language used to implement hardware which will run other

software (for example C). A Field Programmable Gate Array (FPGA) is probably the
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most common device that you can use for your VHDL implementations. If you want

to do VHDL coding for FPGAs you will have to play within the rules that current

major FPGA manufacturers have drawn up to help you (rules which also ensure their

continued existence in the market).

The successful implementation of a VHDL-based system roughly calls for the follow-

ing steps: VHDL code writing, compiling, simulation and synthesis. All major FPGA

manufacturers have a set of software and hardware tools that you can use to per-

form the mentioned steps. Most of these software tools are free of charge but are not

open-source. Nevertheless, the same tools follow a license scheme, whereby paying a

certain amount of money allows you to take advantage of sophisticated software fea-

tures or get your hands on proprietary libraries with lots of components (e.g. a 32-bit

processor) that you can easily include in your own project.

If your have no interest in proprietary libraries you can use open-source solutions

(e.g. GHDL4) which will allow you to compile and simulate your VHDL code using

the open-source tool gcc5. At the time of writing, no open-source solution is available

for the synthesis process. However synthesis can be accomplished using a free-license

version of any major FPGA manufacturer’s software tool (e.g. Xilinx ISE Design

Suite).

Thanks to the open-source community, you can write, compile and simulate VHDL

systems using excellent open-source solutions. This book will show you how to get up

and running with the VHDL language. For further tasks such as synthesis and upload

of your code into an FPGA, the free of charge Xilinx ISE Design Suite6 or the Altera

equivalent tool Quartus, can be employed.

4Open-source VHDL simulator GHDL: http://ghdl.free.fr
5Multi-language open-source compiler GCC: http://gcc.gnu.org
6Xilinx ISE Design Suite: http://www.xilinx.com/tools/designtools.htm

http://ghdl.free.fr
http://gcc.gnu.org
http://www.xilinx.com/tools/designtools.htm
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VHDL Invariants

There are several features of VHDL that you should know before moving forward. Al-

though it is rarely a good idea for people to memorize anything, you should memorize

the basic concepts presented in this section. This should help eliminate some of the

drudgery involved in learning a new programming language and lay the foundation

that will enable you to create visually pleasing and good VHDL source code.

2.1 Case Sensitivity

VHDL is not case sensitive. This means that the two statements shown in Listing

2.1 have the exact same meaning (don’t worry about what the statement actually

means though). Keep in mind that Listing 2.1 shows an example of VHDL case

sensitivity and not good VHDL coding practices.

Listing 2.1: An example of VHDL case insensitivity.

Dout <= A and B; doUt <= a AnD b;

2.2 White Space

VHDL is not sensitive to white space (spaces and tabs) in the source document.

The two statements in Listing 2.2 have the exact same meaning. Once again, Listing

2.2 is not an example of good VHDL coding style. Note that Listing 2.2 once again

indicates that VHDL is not case sensitive.

Listing 2.2: An example showing VHDL’s indifference to white space.

nQ <= In_a or In_b; nQ <=in_a OR in_b;

2.3 Comments

Comments in VHDL begin with the symbol “--” (two consecutive dashes). The

VHDL synthesizer ignores anything after the two dashes and up to the end of the
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line in which the dashes appear. Listing 2.3 shows two types of commenting styles.

Unfortunately, there are no block-style comments (comments that span multiple lines

but do not require comment marks on every line) available in VHDL.

Listing 2.3: Two typical uses of comments.

-- This next section of code is used to blah-blah
-- This type of comment is the best fake for block-style commenting.
PS_reg <= NS_reg; -- Assign next_state value to present_state

Appropriate use of comments increases both the readability and the understandability

of VHDL code. The general rule is to comment any line or section of code that may

not be clear to a reader of your code besides yourself. The only inappropriate use of

a comment is to state something that is patently obvious. It is hard to imagine code

that has too few comments so don’t be shy: use lots of comments. Research has shown

that using lots of appropriate comments is actually a sign of high intelligence.

2.4 Parentheses

VHDL is relatively lax on its requirement for using parentheses. Like other computer

languages, there are a few precedence rules associated with the various operators in

the VHDL language. Though it is possible to learn all these rules and write clever

VHDL source code that will ensure the readers of your code are left scratching their

heads, a better idea is to practice liberal use of parentheses to ensure the human

reader of your source code understands the purpose of the code. Once again, the two

statements appearing in Listing 2.4 have the same meaning. Note that extra white

space has been added along with the parentheses to make the lower statement clearer.

Listing 2.4: Example of parentheses that can improve clarity.

if x = ’0’ and y = ’0’ or z = ’1’ then
blah; -- some useful statement
blah; -- some useful statement

end if;
if ( ((x = ’0’) and (y = ’0’)) or (z = ’1’) )

blah; -- some useful statement
blah; -- some useful statement

end if;

2.5 VHDL Statements

Similar to other algorithmic programming languages, every VHDL statement is termi-

nated with a semicolon. This fact helps when attempting to remove compiling errors

from your code since semicolons are often omitted during initial coding. The main

challenge then is to know what constitutes a VHDL statement in order to know when

to include semicolons. The VHDL synthesizer is not as forgiving as other languages

when superfluous semicolons are placed in the source code.
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2.6 if, case and loop Statements

As you will soon find out, the VHDL language contains if, case and loop state-

ments. A common source of frustration that occurs when learning VHDL are the

classic dumb mistakes involving these statements. Always remember the rules stated

below when writing or debugging your VHDL code and you will save yourself a lot of

time. Make a note of this section as one you may want to read again once you have

had a formal introduction to these particular statements.

• Every if statement has a corresponding then component

• Each if statement is terminated with an end if;

• If you need to use an else if construct, the VHDL version is elsif

• Each case statement is terminated with an end case;

• Each loop statement has a corresponding end loop; statement

In general, you should not worry too much about memorizing code syntax as chances

are you will use an editor sophisticated enough to have code snippets (namely Gedit1).

A good programmer distinguishes himself by other means than perfectly remembering

code syntax.

2.7 Identifiers

An identifier refers to the name given to various items in VHDL. Examples of identi-

fiers in higher-level languages include variable names and function names. Examples

of identifiers in VHDL include variable names, signal names and port names (all of

which will be discussed soon). Listed below are the hard and soft rules (i.e. you must

follow them or you should follow them), regarding VHDL identifiers.

• Identifiers should be self-describing. In other words, the text you apply to identi-

fiers should provide information as to the use and purpose of the item the identifier

represents.

• Identifiers can be as long as you want (contain many characters). Shorter names

make for better reading code, but longer names present more information. It is up

to the programmer to choose a reasonable identifier length.

• Identifiers can only contain a combination of letters (A-Z and a-z), digits (0-9)

and the underscore character (“ ”).

• Identifiers must start with an alphabetic character.

• Identifiers must not end with an underscore and must never have two consecutive

underscores.

1Gedit, the official Linux GNOME text editor. http://projects.gnome.org/gedit

http://projects.gnome.org/gedit
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• The best identifier for a function that calculates the position of the Earth is

CalcEarthPosition or calc earth position. Try to be consistent.

• The best identifier for a variable that stores the age of your car is AgeMyCar or

age my car. Again, try to be consistent.

Remember, intelligent choices for identifiers make your VHDL code more readable,

understandable and more impressive to coworkers, superiors, family and friends. A

few examples of both good and bad choices for identifier names appear in Listing 2.5

and in Listing 2.6.

Listing 2.5: Valid identifies.

data_bus --descriptive name
WE --classic "write enable"
div_flag --real winner
port_A --provides some info
in_bus --input bus
clk --classic clock
clk_in
clk_out
mem_read_data
--
--
--

Listing 2.6: Invalid identifies.

3Bus_val -- begins with a number chr
DDD -- not self commenting
mid_$num -- illegal character
last__val-- consec. underscores
str_val_ -- ends with underscore
in -- uses VHDL reserved word
@#$%% -- total garbage
it_sucks -- try to avoid
Big_vAlUe-- valid but ugly
pa -- possibly lacks meaning
sim-val -- illegal character (dash)
DDE_SUX -- no comment

2.8 Reserved Words

There is a list of words that have been assigned special meaning by the VHDL lan-

guage. These special words, usually referred to as reserved words, can not be used as

identifiers when writing VHDL code. A partial list of reserved words that you may

be inclined to use appears in Listing 2.7. A complete list of reserved words appears

in the Appendix. Notably missing from Listing 2.7 are standard operator names such

as AND, OR, XOR, etc.

Listing 2.7: A short list of VHDL reserved words.

access after alias all attribute block
body buffer bus constant exit file
for function generic group in is
label loop mod new next null
of on open out range rem
return signal shared then to type
until use variable wait while with

2.9 VHDL Coding Style

Coding style refers to the appearance of the VHDL source code. Obviously, the free-

dom provided by case insensitivity, indifference to white space and lax rules on paren-

theses creates a coding anarchy. The emphasis in coding style is therefore placed

on readability. Unfortunately, the level of readability of any document, particularly

coding text, is subjective. Writing VHDL code is similar to writing code in other
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computer languages such as C and Java where you have the ability to make the doc-

ument more readable without changing the functioning of the code. This is primarily

done by indenting certain portions of the program, using self-describing identifiers

and provided proper comments when and where necessary.

Instead of stating here a bunch of rules for you to follow as to how your code should

look, you should instead strive to simply make your source code readable. Listed below

are a few thoughts on what makes readable source code.

• Chances are that if your VHDL source code is readable to you, it will be read-

able to others who may need to peruse your document. These other people may

include someone who is helping you get the code working properly, someone who

is assigning a grade to your code, or someone who signs your paycheck at the end

of the day. These are the people you want to please. These people are probably

very busy and more than willing to make a superficial glance at your code. Nice

looking code will slant such subjectivity in your favor.

• If in doubt, your VHDL source code should be modeled after some other VHDL

document that you find organized and readable. Any code you look at that is

written down somewhere is most likely written by someone with more VHDL

experience than a beginner such as yourself. Emulate the good parts of their style

while on the path to creating an even more readable style.

• Adopting a good coding style helps you write code without mistakes. As with

other compilers you have experience with, you will find that the VHDL compiler

does a great job of knowing a document has an error but a marginal job at telling

you where or what the error is. Using a consistent coding style enables you to find

errors both before compilation and after the compiler has found an error.

• A properly formatted document explicitly presents information about your design

that would not otherwise be readily apparent. This is particularly true when using

proper indentation and sufficient comments.





3
VHDL Design Units

The “black-box” approach to any type of design implies a hierarchical structure in

which varying amounts of detail are available at each of the different levels of the

hierarchy. In the black-box approach, units of action which share a similar purpose

are grouped together and abstracted to a higher level. Once this is done, the module

is referred to by its inherently more simple black-box representation rather than by

the details of the circuitry that actually performs that functionality. This approach

has two main advantages. First, it simplifies the design from a systems standpoint.

Examining a circuit diagram containing appropriately named black boxes is much

more understandable than staring at a circuit containing a countless number of logic

gates. Second, the black-box approach allows for the reuse of previously written code.

Not surprisingly, VHDL descriptions of circuits are based on the black-box approach.

The two main parts of any hierarchical design are the black box and the stuff that

goes in the black box (which can of course be other black boxes). In VHDL, the black

box is referred to as entity and the stuff that goes inside it is referred to as the

architecture. For this reason, the VHDL entity and architecture are closely related.

As you can probably imagine, creating the entity is relatively simple while a good

portion of the VHDL coding time is spent on properly writing the architecture. Our

approach here is to present an introduction to writing VHDL code by describing

the entity and then moving on to the details of writing the architecture. Familiarity

with the entity will hopefully aid in your learning of the techniques to describe the

architecture.

3.1 Entity

The VHDL entity construct provides a method to abstract the functionality of a circuit

description to a higher level. It provides a simple wrapper for the lower-level circuitry.

This wrapper effectively describes how the black box interfaces with the outside world.
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Since VHDL describes digital circuits, the entity simply lists the various inputs and

outputs of the underlying circuitry. In VHDL terms, the black box is described by an

entity declaration. The syntax of the entity declaration is shown in Listing 3.1.

Listing 3.1: The entity declaration.

entity my_entity is
port(

port_name_1 : in std_logic ;
port_name_2 : out std_logic;
port_name_3 : inout std_logic ); --do not forget the semicolon

end my_entity; -- do not forget this semicolon either

my entity defines the name of the entity. The next section is nothing more than

the list of signals from the underlying circuit that are available to the outside world,

which is why it is often referred to as an interface specification. The port name x is

an identifier used to differentiate the various signals. The next keyword (the keyword

in) specifies the direction of the signal relative to the entity where signals can either

enter, exit or do both. These input and output signals are associated with the keywords

in, out and inout1 respectively. The next keyword (the keyword std logic) refers

to the type of data that the port will handle. There are several data types available

in VHDL but we will primarily deal with the std logic type and derived versions.

More information regarding the various VHDL data types will be discussed later.

When you attempt to write fairly complicated VHDL code, you will need to split

your code into different files, functions and packages constructors which will help you

better deal with your code. In this scenario, the entity body will not only host the

port definition statements but, most likely, other procedures as well. We will talk

about this later in the book.

Listing 3.2: VHDL entity declaration.

------------------------------
-- interface description --
-- of killer_ckt --
------------------------------
entity killer_ckt is
port (
life_in1 : in std_logic;
life_in2 : in std_logic;
crtl_a, ctrl_b : in std_logic;
kill_a : out std_logic;
kill_b, kill_c : out std_logic);
end killer_ckt;

killer ckt

life in1

life in2

ctrl a

ctrl b

kill a

kill b

kill c

Listing 3.2 shows an example of a black box and the VHDL code used to describe

it. Listed below are a few points to note about the code in Listing 3.2. Most of the

points deal with the readability and understandability of the VHDL code.

• Each port name is unique and has an associated mode and data type. This is a

requirement.

1The inout data mode will be discussed later on in the book.
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• The VHDL compiler allows several port names to be included on a single line.

Port names are separated by commas. Always strive for readability.

• Port names are somewhat lined up in a feeble attempt to increase readability. This

is not a requirement but you should always be striving for readability. Remember

that white spaces are ignored by the compiler.

• A comment, which tells us what this this entity does, is included.

• A black-box diagram of the circuit is also provided. Once again, drawing some

type of diagram helps with any VHDL code that you may be writing. Remember:

do not be scared, draw a picture.

Hopefully, you are not finding these entity specifications too challenging. In fact,

they are so straightforward, we will throw in one last twist before we leave the realm

of VHDL entities. Most of the more meaningful circuits that you will be designing,

analyzing and testing have many similar and closely related inputs and outputs. These

are commonly referred to as “bus signals” in computer lingo. Bus lines are made of

more than one signal that differ in name by only a numeric character. In other words,

each separate signal in the bus name contains the bus name plus a number to separate

it from other signals in the bus. Individual bus signals are referred to as elements of

the bus. As you would imagine, buses are often used in digital circuits. Unfortunately,

the word bus also refers to established data transfer protocols. To disambiguate the

word bus, we will be using the word “bundle” to refer to a set of similar signals and

bus to refer to a protocol.

Bundles are easily described in the VHDL entity. All that is needed is a new data

type and a special notation to indicate when a signal is a bundle or not. A few

examples are shown in Listing 3.3. In these examples note that the mode remains the

same but the type has changed. The std logic data type has now been replaced by

the word std logic vector to indicate that each signal name contains more than

one signal. There are ways to reference individual members of each bundle, but we

will get to those details later.

As you can see by examining Listing 3.3, there are two possible methods to describe

the signals in a bundle. These two methods are shown in the argument lists that follow

the data type declaration. The signals in the bus can be listed in one of two orders

which are specified by the to and downto keywords. If you want the most significant

bit of your bundle to be on the the first bit on the left you use downto keyword. Be

sure not to forget the orientation of signals when you are using this notation in your

VHDL model.

In the black box of Listing 3.3 you can see the formal notation for a bundle. Note

that the black box uses a slash-and-number notation. The slash across the signal line

indicates the signal is a bundle and the associated number specifies the number of

signals in the bundle. Worthy of mention regarding the black box relative to Listing
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3.3 is that the input lines sel1 and sel0 could have been made into one bundle

containing the two signals.

mux 4

a data
8

/

b data
8

/

c data
8

/

d data
8

/

sel0

sel1

data out
8

/

Listing 3.3: Entity declaration with bundles.

-------------------------------------------------------------
-- Unlike the other examples, this is actually an interface
-- for a MUX that selects one of four bus lines for the output.
-------------------------------------------------------------
entity mux4 is
port ( a_data : in std_logic_vector(0 to 7);

b_data : in std_logic_vector(0 to 7);
c_data : in std_logic_vector(0 to 7);
d_data : in std_logic_vector(0 to 7);
sel1,sel0 : in std_logic;
data_out : out std_logic_vector(0 to 7));

end mux4;

The data type std logic and the data type std logic vector is what the IEEE

has standardized for the representation of digital signals. Normally, you should con-

sider that these data types assume the logic value 1 or the logic value 0. However,

as specified in the std logic 1164 package, the implementation of the std logic

type (and the std logic vector type) is a little more generous and includes 9

different values, specifically: 0,1,U,X,Z,W,L,H,-.

The data type std logic becomes available to you soon after the declaration

library IEEE; use IEEE.std logic 1164.all; at the beginning of your code.

The reason for all these values is the desire for modeling three-state drivers, pull-up

and pull-down outputs, high impedance state and a few others types of inputs/out-

puts. For more details refer to the IEEE 1164 Standard2.

Alternatively to the std logic data type, VHDL programmers sometimes use the

much simpler data type bit which has only the logic values 1 and 0.

3.2 VHDL Standard Libraries

The VHDL language as many other programming languages, has gone through a

long and intense evolution. Among the most important standardization steps we can

mention are the release of the IEEE Standard 1164 package as well as some child

standards that further extended the functionality of the language. In order to take

2IEEE 1164 Standard http://en.wikipedia.org/wiki/IEEE_1164

http://en.wikipedia.org/wiki/IEEE_1164
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advantage of the main implementable feature of VHDL you just need to import the

two main library packages as shown in lines 2∼4 of listing 3.4.

Listing 3.4: Typical inclusions of IEEE standard libraries.

1 -- library declaration
2 library IEEE;
3 use IEEE.std_logic_1164.all; -- basic IEEE library
4 use IEEE.numeric_std.all; -- IEEE library for the unsigned type and
5 -- various arithmetic operators
6

7 -- WARNING: in general try NOT to use the following libraries
8 -- because they are not IEEE standard libraries
9 -- use IEEE.std_logic_arith.all;

10 -- use IEEE.std_logic_unsigned.all;
11 -- use IEEE.std_logic_signed
12

13 -- entity
14 entity my_ent is
15 port ( A,B,C : in std_logic;
16 F : out std_logic);
17 end my_ent;
18 -- architecture
19 architecture my_arch of my_ent is
20 signal v1,v2 : std_logic_vector (3 downto 0);
21 signal u1 : unsigned (3 downto 0);
22 signal i1 : integer;
23 begin
24 u1 <= "1101";
25 i1 <= 13;
26 v1 <= std_logic_vector(u1); -- = "1101"
27 v2 <= std_logic_vector(to_unsigned(i1, v2’length)); -- = "1101"
28

29 -- "4" could be used instead of "v2’length", but the "length"
30 -- attribute makes life easier if you want to change the size of v2
31

32 F <= NOT (A AND B AND C);
33 end my_arch;

Once these packages have been included, you will have access to a very large set of

goodies: several data types, overloaded operators, various conversion functions, math

functions and so on. For instance, the inclusion of the package numeric std.all

will give you the possibility of using the unsigned data type and the function

to unsigned shown in listing 3.4. For a detailed description of what these libraries

include, refer to the Language Templates of your favorite synthesis software tool

(e.g. the yellow light bulb in the top panel of the Xilinx ISE software tool).

For more information on VHDL standard libraries refer to the Appendix.

3.3 Architecture

The VHDL entity declaration, introduced before, describes the interface or the exter-

nal representation of the circuit. The architecture describes what the circuit actually

does. In other words, the VHDL architecture describes the internal implementation of

the associated entity. As you can probably imagine, describing the external interface

to a circuit is generally much easier than describing how the circuit is intended to op-

erate. This statement becomes even more important as the circuits you are describing
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become more complex.

There can be any number of equivalent architectures describing a single entity.

As you will eventually discover, the VHDL coding style used inside the architecture

body has a significant effect on the way the circuit is synthesized (how the circuit will

be implemented inside an actual silicon device). This gives the VHDL programmer

the flexibility of designing systems with specific positive or negative features such as

particular physical size (measuring the number of needed basic digital elements) or

operational speed.

For various reasons, such as facilitating code re-usability and connectibility, an ar-

chitecture can be modeled in different ways. Understanding the various modeling

techniques and understanding how to use them represent the first important steps in

learning VHDL.

An architecture can be written by means of three modeling techniques plus any

combination of these three. There is the data-flow model, the behavioral model,

the structural model and the hybrid models. These models will be described

throughout the book. Listing 3.5 gives a sneak preview of what a simple but complete

VHDL code block looks like.

Listing 3.5: Example of a simple VHDL block.

1 -- FILE: my_sys.vhd
2 library ieee;
3 use ieee.std_logic_1164.all;
4 -- the ENTITY
5 entity circuit1 is
6 port (
7 A,B,C : in std_logic;
8 F : out std_logic);
9 end circuit1;

10 -- the ARCHITECTURE
11 architecture circuit1_arc of circuit1 is
12 signal sig_1: std_logic; -- signal definition
13 variable var_1: integer; -- variable definition
14 begin
15 F <= not (A and B and C); -- signal assignment
16 sig_1 <= A; -- another signal assignment
17 var_1 := 34; -- variable assignment
18 end circuit1_arc;

3.4 Signal and Variable Assignments

In VHDL there are several object types. Among the most frequently used we will

mention the signal object type, the variable object type and the constant object

type. The signal type is the software representation of a wire. The variable type, like

in C or Java, is used to store local information. The constant is like a variable object

type, the value of which cannot be changed. A signal object can be of different types;

we saw before, for example, that a signal object can be of type std logic or of other

types like integer, custom types, etc. The same applies for variable objects.

Before using any signal or variable, it is mandatory to declare them (generally at
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the top of the architecture body, before its beginning) as shown in line 12 and 13 of

Listing 3.5. Such declarations could alternatively be placed inside the entity. Refer to

the VHDL cheat sheet in the Appendix.

As seen in line 15 and line 16 of Listing 3.5 when you want to assign a new value to

an object of type signal you use the operator “<=”. Alternatively, when you want to

assign a new value to an object of type variable you will use the operator “:=”, shown

in line 17. It is also important to remember that the type std logic only exists if

you use the library ieee.std logic 1164.all as done in line 3 of Listing 3.5.

Always remember that all signal and variable assignments of Listing 3.5 going from

line 15 to line 17, are not executed consecutively but instead concurrently (all at the

same time). The variable assignment (line 17) is executed instantaneously. Despite

this, remember that all other signal assignments (line 15 and line 16) are executed

after a certain time, not entirely predictable. Any hope that the execution of line 15

will happen before the execution of line 16 or before the execution of line 17 will only

result in great disappointment.

We will see later on in the book that any time we need a non-concurrent execution

environment where code lines are executed one after the other (like in C or Java),

we will be able to use the “process” construct. Inside a process, all instructions are

executed consecutively from top to bottom.

3.5 Summary

• The entity declaration describes the inputs and outputs of your circuit. This set

of signals is often referred to as the interface to your circuit since these signals are

what the circuitry, external to the entity, uses to interact with your circuit.

• Signals described in the entity declaration include a mode specifier and a type.

The mode specifier can be either an in or an out (or, as we will see later on, even

an inout) while the type is either a std logic or std logic vector.

• The word bundle is preferred over the word bus when dealing with multiple signals

that share a similar purpose. The word bus has other connotations that are not

consistent with the bundle definition.

• Multiple signals that share a similar purpose should be declared as a bundle using

a std logic vector type. Bundled signals such as these are always easier to

work with in VHDL compared to scalar types such as std logic.

• The architecture describes what your circuit actually does and what its behavior

is. Several possible implementations (models) of the same behavior are possible in

VHDL. These are the data-flow model, the behavioral model, the structural

model as well as any combination of them, generally called hybrid model.
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3.6 Exercises

1. What is referred to by the word bundle?

2. What is a common method of representing bundles in black-box diagrams?

3. Why is it considered a good approach to always draw a black-box diagram when

using VHDL to model digital circuits?

4. Write VHDL entity declarations that describe the following black-box diagrams:

a)

sys1

a in1
b in2

clk
ctrl int

out b

b)

sys2

input w

a data
8

/

b data
8

/

clk

dat 4
8

/

dat 5
3

/

5. Provide black-box diagrams that are defined by the following VHDL entity

declarations:
a)
entity ckt_c is
port (

bun_a,bun_b_bun_c : in std_logic_vector(7 downto 0);
lda,ldb,ldc : in std_logic;
reg_a, reg_b, reg_c : out std_logic_vector(7 downto 0);

end ckt_c;

b)
entity ckt_e is
port (

RAM_CS,RAM_WE,RAM_OE : in std_logic;
SEL_OP1, SEL_OP2 : in std_logic_vector(3 downto 0);
RAM_DATA_IN : in std_logic_vector(7 downto 0);
RAM_ADDR_IN : in std_logic_vector(9 downto 0);
RAM_DATA_OUT : in std_logic_vector(7 downto 0);

end ckt_e;

6. The following two entity declarations contain two of the most common syntax

errors made in VHDL. What are they?

a)
entity ckt_a is
port (

J,K : in std_logic;
CLK : in std_logic
Q : out std_logic;)

end ckt_a;

b)
entity ckt_b is
port (
mr_fluffy : in std_logic_vector(15 downto 0);
mux_ctrl : in std_logic_vector(3 downto 0);
byte_out : out std_logic_vector(3 downto 0);
end ckt_b;
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The previous chapter introduced the idea of the basic design units of VHDL: the

entity and the architecture. Most of the time was spent describing the entity simply

because there is so much less involved compared to the architecture. Remember, the

entity declaration is used to describe the interface of a circuit to the outside world.

The architecture is used to describe how the circuit is intended to function.

Before we get into the details of architecture specification, we must step back for a

moment and remember what it is we are trying to do with VHDL. We are, for one rea-

son or another, describing a digital circuit. Realizing this is massively important. The

tendency for young VHDL programmers with computer programming backgrounds

is to view VHDL as just another programming language they want or have to learn.

Although many university students have used this approach to pass the basic digital

classes, this is a not a good idea.

When viewed correctly, VHDL represents a completely different approach to pro-

gramming while still having many similarities to other programming languages. The

main similarity is that they both use a syntactical and rule-based language to de-

scribe something abstract. But, the difference is that they are describing two different

things. Most programming languages are used to implement functionalities in a se-

quential manner, one instruction at a time. VHDL however describes hardware and

so instructions are executed in a concurrent manner1, meaning that all instructions

are executed at once. Realizing this fact will help you to truly understand the VHDL

programming paradigm and language.

4.1 Concurrent Statements

At the heart of most programming languages are the statements that form a majority

of the associated source code. These statements represent finite quantities of “actions”

1In VHDL there are actually ways to obtain sequential execution as well.
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CD

B

A

E E out

A 1
A 2

B 1
B 2

D 1

my circuit

Figure 4.1: Some common circuit that is well known to “execute” parallel opera-

tions.

to be taken. A statement in an algorithmic programming language such as C or Java

represents an action to be taken by the processor. Once the processor finishes one

action, it moves onto the next action specified somewhere in the associated source

code. This makes sense and is comfortable to us as humans because just like the

processor, we are generally only capable of doing one thing at a time. This description

lays the foundation for an algorithmic method where the processor does a great job

of following a set of rules which are essentially the direction provided by the source

code. When the rules are meaningful, the processor can do amazing things.

VHDL programming is significantly different. Whereas a processor steps one by one

through a set of statements, VHDL has the ability to “execute” a virtually unlimited

number of statements at the same time and in a concurrent manner (in other words,

in parallel). Once again, the key thing to remember here is that we are designing

hardware. Parallelism, or things happening concurrently, in the context of hardware is

a much more straightforward concept in hardware than it is in the world of software. If

you have had any introduction to basic digital hardware, you are most likely already

both familiar and comfortable with the concept of parallelism, albeit not within a

programming language.

Figure 4.1 shows a simple example of a circuit that operates in parallel. As you

know, the output of the gates are a function of the gate inputs. Any time that any

gate input changes, there is a possibility that, after an opportune delay, the gate

output will change. This is true of all the gates in Figure 4.1 or in any digital circuit

in general. Once changes to the gate inputs occur, the circuit status is re-evaluated

and the gate outputs may change accordingly. Although the circuit in Figure 4.1 only

shows a few gates, this idea of concurrent operation of all the elements in the circuit

is the same in all digital circuits no matter how large or complex they are.

Since most of us are human, we are only capable of reading one line of text at a time

and in a sequential manner. We have the same limitation when we try to write some

text, not to mention enter some text into a computer. So how then are we going to
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use text to describe a circuit that is inherently parallel? We did not have this problem

when discussing something inherently sequential such as standard algorithmic pro-

gramming. When writing code using an algorithmic programming language, there is

generally only one processing element to focus on at each given time. Everything more

or less follows up in a sequential manner, which fits nicely with our basic limitation

as humans.

The VHDL programming paradigm is built around the concept of expression par-

allelism and concurrency with textual descriptions of circuits. The heart of VHDL

programming is the concurrent statement. These are statements that look a lot like

the statements in algorithmic languages but they are significantly different because

the VHDL statements, by definition, express concurrency of execution.

Listing 4.1: VHDL code for the circuit of Figure 4.1.

-- entity
entity my_circuit is
port (

A_1,A_2,B_1,B_2,D_1 : in std_logic;
E_out : out std_logic;

end my_circuit;
-- architecture
architecture my_circuit_arc of my_circuit is

signal A_out, B_out, C_out : std_logic;
begin

A_out <= A_1 and A_2;
B_out <= B_1 or B_2;
C_out <= (not D_1) and B_2;
E_out <= A_out or B_out or C_out;

end my_circuit_arc;

Listing 4.1 shows the code that implements the circuit shown in Figure 4.1. This

code shows four concurrent signal assignment statements. As seen before, the “<=”

construct refers to the signal assignment operator. It is true that we cannot write these

four statements at the same time but we can interpret these statements as actions that

occur concurrently. Remember to keep in mind that the concept of concurrency is a

key concept in VHDL. If you feel that the algorithmic style of thought is creeping into

your soul, try to snap out of it quickly. The concurrent signal assignment is discussed

in greater detail in the next section.

As a consequence of the concurrent nature of VHDL statements, the three chunks

of code appearing below are 100% equivalent to the code shown in Listing 4.1. Once

again, since the statements are interpreted as occurring concurrently: the order that

these statements appear in your VHDL source code makes no difference. Generally

speaking, it would be a better idea to describe the circuit as shown in Listing 4.1

since it somewhat reflects the natural organization of statements.

Listing 4.2: Equivalent VHDL code for the circuit of Figure 4.1.

C_out <= (not D_1) and B_2;
A_out <= A_1 and A_2;
B_out <= B_1 or B_2;
E_out <= A_out or B_out or C_out;
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Listing 4.3: Equivalent VHDL code for the circuit of Figure 4.1.

A_out <= A_1 and A_2;
E_out <= A_out or B_out or C_out;
B_out <= B_1 or B_2;
C_out <= (not D_1) and B_2;

Listing 4.4: Equivalent VHDL code for the circuit of Figure 4.1.

B_out <= B_1 or B_2;
A_out <= A_1 and A_2;
E_out <= A_out or B_out or C_out;
C_out <= (not D_1) and B_2;

4.2 Signal Assignment Operator “<=”

Algorithmic programming languages always have some type of assignment operator.

In C or Java, this is the well-known “=” sign. In these languages, the assignment

operator signifies a transfer of data from the right-hand side of the operator to the

left-hand side. VHDL uses two consecutive characters to represent the assignment op-

erator: “<=”. This combination was chosen because it is different from the assignment

operators in most other common algorithmic programming languages. The operator

is officially known as a signal assignment operator to highlight its true purpose. The

signal assignment operator specifies a relationship between signals. In other words,

the signal on the left-hand side of the signal assignment operator is dependent upon

the signals on the right-hand side of the operator.

With these new insights into VHDL, you should be able to understand the code of

Listing 4.1 and its relationship to its schematic shown in Figure 4.1. The statement

“G <=A AND B;” indicates that the value of the signal named “G” represents an AND

logic operation between the signals “A” and “B”.

There are four types of concurrent statements that are examined in this chapter.

We have already briefly discussed the concurrent signal assignment statement which

we will soon examine further and put it into the context of an actual circuit. The

three other types of concurrent statements that are of immediate interest to us are

the process statement, the conditional signal assignment and the selected signal as-

signment.

In essence, the four types of statements represent the tools that you will use to im-

plement digital circuits in VHDL. You will soon be discovering the versatility of these

statements. Unfortunately, this versatility effectively adds a fair amount of steep-

ness to the learning curve. As you know from your experience in other programming

languages, there are always multiple ways to do the same things. Stated differently,

several seemingly different pieces of code can actually produce the same result. The

same is true for VHDL code: several considerably different pieces of VHDL code can

actually generate the exact same hardware. Keep this in mind when you look at any

of the examples given in this tutorial. Any VHDL code used to solve a problem is
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more than likely one of many possible solutions to that problem. Some of the VHDL

models in this tutorial are presented to show that something can be done a certain

way, but that does not necessarily mean they can only be done in that way.

4.3 Concurrent Signal Assignment Statements

The general form of a concurrent signal assignment statement is shown in Listing

4.5. In this case, the target is a signal that receives the values of the expression. An

expression is defined by a constant, by a signal, or by a set of operators that operate on

other signals. Examples of expressions used in VHDL code are shown in the examples

that follow.

Listing 4.5: Syntax for the concurrent signal assignment statement.

<target> <= <expression>;

EXAMPLE 1. Write the VHDL code that implements a three-input NAND gate.

The three input signals are named A, B and C and the output signal name is F.

SOLUTION. It is good practice to always draw a diagram of the circuit you are

designing. Furthermore, although we could draw a diagram showing the familiar sym-

bol for the NAND gate, we will choose to keep the diagram general and take the

black-box approach instead. Remember, the black box is a nice aid when it comes to

writing the entity declaration. The solution to Example 1 is provided in Listing 4.6.

Listing 4.6: Solution of Example 1.

1 library IEEE;
2 use IEEE.STD_LOGIC_1164.ALL;
3 use IEEE.STD_LOGIC_ARITH.ALL;
4 use IEEE.STD_LOGIC_UNSIGNED.ALL;
5 -- entity
6 entity my_nand3 is
7 port ( A,B,C : in std_logic;
8 F : out std_logic);
9 end my_nand3;

10 -- architecture
11 architecture exa_nand3 of my_nand3 is
12 begin
13 F <= NOT (A AND B AND C);
14 end exa_nand3;
15 -- another architecture
16 architecture exb_nand3 of my_nand3 is
17 begin
18 F <= A NAND B NAND C;
19 end exb_nand3;

my nand3

A

B

C

F

This example contains a few new ideas that are worth further clarification.

• There are header files and library files that must be included in your VHDL code

in order for your code to correctly compile. These few lines of code are listed at

the top of the code in Listing 4.6. The listed lines are more than what is needed

for this example but they will be required in later examples. To save space, these

lines will be omitted in some of the coming examples.
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• This example highlights the use of several logic operators. The logic operators

available in VHDL are AND, OR, NAND, NOR, XOR and XNOR. The NOT

operator is technically speaking not a logic operator but is also available. Moreover,

these logic operators are considered to be binary operators in that they operate on

the two values appearing on the left and right-hand side of the operator. The NOT

operator is a unary operator and for that, it only operates on the value appearing

to the right of the operator.

• Two architectures have been provided in this solution; they are both associated

with the same entity. This is fairly common practice in complex circuits but is not

overly useful in most VHDL design.

Example 1 demonstrates the use of the concurrent signal assignment (CSA) statement

in a working VHDL program (refer to line 13 and 18 of Listing 4.6). But since there

is only one CSA statement, the concept of concurrency is not readily apparent. The

idea behind any concurrent statement in VHDL is that the output is changed any

time one of the input signals changes. In other words, the output F is re-evaluated

any time a signal on the input expression changes. This is a key concept in truly

understanding the VHDL, so you may want to read that sentence a few more times.

The idea of concurrency is more clearly demonstrated in Example 2.

EXAMPLE 2. Write the VHDL code to implement the function expressed by

the following logic equation: F3 = LMN + LM

SOLUTION. The black box diagram and associated VHDL code is shown in Listing

4.7.

Listing 4.7: Solution of Example 2.

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
-- entity
entity my_ckt_f3 is
port ( L,M,N : in std_logic;

F3 : out std_logic);
end my_ckt_f3;
-- architecture
architecture f3_2 of my_ckt_f3 is
begin
F3<=((NOT L)AND(NOT M)AND N)OR(L AND M);
end f3_2;

my ckt f3

L

M

N

F3

This example shows a one-line implementation of the given logic equation.

An alternative solution to Example 2 is provided in Figure 4.8. This example repre-

sents a massively important concept in VHDL. The solution shown in Listing 4.8 uses

some special statements in order to implement the circuit. These special statements

are used to provide what is often referred to as intermediate results. This approach is

equivalent to declaring extra variables in an algorithmic programming language to be
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used for storing intermediate results. The need for intermediate results is accompa-

nied by the declaration of extra signal values, which are often referred to intermediate

signals. Note in Listing 4.8 that the declaration of intermediate signals is similar to

the port declarations appearing in the entity declaration, except that the mode spec-

ification(in, our or inout) is missing.

The intermediate signals must be declared within the body of the archi-

tecture because they have no link to the outside world and thus do not appear in the

entity declaration. Note that the intermediate signals are declared in the architecture

body but appear before the begin statement.

Listing 4.8: Alternative solution of Example 2.

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
-- entity
entity my_ckt_f3 is
port ( L,M,N : in std_logic;

F3 : out std_logic);
end my_ckt_f3;
-- architecture
architecture f3_1 of my_ckt_f3 is

signal A1, A2 : std_logic; -- intermediate signals
begin

A1 <= ((NOT L) AND (NOT M) AND N);
A2 <= L AND M;
F3 <= A1 OR A2;

end f3_1;

Despite the fact that the architectures f3 2 and f3 1 of Listing 4.7 and Listing 4.8

appear different, they are functionally equivalent. This is because all the statements

are concurrent signal assignment statements. Even though the f3 1 architecture

contains three CSAs, they are functionally equivalent to the CSA in f3 2 because

each of the three statements is effectively executed concurrently.

Although the approach of using intermediate signals is not mandatory for this ex-

ample, their use brings up some good points. First, the use of intermediate signals

is the norm for most VHDL models. The use of intermediate signals was optional in

Listing 4.8 due to the fact that the example was modeling a relatively simple circuit.

As circuits become more complex, there are many occasions in which intermediate

signals must be used. Secondly, intermediate signals are something of a tool that you

will often need to use in your VHDL models. The idea here is that you are trying to

describe a digital circuit using a textual description language: you will often need to

use intermediate signals in order to accomplish your goal of modeling the circuit. The

use of intermediate signals allows you to more easily model digital circuits but does

not make the generated hardware more complicated. The tendency in using VHDL

is to think that since there is more text written on your page, the circuit you are

describing and/or the resulting hardware is larger or more complex. This is simply

not true. The main theme of VHDL is that you should use the VHDL tools at your
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disposal in order to model your circuits in the simplest way possible. Simple circuits

have a higher probability of being understood and synthesized. But most importantly,

a simple VHDL model is not related to the length of the actual VHDL code.

In Example 2 the conversion of the logic function to CSAs was relatively straightfor-

ward. The ease with which these functions can be implemented into VHDL code was

almost trivial. Then again, the function in Example 2 was not overly complicated. As

functions become more complicated (more inputs and outputs), an equation entry ap-

proach becomes tedious. Luckily, there are a few other types of concurrent construct

that can ease its implementation.

4.4 Conditional Signal Assignment

Concurrent signal assignment statements, seen before, associate one target with one

expression. The term conditional signal assignment is used to describe statements that

have only one target but can have more than one associated expression assigned to the

target. Each of the expressions is associated with a certain condition. The individual

conditions are evaluated sequentially in the conditional signal assignment statement

until the first condition evaluates as true. In this case, the associated expression is

evaluated and assigned to the target. Only one assignment is applied per assignment

statement.

The syntax of the conditional signal assignment is shown in Listing 4.9. The target

in this case is the name of a signal. The condition is based upon the state of some other

signals in the given circuit. Note that there is only one signal assignment operator

associated with the conditional signal assignment statement.

Listing 4.9: The syntax for the conditional signal assignment statement.

<target> <= <expression> when <condition> else
<expression> when <condition> else
<expression>;

The conditional signal assignment statement is probably easiest to understand in

the context of a circuit. For our first example, let us simply redo Example 2 using

conditional signal assignment instead of concurrent signal assignment.
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EXAMPLE 3. Write the VHDL code to implement the function expressed in

Example 2. Use only conditional signal assignment statements in your VHDL code.

SOLUTION. The entity declaration does not change from Example 2 so the solution

only needs a new architecture description. By reconsidering the same logic equation

of Example 2, F3 = LMN +LM , the solution to Example 3 is shown in Listing 4.10.

Listing 4.10: Solution of Example 3.

architecture f3_3 of my_ckt_f3 is
begin
F3 <= ’1’ when (L= ’0’ AND M = ’0’ AND N = ’1’) else

’1’ when (L= ’1’ AND M = ’1’) else
’0’;

end f3_3;

There are a couple of interesting points to note about this solution.

• It is not much of an improvement over the VHDL code written using concurrent

signal assignment. In fact, it looks a bit less efficient in terms of the number of

instructions.

• If you look carefully at this code you will notice that there is in fact one target

and a bunch of expressions and conditions. The associated expressions are the

single digits surrounded by single quotes; the associated conditions follow the

when keyword. In other words, there is only one signal assignment operator used

for each conditional signal assignment statement.

• The last expression in the signal assignment statement is the catch-all condition.

If none of the conditions listed above the final expression evaluate as true, the last

expression is assigned to the target.

• The solution uses relational operators. There are actually six different relational

operators available in VHDL. Two of the more common relational operators are

the “=” and “/=” relational operators which are the “is equal to” and the “is

not equal to” operators, respectively. Operators are discussed at greater length in

further sections.

There are more intelligent uses of the conditional signal assignment statement. One of

the classic uses is for the implementation of a multiplexer (MUX). The next example

is a typical conditional signal assignment implementation of a MUX.

EXAMPLE 4. Write the VHDL code that implements a 4:1 MUX using a single

conditional signal assignment statement. The inputs to the MUX are data inputs

D3, D2, D1, D0 and a two-input control bus SEL. The single output is MX OUT.

SOLUTION. For this example we need to start from scratch. This of course includes

the now famous black-box diagram and the associated entity statement. The VHDL

portion of the solution is shown in Listing 4.11.
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Listing 4.11: Solution of example 4.

entity my_4t1_mux is
port(D3,D2,D1,D0 : in std_logic;

SEL : in std_logic_vector(1 downto 0);
MX_OUT : out std_logic);

end my_4t1_mux;
-- architecture
architecture mux4t1 of my_4t1_mux
begin

MX_OUT <= D3 when (SEL = "11")
D2 when (SEL = "10")
D1 when (SEL = "01")
D0 when (SEL = "00")
’0’;

end mux4t1;

my 4to1 mux

D3

D2

D1

D0

SEL
2
/

MX OUT

There are a couple of things to note in the solution provided in Listing 4.11.

• The solution looks somewhat efficient compared to the amount of logic that would

have been required if CSA statements were used. The VHDL code looks good and

is pleasing to the eye, qualities required for readability.

• The “=” relational operator is used in conjunction with a bus signal. In this case,

the values on the bundle SEL lines are accessed using double quotes around the

specified values. In other word, signal quotes are used to describe values of single

signals while double quotes are used to describe values associated with multiple

signals, or bundles.

• For the sake of completeness, we have included every possible condition for the SEL

signal plus a catch-all else statement. We could have changed the line containing

’0’ to D0 and removed the line associated with the SEL condition of “00”. This

would be functionally equivalent to the solution shown but would not be nearly as

impressive looking. Generally speaking, you should clearly provide all the options

in the code and not rely on a catch-all statement for intended signal assignment.

Remember, a conditional signal assignment is a type of concurrent statement. In this

case, the conditional signal assignment statement is executed any time a change occurs

in the conditional signals (the signals listed in the expressions on the right-hand side

of the signal assignment operator). This is similar to the concurrent signal assignment

statement where the statement is executed any time there is a change in any of the

signals listed on the right-hand side of the signal assignment operator.

Listing 4.12: Alternative solution to Example 4 accessing individual signals.

-----------------------------------------------------------------
-- entity and architecture of 4:1 Multiplexor implemented using
-- conditional signal assignment. The conditions access the
-- individual signals of the SEL bundle in this model.
-----------------------------------------------------------------
entity my_4t1_mux is
port (D3,D2,D1,D0 : in std_logic;

SEL : in std_logic_vector(1 downto 0);
MX_OUT : out std_logic);

end my_4t1_mux;
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-- architecture
architecture mux4t1 of my_4t1_mux is
begin

MX_OUT <= D3 when (SEL(1) = ’1’ and SEL(0) =’1’) else
D2 when (SEL(1) = ’1’ and SEL(0) =’0’) else
D1 when (SEL(1) = ’0’ and SEL(0) =’1’) else
D0 when (SEL(1) = ’0’ and SEL(1) =’0’) else
’0’;

end mux4t1;

Though it is still early in the VHDL learning game, you have been exposed to a lot

of concepts and syntax. The conditional signal assignment is maybe a bit less intuitive

than the concurrent signal assignment. There is however an alternative way to make

sense of it. If you think about it, the conditional signal assignment statement is sim-

ilar in function to the if-else constructs in algorithmic programming languages.

We will touch more upon this relationship once we start talking about sequential

statements.

The concept of working with bundles is massively important in VHDL. Generally

speaking, if you can use a bundle as opposed to individual signals, you should. You

will often need to access individual signals within a bundle. When this is the case, a

special syntax is used (e.g. SEL(1)). Be sure to note that the code shown in Listing

4.12 is equivalent to but probably not as clear as the code shown in Listing 4.11. Be

sure to note the similarities and differences.

4.5 Selected Signal Assignment

Selected signal assignment statements are the third type of signal assignment that

we will examine. As with conditional signal assignment statements, selected signal

assignment statements only have one assignment operator. Selected signal assign-

ment statements differ from conditional assignment statements in that assignments

are based upon the evaluation of one expression. The syntax for the selected signal

assignment statement is shown in Listing 4.13.

Listing 4.13: Syntax for the selected signal assignment statement.

with <choose_expression> select
target <= <expression> when <choices>,

<expression> when <choices>;
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EXAMPLE 5. Write VHDL code to implement the function expressed by the

following logic equation: F3 = LMN + LM . Use only selected signal assignment

statements in your VHDL code.

SOLUTION. This is yet another version of the my ckt f3 example that first ap-

peared in Example 2. The solution is shown in Listing 4.14.

Listing 4.14: Solution of Example 5.

-- yet another solution to the Example 2
architecture f3_4 of my_ckt_f3 is
begin

with ((L =’0’ and M =’0’and N =’1’)or(L=’1’ and M=’1’)) select
F3 <= ’1’ when ’1’,

’0’ when ’0’,
’0’ when others;

end f3_4;

One thing to notice about the solution shown in Listing 4.14 is the use of the

when others clause as the final entry in the selected signal assignment statement.

In reality, the middle clause ’0’ when ’0’ could be removed from the solution

without changing the meaning of the statement. In general, it is considered good

VHDL programming practice to include all the expected cases in the selected signal

assignment statement followed by the when others clause.

EXAMPLE 6. Write the VHDL code that implements a 4:1 MUX using a single

selected signal assignment statement. The inputs to the MUX are data inputs D3,

D2, D1, D0 and a two-input control bus SEL. The single output is MX OUT.

SOLUTION. This is a repeat of Example 4 except that a selected signal assignment

operator is used instead of a conditional signal assignment operator. The solution of

Example 6 is shown in Listing 4.15. The black-box diagram for this example is the

same as before and is not repeated here.

Listing 4.15: Solution of Example 6.

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
-- entity
entity my_4t1_mux is
port (D3,D2,D1,D0 : in std_logic;

SEL : in std_logic_vector(1 downto 0);
MX_OUT : out std_logic);

end my_4t1_mux;
-- architecture
architecture mux4t1_2 of my_4t1_mux is
begin
with SEL select

MX_OUT <= D3 when "11",
D2 when "10",
D1 when "01",
D0 when "00",
’0’ when others;

end mux4t1_2;
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Once again, there are a few things of interest in the solution for Example 6 which

are listed below.

• The VHDL code has several similarities to the solution of Example 5. The general

appearance is the same. Both solutions are also much more pleasing to the eye

than the one where the MUX was modeled using only concurrent signal assignment

statements.

• A when others clause is used again. In the case of Example 6, the output

is assigned the constant value of ’0’ when the other listed conditions of the

chooser expression are not met.

• The circuit used in this example was a 4:1 MUX. In this case, each of the condi-

tions of the chooser expression is accounted for in the body of the selected signal

assignment statement. However, this is not a requirement. The only requirement

here is that the line containing the when others keywords appears in the final

line of the statement.

EXAMPLE 7. Write the VHDL code that implements the following circuit. The

circuit contains an input bundle of four signals and an output bundle of three

signals. The input bundle, D IN, represents a 4-bit binary number. The output

bus, SZ OUT, is used to indicate the magnitude of the 4-bit binary input number.

The relationship between the input and output is shown in the table below. Use a

selected signal assignment statement in the solution.

range of D IN SZ OUT

0000 → 0011 100

0100 → 1001 010

1001 → 1111 001

unknown value 000

SOLUTION. This is an example of a generic decoder-type circuit. The solution to

Example 7 is shown in Listing 4.16.
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my sz ckt

D IN
4
/ SZ OUT

3
/

Listing 4.16: Solution of Example 7.

------------------------------------------------------------
-- A decoder-type circuit using selected signal assignment
------------------------------------------------------------
entity my_sz_ckt is

port ( D_IN : in std_logic_vector(3 downto 0);
SX_OUT : out std_logic_vector(2 downto 0));

end my_sz_ckt;
-- architecture
architecture spec_dec of my_sz_ckt is
begin

with D_IN select
SX_OUT<="100"when "0000"|"0001"|"0010"|"0011",

"010"when "0100"|"0101"|"0110"|"0111"|"1000"|"1001",
"001"when "1010"|"1011"|"1100"|"1101"|"1110"|"1111",
"000"when others;

end spec_dec;

The only comment for the solution of Example 7 is that the vertical bar is used as a

selection character in the choices section of the selected signal assignment statement.

This increases the readability of the code as do the similar constructs in algorithmic

programming languages.

Once again, the selected signal assignment statement is one form of a concurrent

statement. This is verified by the fact that there is only one signal assignment state-

ment in the body of the selected signal assignment statement. The selected signal as-

signment statement is evaluated each time there is a change in the chooser expression

listed in the first line of the selected signal assignment statement.

The final comment regarding the selected signal assignment is similar to the final

comment regarding selected signal assignment. You should recognize the general form

of the selected signal assignment statement as being similar to the switch statements

in algorithmic programming languages such as C and Java. Once again, this rela-

tionship is examined in much more depth once we are ready to talk about sequential

statements.

EXAMPLE 8. Write VHDL code to implement the function expressed by the

following logic equation: F3 = LMN + LM .

SOLUTION. This is the same problem examined before. The problem with the

previous solutions to this example is that they required the user to somehow reduce

the function before it was implemented. In this modern day of digital circuit design,

you score the most points when you allow the VHDL synthesizer to do the work

for you. The solution to this example hopefully absolves you from ever again having
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to use a Karnaugh map, or god forbid, Boolean algebra, to reduce a function. The

solution of Example 6 in shown in Listing 4.17.

Listing 4.17: Solution of Example 8.

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
-- entity
entity my_ckt_f3 is
port ( L,M,N : in std_logic;

F3 : out std_logic);
end my_ckt_f3;
-- architecture
architecture f3_8 of my_ckt_f3 is
signal t_sig : std_logic_vector(2 downto 0); -- local bundle
begin
t_sig <= (L & M & N); -- concatenation operator

with (t_sig) select
F3 <= ’1’ when "001" | "110" | "111",

’0’ when others;
end f3_8;

4.6 Process Statement

The process statement is the final signal assignment type we will look at. Before we

do that, however, we need to take a few steps back and explore a few other VHDL

principles and definitions that we have excluded up to now. Remember, there are a

thousand ways to learn things. This is especially true when learning programming

languages, where there are usually many different and varied solutions to the same

problem. This is highlighted by the many different and varied approaches that appear

in VHDL books and by the many tutorials.

So, now is not the time to learn about the process statement. We will do that

right after we pick up a few more VHDL concepts. Now just remember that the

process statement is a statement which contains a certain number of instructions

that, when the process statement is executed, are executed sequentially. In other

words, the process statement is a tool that you can use any time you want to execute

a certain number of instructions in a sequential manner (one instruction after the

other, from top to bottom). Do not forget, however, that the process statement in

itself is a concurrent statement and therefore will be executed together with the other

concurrent statements in the body of the architecture where it sits.

4.7 Summary

• The entity/architecture pair is the interface description and behavior description

of how a digital circuit operates.

• The main design consideration in VHDL modeling supports the fact that digital

circuits operate in parallel. In other words, the various design units in a digital
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design process and store information independently of each other. This is the major

difference between VHDL and higher-level computer programming languages.

• The major signal assignment types in VHDL are: concurrent signal assignment,

conditional signal assignment, selected signal assignment and process statements.

Each concurrent statement is interpreted as acting in parallel (concurrently) to

other concurrent statements.

• The process statement is a concurrent statement that contains a series of state-

ments which will be executed in a sequential manner, one after the other. A pro-

grammer uses a process statement when he wants to execute some commands in

a sequential manner.

• The architecture body can contain any or all of the mentioned concurrent state-

ments.

• Signals that are declared as outputs in the entity declaration cannot appear on the

right-hand side of a signal assignment operator. This characteristic is prevented

from being a problem by the declaration and use of intermediate signals. Inter-

mediate signals are similar to signals declared in entities except that they contain

no mode specifier. Intermediate signals are declared inside the architecture body

just before the begin statement.

• Generally speaking, there are multiple approaches in modeling any given digital

circuit. In other words, various types of concurrent statements can be used to

describe the same circuit. The designer should strive for clarity in digital modeling

and allow the VHDL synthesizer to sort out the details.

4.8 Exercises

1. For the following function descriptions, write VHDL models that implement

these functions using concurrent signal assignment.

a) F (A,B) = AB + A + AB

b) F (A,B,C,D) = ACD + BC + BCD

c) F (A,B,C,D) = (A + B) ∗ (B + C + D) ∗ (A + D)

d) F (A,B,C,D) =
∏

(3, 2)

e) F (A,B,C) =
∏

(5, 1, 4, 3)

f) F (A,B,C,D) =
∑

(1, 2)

2. For the following function descriptions, write VHDL models that implement

these functions using both conditional and selected signal assignment.

a) F (A,B,C,D) = ACD + BC + BCD
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b) F (A,B,C,D) = (A + B) ∗ (B + C + D) ∗ (A + D)

c) F (A,B,C,D) =
∏

(3, 2)

d) F (A,B,C,D) =
∑

(1, 2)

3. Provide a VHDL model of an 8-input AND gate using concurrent, conditional

and selected signal assignment as well as a process statement.

4. Provide a VHDL model of an 8-input OR gate using concurrent, conditional

and selected signal assignment as well as a process statement.

5. Provide a VHDL model of an 8:1 MUX using conditional signal assignment,

selected signal assignment and two different process statements.

6. Provide a VHDL model of a 3:8 decoder using conditional signal assignment,

selected signal assignment and a process statement; consider the decoder’s out-

puts to be active-high.

7. Provide a VHDL model of a 3:8 decoder using conditional signal assignment,

selected signal assignment and a process statement; consider the decoder’s out-

puts to be active-low.





5
Standard Models in VHDL Architectures

As you may remember, the VHDL architecture describes how your VHDL system will

behave. The architecture body is comprised of two parts: the declaration section and

the begin-end section where a collection of (concurrent) signal assignments appear.

We have studied three types of signal assignment so far: concurrent signal assign-

ment, conditional signal assignment and selected signal assignment. We were about

to describe another concurrent statement, the process statement, before we got side-

tracked. Now, let us quickly introduce a new topic before we jump into the process

statement.

There are three different approaches to writing VHDL architectures. These ap-

proaches are known as data-flow style, structural style and behavioral style architec-

tures. The standard approach to learning VHDL is to introduce each of these archi-

tectural styles individually and design a few circuits using that style. Although this

approach is good from the standpoint of keeping things simple while immersed in the

learning process, it is also somewhat misleading because more complicated VHDL

circuits generally use a mixture of these three styles. Keep this fact in mind in the fol-

lowing discussion of these styles. We will, however, put most of our focus on data-flow

and behavioral architectures. Structural modeling is essentially a method to combine

an existing set of VHDL models. In other words, structural modeling supports the

interconnection of black boxes but does not have the ability to describe the logic

functions used to model the circuit operation. For this reason, it is less of a design

method and more of an approach for interfacing previously designed modules.

The reason we choose to slip the discussion of the different architectures at this

point is that you already have some familiarity with one of the styles. Up to this

point, all of our circuits have been implemented using the data-flow style. We are now

at the point of talking about the behavioral style of architectures which is primarily

centered around another concurrent statement known as the process statement. If it

seems confusing, some of the confusion should go away once we start dealing with
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actual circuits and real VHDL code.

5.1 Data-flow Style Architecture

A data-flow style architecture specifies a circuit as a concurrent representation of the

flow of data through the circuit. In the data-flow approach, circuits are described by

showing the input and output relationships between the various built-in components

of the VHDL language. The built-in components of VHDL include operators such as

AND, OR, XOR, etc. The three forms of concurrent statements we have talked about

up until now (concurrent signal assignment, conditional signal assignment and selected

signal assignment) are all statements that are found in data-flow style architectures.

In other words, if you exclusively used concurrent, conditional and selected signal

assignment statement in your VHDL models, you have used a data-flow model. If

you were to re-examine some of the examples we have done so far, you can in fact

sort of see how the data flows through the circuit. To put this in other words, if

you have a working knowledge of digital logic, it is fairly straightforward to imagine

the underlying circuitry in terms of standard logic gates. These signal assignment

statements effectively describe how the data flows from the signals on the right-hand

side of the assignment operator (the “<=”) to the signal on the left-hand side of the

operator.

The data-flow style of architecture has its strong points and weak points. It is good

that you can see the flow of data in the circuit by examining the VHDL code. The

data-flow models also allow you to make an intelligent guess as to how the actual logic

will appear when you decide to synthesize the circuit. Data-flow modeling works fine

for small and relatively simple circuits. But as circuits become more complicated, it

is often advantageous to switch to behavioral style models.

5.2 Behavioral Style Architecture

In comparison to the data-flow style architecture, the behavioral style architecture

provides no details as to how the design is implemented in actual hardware. VHDL

code written in a behavioral style does not necessarily reflect how the circuit is imple-

mented when it is synthesized. Instead, the behavioral style models how the circuit

outputs will react to the circuit inputs. Whereas in data-flow modeling you some-

what need to have a feel for the underlying logic in the circuit, behavioral models

provide you with various tools to describe how the circuit will behave and leave the

implementation details up to the synthesis tool. In other words, data-flow modeling

describes how the circuit should look in terms of logic gates whereas behavioral model-

ing describes how the circuit should behave. For these reasons, behavioral modeling is

considered higher up on the circuit abstraction level as compared to data-flow models.

It is the VHDL synthesizer tool that decides the actual circuit implementation. In one

sense, behavioral style modeling is the ultimate “black box” approach to designing
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circuits.

The heart of the behavioral style architecture is the process statement. This is the

fourth type of concurrent statement that we will work with. As you will see, the

process statement is significantly different from the other three concurrent statements

in several ways. The major difference lies in the process statement’s approach to

concurrency, which is the major sticking point when you deal with this new concurrent

statement.

5.3 Process Statement

The process statement itself is a concurrent statement identified by its label, its sen-

sitivity list, a declaration area and a begin-end area containing instructions executed

sequentially. An example of the process statement is shown in Listing 5.1.

The main point to remember about the process statement is that its body is com-

prised of sequential statements. The main difference between concurrent signal as-

signment statements and process statements lies with these sequential statements.

But once again, let us stick to the similarities before we dive into the differences.

The process label, listed in Listing 5.1 is optional but should always be included to

promote the self-description of your VHDL code.

Listing 5.1: Syntax for the process statement.

-- this is my first process
my_label: process(sensitivity_list) is

<item_declaration>
begin

<sequential_statements>
end process my_label;

Listing 5.2 and 5.3 show a data-flow architecture and a behavioral style architecture

for the same XOR port. The main difference between the two architectures is the

presence of the process statement in the listed code.

Let us remember that the concurrent signal assignment statement in the data-

flow description operates as follows. Since it is a concurrent statement, any time

there is a change in any of the signals listed on the right-hand side of the signal

assignment operator, the signal on the left-hand side of the operator is re-evaluated.

For the behavioral architecture description, any time there is a change in signals in

the process sensitivity list, all of the sequential statements in the process are re-

evaluated. Evaluation of the process statement is controlled by the signals that are

placed in the process sensitivity list. These two approaches are effectively the same

except the syntax is significantly different.

So here is where it gets strange. Even though both of the architectures listed in

5.2 and 5.3 have the exact same signal assignment statement (F <= A XOR B;),

execution of the statement in the behavioral style architecture is controlled by which

signals appear in the process sensitivity list. The statement appearing in the data-flow
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model is re-evaluated any time there is a change in signal A or in the signal B. This

is a functional difference rather than a cosmetic difference.

Listing 5.2: Data-flow architecture.

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
-- entity
entity my_xor is
port ( A,B : in std_logic;

F : out std_logic);
end my_xor;
-- architecture
architecture dataflow of my_xor is
begin

F <= A XOR B;
end dataflow;
--
--
--

Listing 5.3: Behavioral architecture.

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
-- entity
entity my_xor is
port ( A,B : in std_logic;

F : out std_logic);
end my_xor;
-- architecture
architecture behav of my_xor is
begin

xor_proc: process(A,B) is
begin
F <= A XOR B;

end process xor_proc;
end behav;

The process statement should be considered a way the programmer has at his dis-

posal to execute a series of sequential statements (i.e. in a behavioral manner); never

forget that the process statement is itself a concurrent statement; therefore when you

place two processes inside the architecture body, their execution will be concurrent.

In Listing 5.4, you can see what a complete process statement looks like. Remem-

ber that all variables defined inside the process body will only be visible within the

process body itself. Furthermore, notice that the statement at line 23 is placed inside

the architecture body but outside the process body; therefore its execution happens

concurrently with the process statement.

Listing 5.4: Use of the process statement.

1 library IEEE;
2 use IEEE.STD_LOGIC_1164.ALL;
3 -- entity
4 entity my_system is
5 port ( A,B,C : in std_logic;
6 F,Q : out std_logic);
7 end my_system;
8 -- architecture
9 architecture behav of my_system is

10 signal A1 : std_logic;
11 begin
12 some_proc: process(A,B) is
13 variable a,b : integer;
14 begin
15 a=34;
16 b=67;
17 A1 <= A and B and C;
18 if a>b
19 F <= A1 or B;
20 end if;
21 end process some_proc;
22 -- we are outside the process body
23 Q <= not A;
24 end behav;
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5.4 Sequential Statements

Now that we have the process statement at our disposal, we have a way to execute

some code in a sequential manner.

Within a process, the execution of the sequential statements is initiated when a

change in the signal contained in the process sensitivity list occurs. Generally speak-

ing, execution of statements within the process body continues until the end of the

process body is reached. The strangeness evokes a philosophical dilemma: the process

statement is a concurrent statement yet it is comprised of sequential statements. This

is actually a tough concept to grasp. After years of contemplation, I am only starting

to grasp the reality of this strange contradiction.

The key to understand sequential evaluation of statements occurring in a concurrent

statement remains hidden in the interpretation of VHDL code by the synthesizer. And

since the ins and outs of this interpretation are not always readily apparent, some

implementation details must be taken for granted until the time comes when you

really need to fully understand the process. The solution is to keep your process

statements as simple as possible. The tendency is to use the process statement as

a repository for a bunch of loosely-related sequential statements. Although syntac-

tically correct, the code is not intelligible (understandable) in the context of digital

circuit generation. You should strive to keep your process statements simple. Divide

up your intended functionality into several process statements that communicate with

each other rather than one giant, complicated, bizarre process statement. Remember,

process statements are concurrent statements: they all can be executed concurrently.

Try to take advantage of this feature in order to simplify your circuit descriptions.

There are three types of sequential statements that we will be discussing. The first

one is the signal assignment statement: the “<=”. We will not say too much about

the first type though because we have already been dealing with its analogue in the

data-flow models. The other two types of statements are the if statement and the

case statement. The nice part about all of these statements is that you have worked

with them before in algorithmic programming languages. The structure and function

of the VHDL if and case statements is strikingly similar. Keep this in mind when

you read the descriptions that follow.

5.4.1 Signal Assignment Statement

The sequential style of a signal assignment statement is syntactically equivalent to

the concurrent signal assignment statement. Another way to look at it is that if

a signal assignment statement appears inside of a process then it is a sequential

statement; otherwise, it is a concurrent signal assignment statement. To drive the

point home, the signal assignment statement “F <= A XOR B;” in the data-flow

style architecture of Listing 5.2 is a concurrent signal assignment statement while

the same statement in the behavioral style architecture, listing 5.3, is a sequential
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signal assignment statement. The functional differences were already covered in the

discussion regarding process statements.

5.4.2 if Statement

The if statement is used to create a branch in the execution flow of the sequential

statements. Depending on the conditions listed in the body of the if statement, either

the instructions associated with one or none of the branches is executed when the if

statement is processed. The general form of the if statement is shown in Listing 5.5.

Listing 5.5: Syntax of the if statement.

if (condition) then
<statements>

elsif (condition) then
<statements>

else
<statements>

end if;

The concept of the if statement should be familiar to you in two regards. First, its

form and function are similar to the if-genre of statements found in most algorithmic

programming languages. The syntax, however, is a bit different. Secondly, the VHDL

if statement is the sequential equivalent to the VHDL conditional signal assignment

statement. These two statements essentially do the same thing but the if statement

is a sequential statement found inside a process body while the conditional

signal assignment statement is one form of concurrent signal assignment.

Yet again, there are a couple of interesting things to note about the listed syntax

of the if statement.

• The parentheses placed around the condition expressions are optional. They should

be included in most cases to increase the readability of the VHDL source code.

• Each if-type statement contains an associated then keyword. The final else

clause does not have the then keyword associated with it.

• As written in Listing 5.5, the else clause is a catch-all statement. If none of the

previous conditions is evaluated as true, then the sequence of statements associated

with the final else clause is executed. The way the if statement is shown in

Listing 5.5 guarantees that at least one of the listed sequence of statements will

be executed.

• The final else clause is optional. Not including the final else clause presents

the possibility that none of the sequence of statements associated with the if

statement will be evaluated. This has deep ramifications that we will discuss later.

Let us see now some examples that will help us to better understand how to use the

if statement.
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EXAMPLE 9. Write some VHDL code using an if statement that implements

the following logic function: F OUT (A,B,C) = ABC + BC

SOLUTION. Although it is not directly stated in the problem description, the

VHDL code for this solution must use a behavioral architecture. This is because

the problem states that an if statement should be used. The VHDL code for the

solution is shown in Listing 5.6. We have opted to leave out the black-box diagram in

this case since the problem is relatively simple and thus does not really demonstrate

the power of behavioral modeling.

Listing 5.6: Solution to Example 9.

entity my_ex is
port (A,B,C : in std_logic;

F_OUT : out std_logic);
end my_ex;
architecture dumb_example of my_ex is
begin

proc1: process(A,B,C) is
begin

if (A = ’1’ and B = ’0’ and C = ’0’) then
F_OUT <= ’1’;

elsif (B = ’1’ and C = ’1’) then
F_OUT <= ’1’;

else
F_OUT <= ’0’;

end if;
end process proc1;

end dumb_example;

This is probably not the best way to implement a logic function but it does show an

if statement in action. An alternate architecture for the solution of Example 9 is

shown in Listing 5.7.

Listing 5.7: Alternative solution to Example 9.

architecture bad_example of my_ex_7 is
begin

proc1: process(A,B,C)
begin

if (A = ’0’ and B = ’0’ and C = ’0’) or (B = ’1’ and C = ’1’) then
F_OUT <= ’1’;

else
F_OUT <= ’0’;

end if;
end process proc1;

end bad_example;

One final comment on process statements. Process statements can be preceded with

an optional label. A label should always be included with process statements as a

form of self-description. This of course means that the label should be meaningful in

terms of describing the purpose of the process statement. Providing good label names

is somewhat of an art form but keep in mind that it is easier to provide a meaningful

name to a process that is not trying to do too much. A more intelligent use of the if

statement is demonstrated in the next example.
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EXAMPLE 10. Write some VHDL

code that implements the 8:1 MUX

shown below. Use an if statement

in your implementation.

mux 8t1

Data in 8
/

SEL 3
/

F CTRL

SOLUTION. The solution to Example 10 is shown in Listing 5.8.

Listing 5.8: Solution to Example 10.

entity mux_8t1 is
port ( Data_in : in std_logic_vector (7 downto 0);

SEL : in std_logic_vector (2 downto 0);
F_CTRL : out std_logic);

end mux_8t1;
architecture mux_8t1_arc of mux_8t1 is
begin

my_mux: process (Data_in,SEL)
begin

if (SEL = "111") then F_CTRL <= Data_in(7);
elsif (SEL = "110") then F_CTRL <= Data_in(6);
elsif (SEL = "101") then F_CTRL <= Data_in(5);
elsif (SEL = "100") then F_CTRL <= Data_in(4);
elsif (SEL = "011") then F_CTRL <= Data_in(3);
elsif (SEL = "010") then F_CTRL <= Data_in(2);
elsif (SEL = "001") then F_CTRL <= Data_in(1);
elsif (SEL = "000") then F_CTRL <= Data_in(0);
else F_CTRL <= ’0’;
end if;

end process my_mux;
end mux_8t1_arc;

The solution to Example 10 shown in Listing 5.8 uses some new syntax. The entity uses

the bundle signal but the associated architecture needs to access individual elements

of these bundles. The solution is to use the bus index operator to access internal

signals of the bus. This is comprised of a number representing an index placed inside

parentheses (for example Data in(7)). Bus index operators are used extensively in

VHDL and were previously mentioned. The solution to Example 10 shows a more

typical use of the operator than was previously mentioned.

One other thing to notice about the solution in Example 10 is that every possible

combination of the select variable is accounted for in the code. It would be possible

to remove the final elsif statement in the code shown in Listing 5.8 and place

the associated signal assignment in the else clause. But this is not considered good

VHDL practice and should be avoided at all costs. The justification for this is that it

will modify the readability of the code but not alter the hardware generated by the

code.
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EXAMPLE 11. Write some VHDL code

that implements the 8:1 MUX shown here.

Use as many if statements as you deem

necessary to implement your design. In the

black-box diagram, the CE input is a chip

enable. When CE = ’1’, the output acts

like the MUX of Example 10. When CE is

’0’, the output of the MUX is ’0’.

mux 8to1

Data in 8
/

SEL 3
/

CE

F CTRL

SOLUTION. The solution to Example 11 is strangely similar to the solution of

Example 10. Note that in this solution the if statements can be nested to attain

various effects. The solution to Example 11 is shown in Listing 5.9.

Listing 5.9: Solution to Example 11.

entity mux_8to1_ce is
port ( Data_in : in std_logic_vector (7 downto 0);

SEL : in std_logic_vector (2 downto 0);
CE : in std_logic;

F_CTRL : out std_logic);
end mux_8to1_ce;
architecture mux_8to1_ce_arch of mux_8to1_ce is
begin

my_mux: process (Data_in,SEL,CE)
begin

if (CE = ’0’) then
F_CTRL <= ’0’;

else
if (SEL = "111") then F_CTRL <= Data_in(7);
elsif (SEL = "110") then F_CTRL <= Data_in(6);
elsif (SEL = "101") then F_CTRL <= Data_in(5);
elsif (SEL = "100") then F_CTRL <= Data_in(4);
elsif (SEL = "011") then F_CTRL <= Data_in(3);
elsif (SEL = "010") then F_CTRL <= Data_in(2);
elsif (SEL = "001") then F_CTRL <= Data_in(1);
elsif (SEL = "000") then F_CTRL <= Data_in(0);
else F_CTRL <= ’0’;
end if;

end if;
end process my_mux;

end mux_8to1_ce_arch;
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5.4.3 Case Statement

The case statement is somewhat similar to the if statement in that a sequence of

statements is executed if an associated expression is true. The case statement differs

from the if statement in that the resulting choice is made depending upon the value

of the single control expression. Only one of the sequential statements is executed for

each execution of the case statement. The syntax for the case statement is shown in

Listing 5.10.

Listing 5.10: Syntax for the case statement.

case (expression) is
when choices =>

<sequential statements>
when choices =>

<sequential statements>
when others =>

<sequential statements>
end case;

Once again, the concept of the case statement should be familiar to you in sev-

eral regards. Firstly, it can somewhat be considered the compact form of the if

statement. It is not as functional, however, for the reason described above. Secondly,

the case statement is similar in both form and function to the case statement or

the switch statement in other algorithmic programming languages. And finally, the

VHDL case statement is the sequential equivalent of the VHDL selected signal as-

signment statement. These two statements essentially have the same capabilities but

the case statement is a sequential statement found in a process body while the selected

signal assignment statement is one form of concurrent signal assignment. The when

others line is not required but should be used as good programming practice.

EXAMPLE 12. Write some VHDL code that implements the following function

using the case statement: F OUT (A,B,C) = ABC + BC

SOLUTION. This solution falls into the category of not being the best way to

implement a circuit using VHDL. It does, however, illustrate another useful feature

in the VHDL. The first part of this solution requires that we list the function as a

sum of minterm. This is done by multiplying the non-minterm product term given in

the example by 1. In this case, 1 is equivalent to (A+A). This factoring operation is

shown as:

F OUT (A,B,C) = ABC + BC

F OUT (A,B,C) = ABC + BC(A + A)

F OUT (A,B,C) = ABC + ABC + ABC

The solution is shown in Listing 5.11. An interesting feature of this solution is the

grouping of the three input signals which allows the use of a case statement in

the solution. This approach requires the declaration of an intermediate signal which

is appropriately labeled “ABC”. Once again, this is probably not the most efficient
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method to implement a function but it does highlight the need to be resourceful and

creative when describing the behavior of digital circuits.

Listing 5.11: Solution to Example 12.

entity my_example is
port (A,B,C : in std_logic;

F_OUT : out std_logic);
end my_example;
architecture my_soln_exam of my_example is

signal ABC: std_logic_vector(2 downto 0);
begin

ABC <= A & B & C; -- group signals for case statement
my_proc: process (ABC)
begin

case (ABC) is
when "100" => F_OUT <= ’1’;
when "011" => F_OUT <= ’1’;
when "111" => F_OUT <= ’1’;
when others => F_OUT <= ’0’;
end case;

end process my_proc;
end my_soln_exam;

Another similar approach to Example 12 is to use the don’t care feature built into

VHDL. This allows the logic function to be implemented without having to massage

the inputs. As with everything, if you have to modify the problem before you arrive

at the solution, you stand a finite chance of creating an error that would not have

otherwise been created if you had not taken a more clever approach. A different

architecture for the solution of Example 12 is shown in Listing 5.12. One possible

drawback of using a don’t care feature in your VHDL code is that some synthesizers

and some simulators do not handle it very well. I would avoid them at all costs and

seek a more “definitive” method of modeling the circuits I am dealing with.

Listing 5.12: Alternative solution to Example 12.

-- a solution that uses a don’t care
architecture my_soln_exam2 of my_example is

signal ABC: std_logic_vector(2 downto 0);
begin

ABC <= A & B & C; -- group signals for case statement
my_proc: process (ABC)
begin

case (ABC) is
when "100" => F_OUT <=’1’;
when "-11" => F_OUT <= ’1’;
when others => F_OUT <= ’0’;
end case;

end process my_proc;
end my_soln_exam2;

One of the main points that should be emphasized in any VHDL program is readabil-

ity. In the next problem, we will redo Example 11 using a case statement instead of

if statements.
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EXAMPLE 13. Write some VHDL

code that implements the 8:1 MUX

shown below. Use a case statement in

your design. In the black-box diagram

shown below, the CE input is a chip en-

able. When CE = ’1’, the output acts like

the MUX of Example 10. When CE is ’0’,

the output of the MUX is ’0’.

mux 8to1

Data in 8
/

SEL 3
/

CE

F CTRL

SOLUTION. This solution to Example 13 is shown in listing 5.13. The entity decla-

ration is repeated below for your convenience. This solution places the case statement

in the body of an if construct. In case you have not noticed it yet, the number of

possible solutions to a given problem increases as the circuits you are implementing

become more complex.

Listing 5.13: Solution to Example 13.

entity mux_8to1_ce is
port ( Data_in : in std_logic_vector (7 downto 0);

SEL : in std_logic_vector (2 downto 0);
CE : in std_logic;

F_CTRL : out std_logic);
end mux_8to1_ce;
architecture my_case_ex of mux_8to1_ce is
begin

my_mux: process (SEL,Data_in,CE)
begin

if (CE = ’1’) then
case (SEL) is

when "000" => F_CTRL <= Data_in(0);
when "001" => F_CTRL <= Data_in(1);
when "010" => F_CTRL <= Data_in(2);
when "011" => F_CTRL <= Data_in(3);
when "100" => F_CTRL <= Data_in(4);
when "101" => F_CTRL <= Data_in(5);
when "110" => F_CTRL <= Data_in(6);
when "111" => F_CTRL <= Data_in(7);
when others => F_CTRL <= ’0’;

end case;
else

F_OUT <= ’0’;
end if;

end process my_mux;
end my_case_ex;

One massively important point in the solution to Example 13 is the fact that a case

statement was embedded into an if statement. The technical term for this style of

coding is, as you would guess, nesting. Nesting sequential statements is typical in

behavioral models and is used often. This is actually one of the features that make

behavioral modeling so much more powerful than data-flow modeling. The reality is

that conditional and selective signal assignment statements can not be nested.
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5.5 Caveats Regarding Sequential Statements

As you begin to work with sequential statements, you tend to start getting the feeling

that you are doing algorithmic programming using a higher-level language. This is

due to the fact that sequential statements have a similar look and feel to some of

the programming constructs in higher-level languages. The bad part of this tendency

is when and if your VHDL coding approach becomes similar to that of the higher-

level language. Since this happens very often with people who are learning VHDL,

it is appropriate to remind once again that VHDL is not programming: VHDL

is hardware design. You are, generally speaking, not implementing algorithms in

VHDL, you are describing hardware: this is a totally different paradigm.

It is not uncommon to see many, not so good, pieces of VHDL code that attempt

to use a single process statement in order to implement a relatively complex circuit.

Although the code appears like it should work in terms of the provided statements,

this is an illusion based on the fact that your mind is interpreting the statements in

terms of a higher-level language. The reality is that VHDL is somewhat mysterious in

that you are trusting the VHDL synthesizer to magically know what you are trying

to describe. If you do not understand the ins and outs of VHDL at a low level, your

circuit is not going to synthesize properly. Most likely you understand simple VHDL

behavioral models. But once the models become complex, your understanding quickly

fades away. The solution to this problem is really simple: keep your VHDL models

simple, particularly your process statements.

In VHDL, the best approach is to keep your process statements centered around

a single function and have several process statements that communicate with each

other. The bad approach is to have one massive process statement that does every-

thing for you. The magic of VHDL is that if you provide simple code to the synthe-

sizer, it is more than likely going to provide you with a circuit that works and with

an implementation that is simple and eloquent. If you provide the synthesizer with

complicated VHDL code, the final circuit may work and may even be efficient in both

speed and real estate, but probably not. As opposed to higher-level languages where

small amounts of code often translate directly to code of relatively high efficiency, ef-

ficiency in VHDL code is obtained by compact and simple partitioning of the VHDL

code based on the underlying hardware constructs. In other words, simple VHDL

models are better but the simplicity is generally obtained by proper partitioning and

description of the model. So try to fight off the urge to impress your friends with the

world’s shortest VHDL model; your hardware friends will know better.

5.6 Summary

Let us now review some of the important concepts that have been introduced in this

chapter.
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• The three main flavors of VHDL modeling styles include data-flow, behavioral and

structural models.

• VHDL behavioral models, by definition, use process statements.

• VHDL data-flow models by definition use concurrent signal assignment, condi-

tional signal assignment and/or selected signal assignment.

• The process statement is a concurrent statement. Statements appearing within

the process statement are sequential statements.

• The if statement has a direct analogy to the conditional signal assignment state-

ment used in data-flow modeling.

• The case statement has a direct analogy to the selected signal assignment state-

ment used in data-flow modeling.

• Both the case statement and the if statement can be nested. Concurrent, con-

ditional and selected signal assignment statements can not be nested.

• The simplest concurrent statement is the concurrent signal assignment statement

(e.g. “F <= A;”). Its sequential equivalent is the sequential signal assignment

statement and it looks identical.

5.7 Exercises: Behavioral Modeling

1. For the following function, write VHDL behavioral models that implement these

functions using both case statements and if statements (two separate models

for each function).

a) F (A,B) = AB + A + AB

b) F (A,B,C,D) = ACD + BC + BCD

c) F (A,B,C,D) = (A + B) ∗ (B + C + D) ∗ (A + D)

d) F (A,B,C) =
∏

(5, 1, 4, 3)

e) F (A,B,C,D) =
∑

(1, 2)

2. For the circuit below, write the VHDL behavioral model that implements it

using both case statements and if statements (two separate models).

CD

B

A

E E out

A 1
A 2

B 1
B 2

D 1
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3. Model the previous circuit using concurrent, conditional, or selected signal as-

signment.

4. Provide a VHDL model of an 8-input AND gate using a process statement.

5. Provide a VHDL model of an 8-input OR gate using a process statement.

6. Provide a VHDL model of an 8:1 MUX using a process statement. Include a

model that uses if statements and case statements (two separate models).

7. Provide a VHDL model of a 3:8 decoder using a process statement. Include a

model that uses if statements and case statements (two separate models).

Consider the outputs to be active low.
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VHDL Operators

So far we have only implicitly mentioned the operators available VHDL. This section

presents a complete list of operators as well as a few examples of their use. A complete

list of operators is shown in Table 6.1. This is followed by brief descriptions of some

of the less obvious operators. Although you may not have an immediate need to use

some of these operators, you should be aware that they exist. And although there are

some special things you should know about some of these operators, not too much

information is presented in this section.

Operators in VHDL are grouped into seven different types: logical, relational, shift,

addition, unary, multiplying and others. The ordering of this operator list is somewhat

important because it presents the operators in the order of precedence. We said some-

what because your VHDL code should never rely on operator precedence to describe

circuit behavior. Reliance on obscure precedence rules tends to make the VHDL code

cryptic and hard to understand. A liberal use of parentheses is a better approach to

VHDL coding.

The first column of Table 6.1 lists the operators in precedence order with the logical

operators having the highest precedence. Although there is a precedence order in the

Operator type

logical and or nand nor xor xnor not

relational = /= < <= > >=

shift sll srl sla sra rol ror

addition + -

unary + -

multiplying * / mod rem

others ** abs /

Table 6.1: VHDL operators.
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Operator Name Explanation

= equivalence is some value equivalent to some other value?

/ = non-equivalence is some value not equivalent to some other value?

< less than is some value less than some other value?

<= less than or equal is some value less than or equal to some other value?

> greater than is some value greater than some other value?

>= greater than or equal is some value greater than or equal to some other value?

Table 6.2: VHDL relational operators with brief explanations.

types of operators, there is no precedence order within each type of operator. In other

words, the operators appearing in the rows are presented in no particular order. This

means that the operators are applied to the given operands in the order they appear

in the associated VHDL code.

6.1 Logical Operators

The logical operators are generally self-explanatory in nature. They have also been

used throughout this book. The only thing worthy to note here is that the not

operator has been included in the group of logical operators despite the fact that it

is not technically a logic operation.

6.2 Relational Operators

The relational operators are generally self-explanatory in nature too. Many of them

have been used in this book. A complete list of relational operators is provided in

Table 6.2.

6.3 Shift Operator

There are three types of shift operators: simple shift, arithmetic shift and rotations.

Although these operators basically shift bits either left-to-right or right-to-left, there

are a few basic differences which are listed below. The shift operators are listed in

Table 6.3.

• Both the simple and arithmetic shifts introduce zeros into one end of the operand

that is affected by the shift operation. In other words, zeros are fed into one end

of the operand while bits are essentially lost from the other end. The difference

between simple and arithmetic shifts is that in arithmetic shift, the sign-bit is

never changed. For arithmetic shift lefts, zeros are stuffed in the right end of the

operand. For arithmetic shift rights, the sign-bit (the left-most bit) is propagated

right (the value of the left-most bit is fed into the left end of the operand).

• Rotate operators grab a bit from one end of the word and stuff it into the other
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Operator Name Example Result

simple
ssl shift left result <= ’110111’ ssl 2 ’011100’

ssr shift right result <= ’110111’ ssr 3 ’000110’

arithmetic
sla shift left arithmetic result <= ’110011’ sla 2 ’101100’

sra shift right arithmetic result <= ’110011’ sra 3 ’100010’

rotate
rol rotate left result <= ’101000’ rol 2 ’100010’

ror rotate right result <= ’101001’ ror 2 ’011010’

Table 6.3: VHDL shift operators with examples.

end. This operation is done independently of the value of the individual bits in

the operand.

6.4 All the Other Operators

The other groups of operators are generally used with numeric types. Since this section

does not present numerical operations in detail, the operators are briefly listed below

in Table 6.4. Special attention is given to the mod, rem and & operators. These

operators are also limited to operating on specific types which are also not listed

here.

6.5 The Concatenation Operator

The concatenation operator, &, is often a useful operator when dealing with digital

circuits. There are many times when you will find a need to tack together two separate

values. The concatenation operator has been seen in some previous example solutions.

Some more examples of the concatenation operators are presented in Listing 6.1.

Operator Name Comment

addition
+ addition

- subtraction

unary
+ identity

- negation

multiplying

* multiplication

/ division often limited to powers of two

mod modulus can operate only on specific types

rem remainder can operate only on specific types

other

** exponentiation often limited to powers of two

abs absolute value

& concatenation can operate only on specific types

Table 6.4: All the other VHDL operators not listed so far.
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Operator Name Satisfies this Conditions Comment

rem remainder 1. sign of (X rem Y) is the same as X

2. abs (X rem Y) < abs (X) abs = absolute value

3. X = (X/Y)*Y+(X rem Y)

mod modulus 1. sign of (X mod Y) is the same as X

2. abs (X mod Y) < abs (X) abs = absolute value

3. X = Y*N+(X mod Y)

Table 6.5: Definitions of rem and mod operators.

Listing 6.1: Examples of the concatenation operator.

signal A_val, B_val : std_logic_vector(3 downto 0);
signal C_val : std_logic_vector(6 downto 0);
signal D_val : std_logic_vector(7 downto 0);

C_val <= A_val & "00";
C_val <= "11" & B_val;
C_val <= ’1’ & A_val & ’0’;
D_val <= "0001" & C_val(3 downto 0);
D_val <= A_val & B_val;

6.6 The Modulus and Remainder Operators

There is often confusion about the differences between the remainder operator and

the modulus operator, rem and mod and the difference in their operation on negative

and positive numbers. The definitions that VHDL uses for these operators are shown

in Table 6.5 while a few examples of these operators are provided in Table 6.6. A

general rule followed by many programmers is to avoid using the mod operator when

dealing with negative numbers. As you can see from the examples below, answers are

sometime counter-intuitive.

6.7 Review of Almost Everything Up to Now

VHDL is a programming language used to design, test and implement digital circuits.

The basic design units in VHDL are the entity and the architecture which exemplify

the general hierarchical approach of VHDL. The entity represents the black-box di-

agram of the circuit or the interface of the circuit to the outside world while the

rem mod

8 rem 5 = 3 8 mod 5 = 3

-8 rem 5 = -3 -8 mod 5 = 2

8 rem -5 = 3 8 mod -5 = -2

-8 rem -5 = -3 -8 mod -5 = -3

Table 6.6: Example of rem and mod operators.
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architecture encompasses all the other details of how the circuit behaves.

The VHDL architecture is comprised of statements that describe the behavior of the

digital circuit. Because this is a hardware description language, statements in VHDL

are primarily considered to execute concurrently. The idea of concurrency is one of

the main themes of VHDL as one would expect since a digital circuit can be modeled

as a set of logic gates that operate concurrently.

The main concurrent statement types in VHDL are the concurrent signal assignment

statement, the conditional signal assignment statement, the selected signal assignment

statement and the process statement. The process statement is a concurrent statement

which is comprised of sequential statements exclusively. The main types of sequential

statements are the signal assignment statement, the if statement and the case

statement. The if statement is a sequential version of conditional signal assignment

statement while the case statement is a sequential version of the selected signal

assignment statement. The syntax of these statements and examples are given in the

following table.

Coding styles in VHDL fall under the category of data-flow, behavioral and struc-

tural models. Exclusive use of process statements indicates a behavioral model. The

use of concurrent, conditional and selective signal assignment indicate the use of a

data-flow model. VHDL code describing more complex digital circuits will generally

contain both features of all of these types of modeling.

Since you should make no effort whatsoever to memorize VHDL syntax, it is rec-

ommended that a cheat sheet always be kept next to you as you perform VHDL

modeling. Developing a true understanding of VHDL is what is going to make you

into a good hardware designer. The ability to memorize VHDL syntax proves almost

nothing.

6.8 Using VHDL for Sequential Circuits

All the circuits we have examined up until now have been combinatorial logic circuits.

In other words, none of the circuits we have examined so far are actually able to

store information. This section show some of the various methods used to describe

sequential circuits. We limit our discussion to VHDL behavioral models for several

different flavors of D flip-flops. It is possible and in some cases desirable to use data-

flow models to describe storage elements in VHDL, but it is much easier to use

behavior models.

The few approaches for designing flip-flops shown in the next section cover just

about all the possible functionality you could imagine when you make use of a D

flip-flop. Once you understand these basics, you will be on your way to understand

how to use VHDL to design Finite State Machines (FSMs). This book will examine

FSMs in a later chapter.
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6.9 Simple Storage Elements Using VHDL

The general approach for learning how to implement storage elements in digital design

is to study the properties of a basic cross-coupled cell. The cross coupled cell forms

what is referred to as a latch. The concept of a clocking signal is added to the device

in order to enhance its controllability. Finally, some type of pulse narrowing circuitry

is added to the clocking signal to get to the flop-flop. The flip-flop is nothing more

than an edge-sensitive bit-storage device.

The study of a VHDL implementation of storage elements starts with the edge-

triggered D flip-flop. The VHDL examples presented are the basic edge-triggered D

flip-flop with an assortment of added functionality.

EXAMPLE 14. Write the VHDL code

that describes a D flip-flop shown on the

right. Use a behavioral model in your de-

scription.

D FF

D

CLK

Q

SOLUTION. The solution to Example 14 is shown in listing 6.2. Listed below are

a few interesting things to note about the solution.

• The given architecture body describes the my d ff version of the d ff x entity.

• Because this example requires the use of a behavioral model, the architecture body

is comprised primarily of a process statement. The statements within the process

are executed sequentially. The process is executed each time a change is detected

in any of the signals in the process’ sensitivity list. In this case, the statements

within the process are executed each time there is a change in logic level of the D

or CLK signals.

• The rising edge() construct is used in the if statement to indicate that

changes in the circuit output happen only on the rising edge of the CLK input.

The rising edge() construct is actually an example of a VHDL function which

has been defined in one of the included libraries. The way the VHDL code has

been written makes the whole circuit synchronous; in fact, changes in the circuit’s

output are synchronized with the rising edge of the clock signal. In this case, the

action is a transfer of the logic level on the D input to the Q output.

• The process has the label dff. This is not required by the VHDL language but

the addition of process labels promotes a self-describing nature of the code and

increases its readability and understandability.
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Listing 6.2: Solution to Example 14.

----------------------------------------------
-- Model of a simple D Flip-Flop
----------------------------------------------
entity d_ff_x is

port ( D, CLK : in std_logic;
Q : out std_logic);

end d_ff_x;
architecture my_d_ff of d_ff_x is
begin

dff: process (D, CLK)
begin

if (rising_edge(CLK)) then
Q <= D;

end if;
end process dff;

end my_d_ff;

The D flip-flop is best known and loved for its ability to store (save, remember) a

single bit. The way that the VHDL code in listing 6.2 is able to store a bit is not

however obvious. The bit-storage capability in the VHDL is implied by the way the

VHDL code is interpreted. The implied storage capability comes about as a result of

not providing a condition that indicates what should happen if the listed if condition

is not met. In other words, if the if condition is not met, the device does not change

the value of Q and therefore it must remember the current value. The memory feature

of the current value, or state, constitutes the famous bit storage quality of a flip-

flop. If you have not specified what the output should be for every possible set of

input conditions, the option taken by VHDL is to not change the current output. By

definition, if the input changes to an unspecified state, the output remains unchanged.

In this case, the output associated with the previous set of input can be thought of

as being remembered. It is this mechanism, as strange and interesting as it is, that is

used to induce memory in the VHDL code.

In terms of the D flip-flop shown in Example 14, the only time the output is specified

is for that delta time associated with the rising edge of the clock. The typical method

used to provide a catch-all condition in case the if condition is not met is with an else

clause. Generally speaking, a quick way to tell if you have induced a memory element

is to look for the presence of an else clause associated with the if statement.

The previous two paragraphs are vastly important for understanding VHDL; the

concept of inducing memory in VHDL is massively important to digital circuit design.

The design of sequential circuits is dependent on this concept. This somewhat cryptic

method used by VHDL to induce memory elements is a byproduct of behavioral

modeling based solely on the interpretation of the VHDL source code. Even if you

will only be using VHDL to design combinatorial circuits, you will most likely be

faced with the comprehension of these concepts. One of the classic warnings generated

by the VHDL synthesizer is the notification that your VHDL code has generated a

latch. Despite the fact that this is only a warning, if you did not intend to generate

a latch, you should strive to modify your VHDL code in such as way as to remove this
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warning. Assuming you did not intend to generate a latch, the cause of your problem

is that you have not explicitly provided an output state for all the possible input

conditions. Because of this, your circuit will need to remember the previous output

state so that it can provide an output in the case where you have not explicitly listed

the current input condition.

EXAMPLE 15. Write the VHDL code

that describes a D flip-flop shown on the

right. Use a behavioral model in your de-

scription. Consider the S input to be an

active-low, synchronous input that sets

the D flip-flop outputs when asserted.

D FF

D

CLK

S

Q

SOLUTION. The solution to Example 15 is shown in listing 6.3. There are a few

things of interest regarding this solution.

• The S input to the flip-flop is made synchronous by only allowing it to affect the

operation of the flip-flop on the rising edge of the system clock.

• On the rising edge of the clock, the S input takes precedence over the D input

because the state of the S input is checked prior to examining the state of the D

input. In an if-else statement, once one condition evaluates as true, none of

the other conditions is checked. In other words, the D input is transferred to the

output only the rising edge of the clock and only if the S input is not asserted.

Listing 6.3: Solution to Example 15.

---------------------------------------------------------------
-- RET D Flip-flop model with active-low synchronous set input.
---------------------------------------------------------------
entity d_ff_ns is

port ( D,S : in std_logic;
CLK : in std_logic;

Q : out std_logic);
end d_ff_ns;

architecture my_d_ff_ns of d_ff_ns is
begin

dff: process (D,S,CLK)
begin

if (rising_edge(CLK)) then
if (S = ’0’) then

Q <= ’1’;
else

Q <= D;
end if;

end if;
end process dff;

end my_d_ff_ns;
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EXAMPLE 16. Write the VHDL code

that describes a D flip-flop shown on the

right. Use a behavioral model in your de-

scription. Consider the R input to be an

active-high, asynchronous input that re-

sets the D flip-flop outputs when asserted.

D FF

D

CLK

S

Q

SOLUTION. The solution to Example 16 is shown in listing 6.4. You can probably

glean the most information about asynchronous input and synchronous inputs by

comparing the solutions to Example 15 and Example 16. A couple of interesting

points are listed below.

• The reset input is independent of the clock and takes priority over the clock. This

prioritization is done by making the reset condition the first condition in the if

statement. Evaluation of the other conditions continues if the R input does not

evaluate to a ’1’.

• The falling edge() function is used to make the D flip-flop falling-edge-triggered.

Once again, this function is defined in one of the included libraries.

Listing 6.4: Solution to Example 16.

-------------------------------------------------------------------
-- FET D Flip-flop model with active-high asynchronous reset input.
-------------------------------------------------------------------
entity d_ff_r is

port ( D,R : in std_logic;
CLK : in std_logic;
Q : out std_logic);

end d_ff_r;

architecture my_d_ff_r of d_ff_r is
begin

dff: process (D,R,CLK)
begin

if (R = ’1’) then
Q <= ’0’;

elsif (falling_edge(CLK)) then
Q <= D;

end if;
end process dff;

end my_d_ff_r;

The solutions of Example 15 and Example 16 represent what can be considered the

standard VHDL approaches to handling synchronous and asynchronous inputs, re-

spectively. The general forms of these solutions are actually considered templates for

synchronous and asynchronous inputs by several VHDL references. As you will see

later, these solutions form the foundation to finite state machine design using VHDL.
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EXAMPLE 17. Write the VHDL code

that describes a T flip-flop shown on the

right. Use a behavioral model in your de-

scription. Consider the S input to be an

active-low, asynchronous input that sets

the T flip-flop outputs when asserted.

D FF

D

CLK

S

Q

SOLUTION. The solution to Example 17 is shown in listing 6.5. This example has

some massively important techniques associated with it that are well worth mention-

ing below.

• A unique quality of the D flip-flop is demonstrated in this implementation of a T

flip-flop. The output of a D flip-flop is only dependent upon the D input and is

not a function of the present output of the flip-flop. The output of a T flip-flop

is dependent upon both the T input and the current output of the flip-flop. This

adds a certain amount of extra complexity to the T flip-flop model as compared

to the D flip-flop as is shown in listing 6.5. The T flip-flop model in listing 6.5 uses

a temporary signal in order to use the current state of the flip-flop as in input. In

other words, since Q appears as a port to the entity it must be assigned a mode

specifier and in this case, it has been assigned a mode specifier of ”out”. Signals

that are declared as outputs can therefore not appear on the right-hand side of

a signal assignment operator. The standard approach to bypassing this apparent

limitation in VHDL is to use intermediate signals which, as opposed to port signals,

do not have mode specifications and can thus be used as either inputs or outputs

(can appear on both sides of the signal assignment operator) in the body of the

architecture. The approach is to manipulate the intermediate signal in the body

of the architecture but to also use a concurrent signal assignment statement to

assign the intermediate signal to the appropriate output. Note that in the key

statement in the solution shown in 6.5 that the intermediate signal appears on

both sides of the signal assignment operator. This is a widely used approach in

VHDL: please take time to understand and absorb it. And lastly on this note,

there are other mode specifications that would allow you a different approach to

bypassing this problem (namely, the use of the ’buffer’ mode specification), but

you should never use these in VHDL. The approach presented here is considered

a good use of VHDL.

• This code uses the characteristics equation of a T flip-flop in its implementation.

We technically used a characteristic equation when we implemented the D flip-flop

but since the characteristic equation of a D flip-flop is relatively trivial, you may

not have been aware of it.

• Where there are certain advantages to using T flip-flops in come conditions, D

flip-flops are generally the storage element of choice using VHDL. If you do not
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have a specific reason for using some type of flip-flop other than a D flip-flop, you

probably should not.

Listing 6.5: Solution to Example 17.

-----------------------------------------------------------------
-- RET T Flip-flop model with active-low asynchronous set input.
-----------------------------------------------------------------
entity t_ff_s is

port ( T,S,CLK : in std_logic;
Q : out std_logic);

end t_ff_s;

architecture my_t_ff_s of t_ff_s is
signal t_tmp : std_logic; -- intermediate signal declaration

begin
tff: process (T,S,CLK)
begin

if (S = ’0’) then
Q <= ’1’;

elsif (rising_edge(CLK)) then
t_tmp <= T XOR t_tmp; -- temp output assignment

end if;
end process tff;

Q <= t_tmp; -- final output assignment
end my_t_ff_s;

6.10 Inducing Memory: Data-flow vs. Behavioral Modeling

A major portion of digital design deals with sequential circuits. Generally speaking,

most sequential circuit design is about synchronising events to a clock edge. In other

words, output changes only occur on a clock edge. The introduction to memory ele-

ments in VHDL presented in this section may lead the reader to think that memory

in VHDL is only associated with behavioral modeling, but this is not the case. The

same concept of inducing memory holds for data-flow modeling as well: not explicitly

specifying an output for every possible input condition generates memory. And on

this note, checking for unintended memory element generation is one of the duties

of the digital designer. As you would imagine, memory elements add an element of

needless complexity to the synthesized circuit.

One common approach for learning the syntax and mechanics of new computer

languages is to implement the same task in as many different ways as possible. This

approach utilizes the flexibility of the language and is arguably a valid approach to

learning a new language. This is also the case in VHDL. But, probably more so in

VHDL than other languages, there are specific ways of doing things and these things

should always be done in these specific ways. Although it would be possible to generate

flip-flops using data-flow models, most knowledgeable people examining your VHDL

code would not initially be clear as to what exactly you are doing. As far as generating

synchronous memory elements go, the methods outlined in this section are simply the

optimal method of choice. This is one area not to be clever with.
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6.11 Important Points

• Storage elements in VHDL are induced by not specifying output conditions for

every possible input condition.

• Unintended generation of storage elements is generally listed by the synthesizer

as “latch generation”. Once again, latches are generated when there is an existing

input condition to a circuit that does not have a corresponding output specifica-

tion.

• Memory elements can be induced by both data-flow and behavioral models.

• If a signal declared in the entity declaration has a mode specifier of out, that

signal cannot appear on the right-hand side of a signal assignment operator. This

limitation is bypassed by using intermediate signals for any functional assignments

and later assigning the intermediate signal to the output signal using a concurrent

signal assignment statement.

• The mode specification of buffer should never be used in VHDL unless you are

somebody who does not know any better and you are not interested in learning

the best VHDL approach in this regard.

6.12 Exercises: Basic Memory Elements

EXERCISE 1. Provide a VHDL behavioral model

of the D flip-flop shown on the right. The S and R

inputs are an active low asynchronous preset and

clear. Assume both the S and R inputs will never

be asserted simultaneously.

S

D

CLK

R

Q

Q

EXERCISE 2. Provide a VHDL behavioral model

of the D flip-flop shown on the right. The S and R

inputs are an active low asynchronous preset and

clear. Assume the S input takes precedence over

the R input in the case where both are asserted

simultaneously.

S

D

CLK

R

Q

Q
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EXERCISE 3. Provide a VHDL behavioral model

of the D flip-flop shown on the right. The S and R

inputs are synchronous preset and clear. Assume

both the S and R inputs will never be asserted si-

multaneously.

S

D

CLK

R

Q

Q

EXERCISE 4. Provide a VHDL behavioral model

of the D flip-flop shown on the right. The S and R

inputs are an active low asynchronous preset and

clear. If both the S and R inputs are asserted simul-

taneously, the output of the flip-flop will toggle.

S

D

CLK

R

Q

Q

EXERCISE 5. Provide a VHDL behavioral model

of the T flip-flop shown on the right. The S and R

inputs are an active low asynchronous preset and

clear. Assume both the S and R inputs will never

be asserted simultaneously. Implement this flip-flop

first using an equation description of the outputs

and then using a behavioral description of the out-

puts.

S

T

CLK

R

Q

Q

EXERCISE 6. Provide a VHDL behavioral model

of the T flip-flop shown on the right. The S and R

inputs are an active low asynchronous preset and

clear. Assume both the S and R inputs will never

be asserted simultaneously.

S

T

CLK

R

Q

Q
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Finite State Machine Design Using VHDL

Finite state machines (FSMs) are mathematical abstractions that are used to solve a

large variety of problems, among which are electronic design automation, communica-

tion protocol design, parsing and other engineering applications. At this point in your

digital design career, you might have probably designed quite a few state machines

on paper. You are now at the point where you can implement and test them using

actual hardware if you so choose. The first step in this process is to learn how to

model FSMs using VHDL.

As you will see in the next section, simple FSM designs are just a step beyond the

sequential circuit design described in the previous section. The techniques you learn

in this section will allow you to quickly and easily design relatively complex FSMs

which can be very useful in many number of ways.

A block diagram for a standard Moore-type FSM is shown in Fig. 7.1. This diagram

looks fairly typical but some different names are used for the some of the blocks in

the design. The Next State Decoder is a block of combinatorial logic that uses

the current external inputs and the current state to decide upon the next state of the

FSM. In other words, the inputs to the Next State Decoder block are decoded to

produce an output that represents the next state of the FSM. The circuitry in Next

Figure 7.1: Block diagram for a Moore-type FSM.
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Figure 7.2: Model for VHDL implementations of FSMs.

State Decoder is generally the excitation equations for the storage elements (flip-

flops) in the State Register block. The next state becomes the present state of

the FSM when the clock input to the state registers block becomes active. The state

registers block is a storage element that stores the present state of the machine. The

inputs to the Output Decoder are used to generate the desired external outputs.

The inputs are decoded via combinatorial logic to produce the external outputs. Be-

cause the external outputs are only dependent upon the current state of the machine,

this FSM is classified as a Moore-type FSM.

The FSM model shown in Fig. 7.1 is probably the most common model for describing

a Moore-type FSM. That is most likely because students are often asked to generate

the combinatorial logic required to implement the Next State Decoder and the

Output Decoder; however here we want to think about FSMs in the context of

VHDL. The true power of VHDL starts to emerge in its dealings with FSMs. As you

will see, the versatility of VHDL behavioral modeling removes the need for large paper

designs of endless K-maps and endless combinatorial logic elements.

There are several different approaches used to model FSMs using VHDL. The many

different possible approaches are a result of the general versatility of VHDL as a

programming language. What we will describe in this section is probably the clearest

approach for FSM implementation. A block diagram of the approach we will use in

the implementation of FSMs is shown in Fig. 7.2.

Although it does not look that much clearer, you will soon be finding the FSM model

shown in Fig. 7.2 to be a straightforward method to implement FSMs. The approach

we will use divides the FSM into two VHDL processes. One process, referred to as

the Synchronous Process handles all the matters regarding clocking and other

controls associated with the storage element. The other process, the Combinatorial

Process, handles all the matters associated with the Next State Decoder and

the Output Decoder of Fig. 7.1. Note that the two blocks in Fig. 7.1 are both

comprised of solely the combinatorial logic.

There is some new lingo used in the description of signals used in Fig. 7.2; this

description is outlined and described below:
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• The inputs labelled Parallel Inputs are used to signify inputs that act in par-

allel to each of the storage elements. These inputs would include enables, presets,

clears, etc.

• The inputs labelled State Transition Inputs include external inputs that

control the state transitions. These inputs also include external inputs used to

decode Mealy-type external outputs.

• The Present State signals are used by the Combinatorial Process box

for both next state decoding and output decoding. The diagram of Fig. 7.2 also

shows that the Present State variables can also be provided as outputs to the

FSM but they are not required.

One final comment before we begin. Although there are many different methods that

can be used to described FSMs using VHDL, two of the more common approaches are

the dependent and independent PS/NS styles. This book only covers the dependent

style because it is clearer than the independent PS/NS style. The model shown in

Fig. 7.2 is actually a model of the dependent PS/NS style of FSMs. Once you under-

stand the VHDL modeling of the dependent PS/NS style of FSM, the understanding

of the independent PS/NS style or any other style is relatively painless. More infor-

mation on the other FSM coding styles is found in various VHDL texts or on the

web.

7.1 VHDL Behavioral Representation of FSMs

EXAMPLE 18. Write the VHDL code

that implements the FSM shown on the

right. Use a dependent PS/NS coding

style in your implementation.

SOLUTION. This problem represents a basic FSM implementation. It is somewhat

instructive to show the black-box diagram which is an aid in writing the entity de-

scription. Starting FSM problems with the drawing of a black box diagram is always a

healthy approach particularly when dealing with FSMs. Oftentimes with FSM prob-

lems, it becomes challenging to discern the FSM inputs from the outputs. Drawing

a diagram partially alleviates this problem. The black box diagram and the code for

the solution of Example 18 is shown in listing 7.1.



70 Chapter 7: Finite State Machine Design Using VHDL

Listing 7.1: Solution to Example 18.

entity my_fsm1 is
port ( TOG_EN : in std_logic;

CLK,CLR : in std_logic;
Z1 : out std_logic);

end my_fsm1;

architecture fsm1 of my_fsm1 is
type state_type is (ST0,ST1);
signal PS,NS : state_type;

begin
sync_proc: process(CLK,NS,CLR)
begin
-- take care of the asynchronous input
if (CLR = ’1’) then

PS <= ST0;
elsif (rising_edge(CLK)) then

PS <= NS;
end if;

end process sync_proc;

comb_proc: process(PS,TOG_EN)
begin

Z1 <= ’0’; -- pre-assign output
case PS is

when ST0 => -- items regarding state ST0
Z1 <= ’0’; -- Moore output
if (TOG_EN = ’1’) then NS <= ST1;
else NS <= ST0;
end if;

when ST1 => -- items regarding state ST1
Z1 <= ’1’; -- Moore output
if (TOG_EN = ’1’) then NS <= ST0;
else NS <= ST1;
end if;

when others => -- the catch-all condition
Z1 <= ’0’; -- arbitrary; it should never
NS <= ST0; -- make it to these two statements

end case;
end process comb_proc;

end fsm1;

And of course, this solution has many things worth noting in it. The more interesting

things are listed below.

• We have declared a special VHDL type named state type to represent the states

in this FSM. This is an example of how enumeration types are used in VHDL.

As with enumeration types in other higher-level computer languages, there are

internal numerical representations for the listed state types but we only deal with

the more expressive symbolic equivalent. In this case, the type we have created is

called a state type and we have declared two variables of this type: PS and NS.

The key thing to note here is that a state type is something we have created

and is not a native VHDL type.
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• The synchronous process is equal in form and function to the simple D flip-flops

we examined in the section about sequential circuits. The only difference is that

we have substituted PS and NS for D and Q, respectively. Something to note here

is that the storage element is associated with the PS signal only. Note that PS is

not specified for every possible combination of inputs.

• Even though this example is of the simplest FSM you could hope for, the code looks

somewhat complicated. But if you examine it closely, you can see that everything is

nicely compartmentalized in the solution. There are two processes; the synchronous

process handles the asynchronous reset and the assignment of a new state upon

the arrival of the system clock. Additionally, the combinatorial process handles the

outputs not handled in the synchronous process, the outputs and the generation

of the next state of the FSM.

• Because the two processes operate concurrently, they can be considered as work-

ing in a lock-step manner. Changes to the NS signal that are generated in the

combinatorial process force an evaluation of the synchronous process. When the

changes are actually instituted in the synchronous process on the next clock edge,

the changes in the PS signal causes the combinatorial process to be evaluated.

And so on and so forth.

• The case statement in the combinatorial process provides a when clause for each

state of the FSM. This is the standard approach for the dependent PS/NS coding

style. A when others clause has also been used. The signal assignments that are

part this catch-all clause are arbitrary since the code should never actually make

it there. This statement is provided for a sense of completeness and represents

good VHDL coding practice.

• The Moore output is a function of only the present state. This is expressed by

the fact that the assignment of the Z1 output is unconditionally evaluated in each

when clause of the case statement in the combinatorial process. In other words,

the Z1 variable is inside the when clause but outside of the if statement in the

when clause. This is of course because the Moore outputs are only a function of

the states and not the external inputs. Note that it is the external input that

controls the which state the FSM transitions to from any given state. You will

see later that Mealy outputs, due their general nature, are assigned inside the if

statement.

• The Z1 output is pre-assigned as the first step in the combinatorial process. Pre-

assigning it in this fashion prevents the unexpected latch generation for the Z1

signal. When dealing with FSMs, there is a natural tendency for the FSM designer

to forget to specify an output for the Z1 variable in each of the states. Pre-assigning

it prevents latches from being generated and can arguably clean up the source code.
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The pre-assignment makes no difference to the VHDL code because if multiple

assignments are made within the code, only the final assignment takes effect. In

other words, only the final assignment is considered once the process terminates.

There is one final thing to note about Example 18. In an effort to keep the example

simple, we disregarded the digital values of the state variables. This is indicated in

the black-box diagram of listing 7.1 by the fact that the only output of the FSM is

the signal Z1. This is reasonable in that it could be considered that only one output

was required in order to control some other device or circuit. The state variable is

represented internally and its precise representation is not important since the state

variable is not provided as an output.

In some FSM designs, the state variables are provided as outputs. To show this

situation, we will provide a solution to Example 18 with the state variables as outputs.

The black-box diagram and the VHDL code of this solution is shown in listing 7.2.

Listing 7.2: Solution to Example 18 that include state variable as output.

entity my_fsm2 is
port ( TOG_EN : in std_logic;

CLK,CLR : in std_logic;
Y,Z1 : out std_logic);

end my_fsm2;

architecture fsm2 of my_fsm2 is
type state_type is (ST0,ST1);
signal PS,NS : state_type;

begin
sync_proc: process(CLK,NS,CLR)
begin
if (CLR = ’1’) then

PS <= ST0;
elsif (rising_edge(CLK)) then

PS <= NS;
end if;

end process sync_proc;

comb_proc: process(PS,TOG_EN)
begin

case PS is
Z1 <= ’0’;
when ST0 => -- items regarding state ST0

Z1 <= ’0’; -- Moore output
if (TOG_EN = ’1’) then NS <= ST1;
else NS <= ST0;
end if;

when ST1 => -- items regarding state ST1
Z1 <= ’1’; -- Moore output
if (TOG_EN = ’1’) then NS <= ST0;
else NS <= ST1;
end if;

when others => -- the catch-all condition
Z1 <= ’0’; -- arbitrary; it should never
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NS <= ST0; -- make it to these two statements
end case;

end process comb_proc;

-- assign values representing the state variables
with PS select

Y <= ’0’ when ST0,
’1’ when ST1,
’0’ when others;

end fsm2;

Note that the VHDL code shown in listing 7.2 differs in only two areas from the

code shown in listing 7.1. The first area is the modification of the entity declaration

to account for the state variable output Y. The second area is the inclusion of the

selective signal assignment statement which assigns a value of state variable output Y

based on the condition of the state variable. The selective signal assignment statement

is evaluated each time a change in signal PS is detected. Once again, since we have

declared an enumeration type for the state variables, we have no way of knowing

exactly how the synthesizer will decide to represent the state variable. The selective

signal assignment statement in the code of listing 7.2 only makes it appear like there

is one state variable and the states are represented with a ’1’ and a ’0’. In reality,

there are methods we can use to control how the state variables are represented and

we will deal with those soon.

Lastly, there are three concurrent statements in the VHDL code shown in listing

7.1: two process statements and a selective signal assignment statement.

EXAMPLE 19. Write the VHDL code

that implements the FSM shown on the

right. Use a dependent PS/NS coding

style in your implementation. Consider

the state variables as outputs of the FSM.

SOLUTION. The state diagram shown in this problem indicates that this is a three-

state FSM with one Mealy-type external output and one external input. Since there

are three states, the solution requires at least two state variables to handle the three

states. The black-box diagram of the solution is shown in listing 7.3. Note that the

two state variables are handled as a bundled signal.
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Listing 7.3: Solution to Example 19.

entity my_fsm3 is
port ( X,CLK,SET : in std_logic;

Y : out std_logic_vector(1 downto 0);
Z2 : out std_logic);

end my_fsm3;

architecture fsm3 of my_fsm3 is
type state_type is (ST0,ST1,ST2);
signal PS,NS : state_type;

begin
sync_proc: process(CLK,NS,SET)
begin
if (SET = ’1’) then

PS <= ST2;
elsif (rising_edge(CLK)) then

PS <= NS;
end if;

end process sync_proc;

comb_proc: process(PS,X)
begin

case PS is
Z2 <= ’0’; -- pre-assign FSM outputs
when ST0 => -- items regarding state ST0

Z2 <= ’0’; -- Mealy output always 0
if (X = ’0’) then NS <= ST0;
else NS <= ST1;
end if;

when ST1 => -- items regarding state ST1
Z2 <= ’0’; -- Mealy output always 0
if (X = ’0’) then NS <= ST0;
else NS <= ST2;
end if;

when ST2 => -- items regarding state ST2
-- Mealy output handled in the if statement
if (X = ’0’) then NS <= ST0; Z2 <= ’0’;
else NS <= ST2; Z2 <= ’1’;
end if;

when others => -- the catch all condition
Z2 <= ’1’; NS < ST0;

end case;
end process comb_proc;

-- faking some state variable outputs
with PS select

Y <= "00" when ST0,
"10" when ST1,
"11" when ST2,
"00" when others;

end fsm3;

As usual, there are a couple of fun things to point out about the solution for Example

19. Most importantly, you should note the similarities between this solution and the

previous solution.
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• The FSM has one Mealy-type output. The solution essentially treats this output

as a Moore-type output in the first two when clauses of the case statement. In

the final when clause, the Z2 output appears in both sections of the if statement.

The fact the Z2 output is different in the context of state ST2 that makes it a

Mealy-type output and therefore a Mealy-type FSM.

• When faking the state variable outputs (keeping in mind that the actual state

variables are represented with enumeration types), two signals are required since

the state diagram contains more than two states (and less than five states). The

solution opted is to represent these outputs as a bundle which has the effect of

slightly changing the form of the selected signal assignment statement appearing

at the end of the architecture description.

EXAMPLE 20. Write the VHDL code

that implements the FSM shown on the

right. Use a dependent PS/NS coding

style in your implementation. Consider

the listed state variables as output.

SOLUTION. The state diagram indicates that its implementation will contain four

states, one external input and two external outputs. This is a hybrid FSM in that

the if contains both a Mealy and Moore-type output but in this case, the FSM would

be considered a Mealy-type FSM. The black-box diagram and the actual solution for

the solution is shown in listing 7.4.
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Listing 7.4: Solution to Example 20.

entity my_fsm4 is
port ( X,CLK,RESET : in std_logic;

Y : out std_logic_vector(1 downto 0);
Z1,Z2 : out std_logic);

end my_fsm4;

architecture fsm4 of my_fsm4 is
type state_type is (ST0,ST1,ST2,ST3);
signal PS,NS : state_type;

begin
sync_proc: process(CLK,NS,RESET)
begin
if (RESET = ’1’) then PS <= ST0;
elsif (rising_edge(CLK)) then PS <= NS;
end if;

end process sync_proc;

comb_proc: process(PS,X)
begin

-- Z1: the Moore output; Z2: the Mealy output
Z1 <= ’0’; Z2 <= ’0’; -- pre-assign the outputs
case PS is

when ST0 => -- items regarding state ST0
Z1 <= ’1’; -- Moore output
if (X = ’0’) then NS <= ST1; Z2 <= ’0’;
else NS <= ST0; Z2 <= ’1’;
end if;

when ST1 => -- items regarding state ST1
Z1 <= ’1’; -- Moore output
if (X = ’0’) then NS <= ST2; Z2 <= ’0’;
else NS <= ST1; Z2 <= ’1’;
end if;

when ST2 => -- items regarding state ST2
Z1 <= ’0’; -- Moore output
if (X = ’0’) then NS <= ST3; Z2 <= ’0’;
else NS <= ST2; Z2 <= ’1’;
end if;

when ST3 => -- items regarding state ST3
Z1 <= ’1’; -- Moore output
if (X = ’0’) then NS <= ST0; Z2 <= ’0’;
else NS <= ST3; Z2 <= ’1’;
end if;

when others => -- the catch all condition
Z1 <= ’1’; Z2 <= ’0’; NS <= ST0;

end case;
end process comb_proc;

with PS select
Y <= "00" when ST0,

"01" when ST1,
"10" when ST2,
"11" when ST3,
"00" when others;

end fsm4;

If you haven’t noticed by now, implementing FSMs using the VHDL behavioral

model is remarkably straightforward. In reality, I rarely code a FSM from scratch;

I usually opt to grab some previous FSM I have coded and start from there. Keep

in mind that real engineering is rarely based on a cookbook. For FSM problems,

the engineering is in the testing and creation of the state diagram. Do not get too

comfortable with behavioral modeling of FSMs; the real fun is actually generating a
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FSM that solves a given problem.

7.2 One-Hot Encoding for FSMs

Truth told, there are many different methods that can be used to encode state vari-

ables1. If the exact form of the representation used is important to you, then you

will need to take the necessary steps in order to control how the state variables are

represented by the synthesizer. There are two approaches to control state variable

representation. The first approach is to allow the synthesizing tool to handle the de-

tails. Since every FSM we have seen up to this point has used enumeration types to

represent the state variables, the synthesizer could choose to actually represent them

with an encoding scheme of its own choosing. The reality is that the tools generally

have an option to select the desired encoding scheme. The downside of this approach is

that you are denied the learning experience associated with implementing the VHDL

code that explicitly induces your desired encoding scheme. After all, you may have

some special encoding scheme you need to use but is not supported by the develop-

ment tools. The second approach to encoding the state variables is to specify them

directly in VHDL. The approach of specifying the state variables in the VHDL code

is presented in this section.

One-hot encoding uses one bit in the state register for each state of the FSM. For a

one-hot encoding FSM with 16 states, 16 flip flops are required. However only four flip

flops are required if the same FSM is implemented using a binary encoding. One-hot

encoding simplifies the logic and the interconnections between overall logic. Despite

looking quite wasteful in terms of employed logic, one-hot encoding often results in

smaller and faster FSMs.

The approach taken in the previous FSM examples was to pretend we were using full

encoding for the state variables of the FSM. The full encoding approach minimizes

the number of storage elements (flip-flops) used to store the state variables. The

closed form equation describing the number of flip-flops required for a given FSM as

a function of the number of states is shown in equation 7.1. The bracket-like symbols

used in equation 7.1 indicate a ceiling function2. The binary nature expressed by this

equation is so apparent that this encoding is often referred to as binary encoding.

#(flip flops) = dlog2(#states)e (7.1)

For one-hot encoded FSMs, only one flip-flop is asserted at any given time. This

requires that each distinct state be represented by one flip-flop. In one-hot encoding,

1In this case, encoding refers to the act of assigning a unique pattern of 1’s and 0’s to

each of the state in order to make them unambiguous from other states.
2The ceiling function y = dxe assigns y to the smallest integer that is greater or equal

to x.



78 Chapter 7: Finite State Machine Design Using VHDL

the number of flip-flops required to implement a FSM is therefore equal to the number

of states in the FSM. The closed form of this relationship is shown in equation 7.2.

#(flip flops) = d#(states)e (7.2)

The question naturally arises as to how VHDL can be used to implement one-hot

encoded FSMs. If you want total control of the process, you will need to grab control

away from the synthesizer. And since we are concerned with learning VHDL, we need

to look at the process of explicitly encoding one-hot FSMs.

The modular approach we used to implement FSMs expedites the conversion pro-

cess from using enumeration types to actually specifying how the state variables are

represented. These changes required from our previous approach are limited to how

the outputs are assigned to the state variables and how the state variables are forced

to be represented by certain bit patterns. Modifications to the full encoded approach

are thus limited to the entity declaration (you will need more variables to represent

the states), the declaration of the state variables (you will need to explicitly declare

the bit patterns associated with each state) and the assignment of the state vari-

ables to the outputs (in this case, we are actually not faking it like we were in other

examples).

EXAMPLE 21. Write the VHDL code

that implements the FSM shown on the

right. Use a dependent PS/NS coding

style in your implementation. Consider

the listed state variables as output. Use

one-hot encoding for the state variables.

This problem is Example 20 all over again

but uses true one-hot encoding for the

state variables.

SOLUTION. The state diagram shows four states, one external input X, two ex-

ternal outputs Z1 and Z2 with the Z2 output being a Mealy output. This is a Mealy

machine that indicates one-hot encoding should be used to encode the state variables.

We will approach the implementation of this FSM one piece at the time.

listing 7.5 shows the modifications to the entity declaration required to convert the

full encoding used in Example 20 to a pseudo one-hot encoding. Listing 7.6 shows the

required modifications to the state variable output assignment in order to move from
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enumeration types to a special form of assigned types. Forcing the state variables to

be truly encoded using one-hot encoding requires these two extra lines of code as is

shown in listing 7.6. These two lines of code essentially force the VHDL synthesizer

to represent each state of the FSM with its own storage element. In other words, each

state is represented by the ”string” modifier as listed. This forces four bits per state to

be remembered by the FSM implementation which essentially requires four flip-flops.

Note in listing 7.7 that the default case is assigned a valid one-hot state instead of the

customary all zero state. You should strongly consider comparing these three figures.

The total solution is shown in listing 7.8

Listing 7.5: Modifications to convert Example 20 to one-hot encoding.

-- full encoded approach
entity my_fsm4 is

port ( X,CLK,RESET : in std_logic;
Y : out std_logic_vector(1 downto 0);

Z1,Z2 : out std_logic);
end my_fsm4;
----------------------------------------------------------------------
-- one-hot encoding approach
entity my_fsm4 is

port ( X,CLK,RESET : in std_logic;
Y : out std_logic_vector(3 downto 0);

Z1,Z2 : out std_logic);
end my_fsm4;

Listing 7.6: Modifications to convert state variables to use one-hot encoding.

-- the approach for enumeration types
type state_type is (ST0,ST1,ST2,ST3);
signal PS,NS : state_type;
----------------------------------------------------------------------
-- the approach used for explicitly specifying state bit patterns
type state_type is (ST0,ST1,ST2,ST3);
attribute ENUM_ENCODING: STRING;
attribute ENUM_ENCODING of state_type: type is "1000 0100 0010 0001";
signal PS,NS : state_type;

Listing 7.7: Modifications to convert state output to pseudo one-hot encoding.

-- fake full encoded approach
with PS select

Y <= "00" when ST0,
"01" when ST1,
"10" when ST2,
"11" when ST3,
"00" when others;

end fsm4;
----------------------------------------------------------------------
-- one-hot encoded approach
with PS select

Y <= "1000" when ST0,
"0100" when ST1,
"0010" when ST2,
"0001" when ST3,
"1000" when others;

end fsm4;
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Listing 7.8: The final solution to Example 21.

entity my_fsm4_oh is
port ( X,CLK,RESET : in std_logic;

Y : out std_logic_vector(3 downto 0);
Z1,Z2 : out std_logic);

end my_fsm4_oh;

architecture fsm4_oh of my_fsm4_oh is
type state_type is (ST0,ST1,ST2,ST3);
attribute ENUM_ENCODING: STRING;
attribute ENUM_ENCODING of state_type: type is "1000 0100 0010 0001";
signal PS,NS : state_type;

begin
sync_proc: process(CLK,NS,RESET)
begin
if (RESET = ’1’) then PS <= ST0;
elsif (rising_edge(CLK)) then PS <= NS;
end if;

end process sync_proc;

comb_proc: process(PS,X)
begin

-- Z1: the Moore output; Z2: the Mealy output
Z1 <= ’0’; Z2 <= ’0’; -- pre-assign the outputs
case PS is

when ST0 => -- items regarding state ST0
Z1 <= ’1’; -- Moore output
if (X = ’0’) then NS <= ST1; Z2 <= ’0’;
else NS <= ST0; Z2 <= ’1’;
end if;

when ST1 => -- items regarding state ST1
Z1 <= ’1’; -- Moore output
if (X = ’0’) then NS <= ST2; Z2 <= ’0’;
else NS <= ST1; Z2 <= ’1’;
end if;

when ST2 => -- items regarding state ST2
Z1 <= ’0’; -- Moore output
if (X = ’0’) then NS <= ST3; Z2 <= ’0’;
else NS <= ST2; Z2 <= ’1’;
end if;

when ST3 => -- items regarding state ST3
Z1 <= ’1’; -- Moore output
if (X = ’0’) then NS <= ST0; Z2 <= ’0’;
else NS <= ST3; Z2 <= ’1’;
end if;

when others => -- the catch all condition
Z1 <= ’1’; Z2 <= ’0’; NS <= ST0;

end case;
end process comb_proc;

-- one-hot encoded approach
with PS select

Y <= "1000" when ST0,
"0100" when ST1,
"0010" when ST2,
"0001" when ST3,
"1000" when others;

end fsm4_oh;
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7.3 Important Points

• Modeling FSMs from a state diagram is a straightforward process using VHDL

behavioral modeling. The process is so straightforward that it is often consid-

ered cookie cutter. The real engineering involved in implementing FSM is in the

generation of the state diagram that solved the problem at hand.

• Due to the general versatility of VHDL, there are many approaches that can be

used to model FSMs using VHDL. The approach used here details only one of

those styles but is generally considered the most straightforward of all styles.

• The actual encoding of the FSM’s state variables when enumeration types are

used is left up to the synthesis tool. If a preferred method of variable encoding is

desired, using the attribute approach detail in this section is a simple but viable

alternative.
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7.4 Exercises: Behavioral Modeling of Finite State Machines

EXERCISE 1. Draw the state diagram associated with the following VHDL code.

Be sure to provide a legend and completely label everything.

entity fsm is
port ( X,CLK : in std_logic;

RESET : in std_logic;
Z1,Z2 : out std_logic;

end fsm;

architecture fsm of fsm is
type state_type is (A,B,C);
signal PS,NS : state_type;

begin
sync_proc: process(CLK,NS,RESET)
begin

if (RESET = ’0’) then PS <= C;
elsif (rising_edge(CLK)) then PS <= NS;
end if;

end process sync_proc;

comb_proc: process(PS,X)
begin

case PS is
Z1 <= ’0’; Z2 <= ’0’;
when A =>

Z1 <= ’0’;
if (X = ’0’) then NS <= A; Z2 <= ’1’;
else NS <= B; Z2 <= ’0’;
end if;

when B =>
Z1 <= ’1’;
if (X = ’0’) then NS <= A; Z2 <= ’0’;
else NS <= C; Z2 <= ’1’;
end if;

when C =>
Z1 <= ’1’;
if (X = ’0’) then NS <= B; Z2 <= ’1’;
else NS <= A; Z2 <= ’0’;
end if;

when others =>
Z1 <= ’1’; NS <= A; Z2 <= ’0’;

end case;
end process comb_proc;

end fsm;
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EXERCISE 2. Write a VHDL behavioral

model that could be used to implement the

state diagram as shown on the right. The

state variables should be encoded as listed

and also provided as outputs of the FSM.
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EXERCISE 3. Draw the state diagram associated with the following VHDL code.

Be sure to provide a legend and remember to label everything.

entity fsmx is
Port ( BUM1,BUM2 : in std_logic;

CLK : in std_logic;
TOUT,CTA : out std_logic);

end fsmx;
architecture my_fsmx of fsmx is

type state_type is (S1,S2,S3);
signal PS,NS : state_type;

begin
sync_p: process (CLK,NS)
begin

if (rising_edge(CLK)) then
PS <= NS;

end if;
end process sync_p;

comb_p: process (CLK,BUM1,BUM2)
begin

case PS is

when S1 =>
CTA <= ’0’;
if (BUM1 = ’0’) then

TOUT <= ’0’;
NS <= S1;

elsif (BUM1 = ’1’) then
TOUT <= ’1’;
NS <= S2;

end if;

when S2 =>
CTA <= ’0’;
TOUT <= ’0’;
NS <= S3;

when S3 =>
CTA <= ’1’;
TOUT <= ’0’;
if (BUM2 = ’1’) then

NS <= S1;
elsif (BUM2 = ’0’) then

NS <= S2;
end if;

when others => CTA <= ’0’; TOUT <= ’0’;
NS <= S1;

end case;
end process comb_p;

end my_fsmx;

EXERCISE 4. Write the VHDL behav-

ioral model code that could be used to im-

plement the state diagram on shown in the

right.
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EXERCISE 5. Draw the state diagram associated with the following VHDL code.

Consider the outputs Y to be representative of the state variables. Be sure to provide

a legend. Indicate the states with both state variables and their symbolic equivalents.

entity fsm is
port ( X,CLK : in std_logic;

RESET : in std_logic;
Z1,Z2 : out std_logic;

Y : out std_logic_vector(2 downto 0));
end fsm;

architecture my_fsm of fsm is
type state_type is (A,B,C);
attribute ENUM_ENCODING: STRING;
attribute ENUM_ENCODING of state_type: type is "001 010 100";
signal PS,NS : state_type;

begin

sync_proc: process(CLK,NS,RESET)
begin

if (RESET = ’0’) then PS <= C;
elsif (rising_edge(CLK)) then PS <= NS;
end if;

end process sync_proc;

comb_proc: process(PS,X)
begin

case PS is
when A =>

Z1 <= ’0’;
if (X = ’0’) then NS <= A; Z2 <= ’1’;
else NS <= B; Z2 <= ’0’;
end if;

when B =>
Z1 <= ’1’;
if (X = ’0’) then NS <= A; Z2 <= ’0’;
else NS <= C; Z2 <= ’1’;
end if;

when C =>
Z1 <= ’1’;
if (X = ’0’) then NS <= B; Z2 <= ’1’;
else NS <= A; Z2 <= ’0’;
end if;

when others =>
Z1 <= ’1’; NS <= A; Z2 <= ’0’;

end case;
end process comb_proc;

with PS select
Y <= "001" when A,

"010" when B,
"100" when C,
"001" when others;

end my_fsm;
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EXERCISE 6. Write a VHDL behavioral

model code that can be used to implement

the state diagram shown on the right. All

state variables should be encoded as listed

and also provided as outputs of the FSM.

EXERCISE 7. Draw the state diagram that corresponds to the following VHDL

model and state whether the FSM is a Mealy machine or a Moore machine. Be sure

to label everything.
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entity fsm is
Port ( CLK,CLR,SET,X1,X2 : in std_logic;

Z1,Z2 : out std_logic);
end fsm;
architecture my_fsm of fsm is

type state_type is (sA,sB,sC,sD);
attribute ENUM_ENCODING: STRING;
attribute ENUM_ENCODING of state_type: type is

"1000 0100 0010 0001";
signal PS,NS : state_type;

begin

sync_p: process (CLK,NS,CLR,SET)
begin

if (CLR = ’1’ and SET = ’0’) then
PS <= sA;

elsif (CLR = ’0’ and SET = ’1’) then
PS <= sD;

elsif (rising_edge(CLK)) then
PS <= NS;

end if;
end process sync_p;

comb_p: process (X1,X2,PS)
begin

case PS is
when sA =>

if ( X1 = ’1’) then
Z1 <= ’0’; Z2 <= ’0’;
NS <= sA;

else
Z1 <= ’0’; Z2 <= ’0’;
NS <= sB;

end if;
when sB =>

if ( X2 = ’1’) then
Z1 <= ’1’; Z2 <= ’1’;
NS <= sC;

else
Z1 <= ’1’; Z2 <= ’0’;
NS <= sB;

end if;
when sC =>

if ( X2 = ’1’) then
Z1 <= ’0’; Z2 <= ’0’;
NS <= sB;

else
Z1 <= ’0’; Z2 <= ’1’;
NS <= sC;

end if;
when sD =>

if ( X1 = ’1’) then
Z1 <= ’1’; Z2 <= ’1’;
NS <= sD;

else
Z1 <= ’1’; Z2 <= ’1’;
NS <= sC;

end if;
end case;

end process comb_p;
end my_fsm;
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EXERCISE 8. Write the VHDL behav-

ioral model code that can be used to imple-

ment the state diagram shown on the right.

The state variables should be encoded as

listed and also provided as outputs of the

FSM.

EXERCISE 9. Write the VHDL behav-

ioral model code that can be used to imple-

ment the state diagram shown on the right.

The state variables should be encoded as

listed and also provided as outputs of the

FSM.

EXERCISE 10. Write the VHDL behav-

ioral model code that can be used to imple-

ment the state diagram shown on the right.

The state variables should be encoded as

listed and also provided as outputs of the

FSM.
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EXERCISE 11. Write the VHDL behav-

ioral model code that can be used to imple-

ment the state diagram shown on the right.

The state variables should be encoded as

listed and also provided as outputs of the

FSM.

EXERCISE 12. Write the VHDL behavioral model code that can be used to imple-

ment the state diagram shown on the right. The state variables should be encoded as

listed and also provided as outputs of the FSM.

EXERCISE 13. Write the VHDL behav-

ioral model code that can be used to imple-

ment the state diagram shown on the right.

The state variables should be encoded as

listed and also provided as outputs of the

FSM.

EXERCISE 14. Write the VHDL behav-

ioral model code that can be used to imple-

ment the state diagram shown on the right.

The state variables should be encoded as

listed and also provided as outputs of the

FSM.
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Structural Modeling Using VHDL

As was mentioned earlier, there are generally three approaches to writing VHDL code:

data-flow modeling, behavioral modeling and structural modeling.

Up to this point, this book has only dealt with data-flow and behavioral models.

This section presents an introduction to structural modeling.

As digital designs become more complex, it becomes less likely that any one design

can be implemented with any one of the three types of VHDL models. We have al-

ready seen this property in dealings with FSMs where we mixed process statements

(behavioral modeling) with selective signal assignment statements (data-flow model-

ing). The result was a hybrid VHDL model. By its very nature, structural modeling is

likewise a hybrid VHDL model. Most complex designs could be considered structural

models, i.e. if they are implemented using sound coding procedures.

The design of complex digital circuits using VHDL should closely resemble the

structure of complex computer programs. Many of the techniques and practices used

to construct large and well structured computer programs written in higher-level

languages should also be applied when using VHDL. This common structure we are

referring to is the ever so popular modular approach to coding. The term structural

modeling is the terminology that VHDL uses for the modular design. The VHDL

modular design approach directly supports hierarchical design which is essentially

employed when attempting to understand complex digital designs.

The benefits of modular design to VHDL are similar to the benefits that modular

design or object oriented design provides for higher-level computer languages. Modu-

lar designs promote understandability by packing low-level functionality into modules.

These modules can be easily reused in other designs thus saving the designer time by

removing the need to reinvent and re-test the wheel. The hierarchical approach ex-

tends beyond code written on file level. VHDL modules can be placed in appropriately

named files and libraries in the same way as higher-level languages. Moreover, there

are often libraries out there that contain useful modules that can only be accessed us-
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ing a structural modeling approach. Having access to these libraries and being fluent

in their use will serve to increase your perception as a VHDL guru.

And finally, after all the commentary regarding complex designs, we present a few

simple examples. Though the structural approach is most appropriately used in com-

plex digital designs, the examples presented in this section are rather simplistic in

nature. These examples show the essential details of VHDL structural modeling. It is

up to the designer to conjure up digital designs where a structural modeling approach

would be more appropriate. Keep in mind that your first exposure to structural mod-

eling may be somewhat rough. Although there is some new syntax to become familiar

with, once you complete a few structural designs, this new syntax becomes ingrained

in your brain and it becomes second nature to apply where required. The tendency at

this juncture in your VHDL programming career is to use some type of schematic cap-

ture software instead of learning the structural modeling approach. The fact is that no

one of consequence uses the schematic capture software except for tired old university

professors who are more interested in selling books than they are in teaching modern

approach to VHDL modeling. The funny part about this entire process is that the

schematic capture software is a tool that allows you to visually represent circuits but

in the end generates VHDL code (the only thing the synthesizer understands is VHDL

code).

8.1 VHDL and Other Languages: Exploiting the Similarities

The main tool for modularity in higher-level languages such as C is the function.

In other computer languages, similar modularity is accomplished through the use of

methods, procedures and subroutines. The approach used in C is to 1) name the

function interface you plan on writing (the function declaration), 2) code what the

function will do (the function body), 3) let the program know it exists and is available

to be called (the prototype) and 4) call the function from the main portion of the code.

The approach used in VHDL is similar: 1) name the module you plan to describe (the

entity), 2) describe what the module will do (the architecture), 3) let the program

know the module exists and can be used (component declaration) and 4) use the

module in your code (component instantiation, or mapping). The similarities between

these two approaches are listed in Table 8.1.

C programming language VHDL

Describe function interface The entity

Describe what the function does (coding) The architecture

Provide a function prototype to main program Component declaration

Call the function from main program Component instantiation or mapping

Table 8.1: Similarities between modules in C and VHDL.
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Let us now use these principles in a practical example. Our approach is to describe

a template-type approach to VHDL structural design using a simple and well-known

combinational circuit.

EXAMPLE 22. Design a 3-bit compara-

tor using a VHDL structural modeling. The

interface to this circuit is described in the

diagram below.

SOLUTION. A comparator is one of the classic combinatorial circuits that every

digital design engineer must derive at some point in his career. The solution presented

here implements the discrete gate version of the circuit which is shown in Fig. 8.1.

Once again, the solution presented here is primarily an example of a VHDL structural

model and does not represent the most efficient method to represent a comparator

using VHDL.

The approach of this solution is to model each of the discrete gates as individual

blocks. In this case, they are actually simple gates but the interfacing requirements of

the VHDL structural approach are the same regardless of whether the circuit elements

are simple gates or complex digital subsystems.

The circuit shown in Fig. 8.1 contains some extra information that relates to its

VHDL structural implementation. First, the dashed line represents the boundary of

the top-level VHDL entity; therefore signals that cross this boundary must appear in

the entity declaration for this implementation. Second, each of the internal signals is

given a name. In this case, internal signals are defined to be signals that do not cross

the dashed entity boundary. This is a requirement for VHDL structural implementa-

tions as these signals must be assigned to the various sub-modules in the interior of

the design (somewhere in the architecture).

Figure 8.1: Discrete gate implementation of a 3-bit comparator.

The first part of the solution is to provide entity and architecture implementations



94 Chapter 8: Structural Modeling Using VHDL

for the individual gates shown in Fig. 8.1. We need to provided as least one definition

of an XNOR gate and a 3-input AND gate. We only need to provide one definition of

the XNOR gate despite the fact that actually three are shown in the diagram. The

modular VHDL approach allows us to reuse circuit definitions and we take advantage

of this feature. These definitions are shown in listing 8.1.

Listing 8.1: Entity and Architecture definitions for discrete gates.

------------------------------------------------------------
-- Description of XNOR function
------------------------------------------------------------
entity big_xnor is

Port ( A,B : in std_logic;
F : out std_logic);

end big_xnor;

architecture ckt1 of big_xnor is
begin

F <= not ( (A and (not B)) or ( (not A) and B) );
end ckt1;
------------------------------------------------------------
-- Description of 3-input AND function
------------------------------------------------------------
entity big_and3 is

Port ( A,B,C : in std_logic;
F : out std_logic);

end big_and3;

architecture ckt1 of big_and3 is
begin

F <= ( A and B and C );
end ckt1;

The implementations shown in listing 8.1 present no new VHDL details. The new

information is contained in how the circuit elements listed in Fig. 8.1 are used as

components in a larger circuit. The procedures for implementing a structural VHDL

design can be summarized in the following steps. These steps assume that the entity

declarations for the interior modules already exist.

• Generate the top-level entity declaration

• Declare the lower-level design units used in design

• Declare required internal signals used to connect the design units

• Instantiate the design units

This is how you therefore proceed:

Step One: The first step in a structural implementation is identical to the standard

approach we have used for the implementing other VHDL circuits: the entity. The

entity declaration is derived directly from dashed box in Fig. 8.1 and is shown in

listing 8.2. In other words, signals that intersect the dashed lines are signals that are

known to the outside world and must be included in the entity declaration.
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Listing 8.2: Entity declaration for 3-bit comparator.

-----------------------------------------------------
-- Interface description of 3-bit comparator
-----------------------------------------------------
entity my_compare is

Port ( A_IN : in std_logic_vector(2 downto 0);
B_IN : in std_logic_vector(2 downto 0);
EQ_OUT : out std_logic);

end my_compare;

Step Two: The next step is to declare the design units that are used in the circuit. In

VHDL lingo, declaration refers to the act of making a particular design unit available

for use in a particular design. Note that the act of declaring a design unit, by definition,

transforms your circuit into a hierarchical design. The declaration of a design unit

makes the unit available to be placed into the design hierarchy. Design units are

essentially modules that are used in the lower levels of the design. For our design, we

need to declare two separate design units: the XOR gate and a 3-input AND gate.

There are two factors involved in declaring a design unit: 1) how to do it and, 2)

where to place it. A component declaration can be viewed as a modification of the

associated entity declaration. The difference is that the word entity is replaced with

the word component and the word component must also follow the word end to ter-

minate the instantiation. The best way to do this is by cutting, pasting and modifying

the original entity declaration. The resulting component declaration is placed in the

architecture declaration after the architecture line and before the begin line.

The two component declarations and their associated entity declarations are shown

in the next listing. Listing 8.3 shows the component declarations as they appear in

working VHDL code.

entity big_xnor is
Port ( A,B : in std_logic;

F : out std_logic);
end big_xnor;

entity big_and3 is
Port ( A,B,C : in std_logic;

F : out std_logic);
end big_and3;

component big_xnor
Port ( A,B : in std_logic;

F : out std_logic);
end component;

component big_and3
Port ( A,B,C : in std_logic;

F : out std_logic);
end component;

Step Three: The next step is to declare internal signals used by your design. The

required internal signals for this design are the signals that are not intersected by

the dashed line shown in Fig. 8.1. These three signals are similar to local variables

used in higher-level programming languages in that they must be declared before they

can be used in the design. These signals effectively provide an interface between the

various design units that are instantiated in the final design. For this design, three

signals are required and used as outputs of the XOR gates and as inputs to the AND

gate. Internal signal declarations such as these appear with the component declara-

tions in the architecture declaration after the architecture line and before the

begin line. Note that the declaration of intermediate signals is similar to the signal
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declaration contained in the entity body. The only difference is that the intermediate

signal declaration does not contain the mode specifier. We have previously dealt with

intermediate signals in other sections of this book. Signal declarations are included

as part of the final solution shown in listing 8.3.

Step Four: The final step is to create instances of the required modules and map the

instances of the various components in the architecture body. Technically speaking, as

the word instantiation implies, the appearance of instances of design units is the main

part of the instantiation process. In some texts, the process of instantiation includes

what we have referred to as component declaration but we have opted not to do this

here. The approach presented here is to have the declaration refer to the component

declarations before the begin line while instantiation refers to the creation of indi-

vidual instances after the begin line. The mapping process is therefore included in

our definition of component instantiation.

The process of mapping provides the interface requirements for the individual com-

ponents in the design. This mapping step associates external connections from each

of the components to signals in the next step upwards in the design hierarchy. Each

of the signals associated with individual components maps to either an internal or

external signal in the higher-level design. Each of the individual mappings includes

a unique name for the particular instance as well as the name of the original entity.

The actual mapping information follows the VHDL key words of port map. All of

this information appears in the final solution shown in listing 8.3.

One key point to note in the instantiation process is the inclusion of labels for all

instantiated design units. Labels should always be used as part of design unit instan-

tiation because the use of appropriate labels increases the understandability of your

VHDL model. In other words, the proper choice of labels increases the self-describing

nature of your design and is considered a good VHDL programming approach.

Listing 8.3: VHDL code for the top of the design hierarchy for the 3-bit comparator.

entity my_compare is
Port ( A_IN : in std_logic_vector(2 downto 0);

B_IN : in std_logic_vector(2 downto 0);
EQ_OUT : out std_logic);

end my_compare;

architecture ckt1 of my_compare is
-- XNOR gate --------------------
component big_xnor is

Port ( A,B : in std_logic;
F : out std_logic);

end component;

-- 3-input AND gate -------------
component big_and3 is

Port ( A,B,C : in std_logic;
F : out std_logic);

end component;

-- intermediate signal declaration
signal p1_out,p2_out,p3_out : std_logic;
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begin
x1: big_xnor port map (A => A_IN(2),

B => B_IN(2),
F => p1_out);

x2: big_xnor port map (A => A_IN(1),
B => B_IN(1),
F => p2_out);

x3: big_xnor port map (A => A_IN(0),
B => B_IN(0),
F => p3_out);

a1: big_and3 port map (A => p1_out,
B => p2_out,
C => p3_out,
F => EQ_OUT);

end ckt1;

It is worth noting that the solution shown in listing 8.3 is not the only approach to

use for the mapping process. The approach shown in listing 8.3 uses what is referred

to as a direct mapping of components. In this manner, each of the signals in the

interface of the design units are listed and are directly associated with the signals

they connect to in the higher-level design by use of the => operator. This approach

has several potential advantages: it is explicit, complete, orderly and allows signals to

be listed in any order. The only possible downside of this approach is that it uses up

more space in your VHDL source code.

The alternative approach to mapping is to use implied mapping. In this ap-

proach, connections between external signals from the design units are associated

with signals in the design unit by order of their appearance in the mapping state-

ment. This differs from direct mapping because only signals from the higher-level

design appear in the mapping statement instead. The association between signals in

the design units and the higher-level design are implied by the ordering of the signal

as they appear in the component or entity declaration. This approach uses less space

in the source code but requires signals to be placed in the proper order. An alternative

but equivalent architecture for the previous example using implied mapping is shown

in listing 8.4.

Listing 8.4: Alternative architecture for Example 22 using implied mapping.

entity my_compare is
Port ( A_IN : in std_logic_vector(2 downto 0);

B_IN : in std_logic_vector(2 downto 0);
EQ_OUT : out std_logic);

end my_compare;

architecture ckt2 of my_compare is
component big_xnor is

Port ( A,B : in std_logic;
F : out std_logic);

end component;

component big_and3 is
Port ( A,B,C : in std_logic;
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F : out std_logic);
end component;
signal p1_out,p2_out,p3_out : std_logic;

begin
x1: big_xnor port map (A_IN(2),B_IN(2),p1_out);
x2: big_xnor port map (A_IN(1),B_IN(1),p2_out);
x3: big_xnor port map (A_IN(0),B_IN(0),p3_out);
a1: big_and3 port map (p1_out,p2_out,p3_out,EQ_OUT);

end ckt2;

Due to the fact that this design was relatively simple, it was possible to bypass

one of the interesting issues that arises when using structural modeling. Often when

dealing with structural designs, different levels of the design will contain the same

signal name. The question arises as to whether the synthesizer is able to differentiate

between the signal names across the hierarchy. VHDL synthesizers, like compilers

for higher-level languages, are able to handle such instances. Signals with the same

names are mapped according to the mapping presented in the component instantiation

statement. Probably the most common occurrence of this is with clock signals. In this

case, a component instantiation such as the one shown in listing 8.5 is both valid and

commonly seen in designs containing a system clock. Name collision does not occur

because the signal name on the left-hand side of the => operator is understood to

be internal to the component while the signal on the right-hand side is understood to

reside in the next level up in the hierarchy.

Listing 8.5: An example of the same signal name crossing hierarchical boundaries.

x5: some_component port map (CLK => CLK,
CS => CS);
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8.2 Important Points

• Structural modeling in VHDL supports hierarchical design concepts. The ability to

abstract digital circuits to higher levels is the key to understanding and designing

complex digital circuits.

• Digital design using schematic capture is an outdated approach: you should resist

the inclination and/or directive at all costs.

• The VHDL structural model supports the reuse of design units. This includes

units you have previously designed as well as the ability to use predefined module

libraries.

• If you use one FPGA software development tool from one of the major FPGA

players in the market, you will be able to use digital blocks already developed

once you declare them. In this case the entity declaration is not the one of listing

8.2 but instead a simple library inclusion in your VHDL code that looks like:

library UNISIM;

use UNISIM.VComponents.all;

All digital blocks available from this library package are described in the docu-

mentation of the FPGA software development tool (e.g. Xilinx ISE).

8.3 Exercises: Register Transfer Level Circuits

EXERCISE 1. Provide a VHDL model

that can be used to implement the follow-

ing circuit.

EXERCISE 2. Provide a VHDL model

that can be used to implement the follow-

ing circuit.
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EXERCISE 3. Provide a VHDL model

that can be used to implement the follow-

ing circuit.

EXERCISE 4. Provide a VHDL model

that can be used to implement the follow-

ing circuit.

EXERCISE 5. Provide a VHDL model

that can be used to implement the follow-

ing circuit.

EXERCISE 6. Provide a VHDL model

that can be used to implement the follow-

ing circuit.
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Registers and Register Transfer Level

The concept of a register in VHDL and its subsequent use in digital circuit design

is probably one of the more straightforward concepts in VHDL. A register in VHDL

is simply a vector version of a D flip-flop in which all operations on the flip-flops

occur simultaneously. The ”register transfer level”, or RTL, is a flavor of design that

is primarily concerned with how and when data is transferred between the various

registers in a digital system. RTL-level design in often associated with ”data-path” de-

signs which require the careful control and timing of the data that is being transferred

between registers. The controls associated with even simple registers are sufficient to

ensure that some outside entity has adequate control over the ”sequencing” of data

through the circuit associated with the data-path. In these cases, the proper sequenc-

ing of data transfers is controlled by a FSM.

The study of RTL-level design is best accomplished in the context of a data-path

design. The design of data-paths is best accomplished in the context of a digital circuit

that has some purpose such as an arithmetic logic unit design. Both of these topics are

beyond what needs to be mentioned here. The good news is that the simplicity of the

registers makes for a quick introduction to the matter. Major circuit implementations

are saved for some other time.

EXAMPLE 23. Use VHDL behavioral

modeling to design the 8-bit register that

has a synchronous active high parallel load

signal LD. Consider the load of the regis-

ter to be synchronized to rising edges of the

clock.

SOLUTION. The solution for the 8-bit register looks amazingly similar to a model

of a D flip-flop. The full solution to Example 23 is shown in listing 9.1. As usual, there
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are a couple of things worth noting in this solution.

• Note that there is an if statement that does not contain a corresponding else

which is what generates the memory element. For this example, there are consid-

ered to be eight bit-sized memory elements (flip-flops). For this example the flip

flops are considered to be D-type flip-flops. The storage elements are associated

with the REG OUT bundle. The ease in using VHDL code to generate D flip-flops

in this manner makes D flip-flops the most widely used type of flip-flop in digital

design.

• The code uses a bundle signal for both the input and output. The assignment of

the bundles to other bundles is straightforward in VHDL as is shown in the code.

In many cases, such as the one in this example, there is no need to use a bundle

access operator in the VHDL model.

• The assignment of the input to the output is based on characteristics of both

the clock edge and the state of the LD signal. The approach taken in the VHDL

model shown in listing 9.1 is to provide a separate if clause for both the LD

and CLK signals. Only one if statement could have been used by making both

conditions associated with the single if clause but this is not considered good

VHDL programming practice when dealing with synchronized elements. In other

words, you should always strive to keep special conditions associated with the

clocking signal separate from all other conditions associated with the action in

question. Clock signals are somewhat special in the VHDL land; you should get

into the habit of treating them gently.

Listing 9.1: Solution to Example 23.

entity reg8 is
Port ( REG_IN : in std_logic_vector(7 downto 0);

LD,CLK : in std_logic;
REG_OUT : out std_logic_vector(7 downto 0));

end reg8;

architecture reg8 of reg8 is
begin

reg: process(LD,CLK,REG_IN)
begin

if (rising_edge(CLK)) then
if (LD = ’1’) then

REG_OUT <= REG_IN;
end if;

end if;
end process;

end reg8;

The circuit in the following example is slightly more complex than most of the

examples seen so far. Additionally, remember that there are many different solutions

to the same problem. This is a common occurrence in VHDL; in fact, many times

there is no best method for implementing a given circuit. The following examples are
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essentially the same problem solved using two different but functionally equivalent

solutions.

EXAMPLE 24. Use VHDL behavioral

modeling to design the circuit shown on

the right. Consider both the loading sig-

nals to be active high. Consider the cir-

cuit to be synchronized to the rising edge

of the clock signal.

SOLUTION. The circuit shown in Example 24 includes two 8-bit registers and a

2:1 MUX. This is an example of a bus-based data transfer in the output of the MUX

that is connected to the inputs of the two registers. Each of the two registers has its

own independent load control input. The solution to Example 24 is shown in listing

9.1. And as we have grown to expect, there are a couple of things worth noting about

this solution.

• There are three concurrent statements in this solution: two behavioral models and

one data-flow model.

• There is a separate process for each of the two registers. Although it would have

been possible to represent both registers using one process, it would have been

somewhat complicated and somewhat hard to understand. The better approach

in VHDL is always to break tasks down into their logically separate functions and

use the various VHDL modeling techniques as tools to keep the tasks separate

and simple. The reality is that the synthesizer becomes your friend if you provide

it with simple models. The quantity of VHDL code describing a certain design is

immaterial; the complexity of any given model is determined by the most complex

piece of code in the model. Simple is always better in VHDL.

• All of signals shown in the Example 24 have external linkage except for the output

of the MUX. The MUX output is connected to the inputs of both registers. The

final approach taken in this solution is typical in VHDL: many processes that

communicate with each other through shared signals. In this example, there is

only one shared signal but this is a fairly simple program. The same inter-process

communication model is used in more complicated circuits.

• The model for the 2:1 MUX uses the terminology (others => ’0’). This is a

short-hand terminology for assigning all of the outputs to ’0’. The real nice part

about this instruction is that you do not need to know how many 0’s you need to

write. This is a nice feature in that if the width of the associated bundle were to

change, this particular line of code would not need to be modified.
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Listing 9.2: Solution to Example 24.

entity ckt_rtl is
port (D1_IN,D2_IN : in std_logic_vector(7 downto 0);

CLK,SEL : in std_logic;
LDA,LDB : in std_logic;

REG_A,REG_B : out std_logic_vector(7 downto 0));
end ckt_rtl;

architecture rtl_behavioral of ckt_rtl is
-- intermediate signal declaration ---------------
signal s_mux_result : std_logic_vector(7 downto 0);

begin

ra: process(LDA,CLK,s_mux_result)
begin

if (rising_edge(CLK)) then
if (LDA = ’1’) then

REG_A <= s_mux_result;
end if;

end if;
end process;

rb: process(LDB,CLK,s_mux_result)
begin

if (rising_edge(CLK)) then
if (LDB = ’1’) then

REG_B <= s_mux_result;
end if;

end if;
end process;

with SEL select
s_mux_result <= D1_IN when ’1’,

D2_IN when ’0’,
(others => ’0’) when others;

end rtl_behavioral;

EXAMPLE 25. Use VHDL structural

modeling to design the circuit shown on

the right. Consider both of the loading

signals to be active high. Consider the cir-

cuit to be synchronized to the rising edge

of the clock signal.

SOLUTION. The solution to Example 25 is shown in listing 9.3. There is not too

much interesting to note here. This is a more realistic example of a structural model

compared to the example presented in the section on structural modeling. There are

only a few new and wonderful things to note about this solution.

• The massively important thing to note about the solution in listing 9.3 is to not

be intimidated by the sheer quantity of code listed. The code is well structured; if

you are able to recognize this structure, you will be more apt to understand the

solution. And better yet, you will be more on your way to being able to write your
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own amazing chunks of VHDL code.

• The VHDL source code shown in listing 9.3 is nicely formatted. In particular,

the code is nicely indented. Properly indented code is highly desirable in that it

nicely presents information based on the indentation. No surprise here but properly

formatted code is easier to understand. Better yet, good looking code leads people

who may or may not know otherwise into thinking your code is as actually as

good as it looks. In this busy world of ours, a quick glance is just about all the

time people (bosses and teachers) have to dedicate to perusing your VHDL source

code.

Listing 9.3: Solution to Example 25 using a structural modeling approach.

entity mux2t1 is
port ( A,B : in std_logic_vector(7 downto 0);

SEL : in std_logic;
M_OUT : out std_logic_vector(7 downto 0));

end mux2t1;

architecture my_mux of mux2t1 is
begin

with SEL select
M_OUT <= A when ’1’,

B when ’0’,
(others => ’0’) when others;

end my_mux;

entity reg8 is
Port ( REG_IN : in std_logic_vector(7 downto 0);

LD,CLK : in std_logic;
REG_OUT : out std_logic_vector(7 downto 0));

end reg8;

architecture reg8 of reg8 is
begin

reg: process(LD,CLK,REG_IN)
begin

if (rising_edge(CLK)) then
if (LD = ’1’) then

REG_OUT <= REG_IN;
end if;

end if;
end process;

end reg8;

entity ckt_rtl is
port (D1_IN,D2_IN : in std_logic_vector(7 downto 0);

CLK,SEL : in std_logic;
LDA,LDB : in std_logic;

REG_A,REG_B : out std_logic_vector(7 downto 0));
end ckt_rtl;

architecture rtl_structural of ckt_rtl is

-- component declaration -----------------------
component mux2t1

port ( A,B : in std_logic_vector(7 downto 0);
SEL : in std_logic;

M_OUT : out std_logic_vector(7 downto 0));
end component;
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component reg8
Port ( REG_IN : in std_logic_vector(7 downto 0);

LD,CLK : in std_logic;
REG_OUT : out std_logic_vector(7 downto 0));

end component;

-- intermediate signal declaration ---------------
signal s_mux_result : std_logic_vector(7 downto 0);

begin
ra: reg8
port map ( REG_IN => s_mux_result,

LD => LDA,
CLK => CLK,

REG_OUT => REG_A );

rb: reg8
port map ( REG_IN => s_mux_result,

LD => LDB,
CLK => CLK,

REG_OUT => REG_B );

m1: mux2t1
port map ( A => D1_IN,

B => D2_IN,
SEL => SEL,

M_OUT => s_mux_result);
end rtl_structural;

9.1 Important Points

• VHDL can be used to easily implement circuits at the register transfer level.

The corresponding VHDL models can be implemented in either structural of full

behavioral format.

• RTL level VHDL models should strive for simplicity in their designs. If the behav-

ioral models in the RTL design become complicated, the chances that your circuit

works correctly greatly diminish due to the synthesis of the complicated circuit.



10
Data Objects

Many of the concepts presented so far have been implicitly presented in the context of

example problems. In this way, you have probably been able to generate quality VHDL

code but were constrained to use the VHDL style presented in these examples. In this

section, we will present some of the underlying details and theories that surround

VHDL as a backdoor approach for presenting tools that will allow you to use VHDL

for describing the behavior of more complex digital circuits.

In order to move into more sophisticated VHDL, a good place to start is with the

definition of VHDL objects (e.g. data types). An object is an item in VHDL that

has both a name (associated identifier) and a specific type. There are four types of

objects and many different data types in VHDL. Up to this point, we have only used

signal data objects and std logic data types. Two new data objects and several

new data types are introduced and discussed in this section.

10.1 Types of Data Objects

There are four types of data objects in VHDL: signals, variables, constants and files.

One of the purposes of this section is to present some background information regard-

ing variables which will be used later in this tutorial. The idea of constants will also

be briefly mentioned since they are generally straightforward to understand and use

once the concepts of signals and variables are understood. File data objects are not

discussed in this tutorial.

Mind that VHDL is a vast programming language that goes well beyond the VHDL

code that is used to program an FPGA or a CPLD. In fact the actual VHDL that can

be translated into an FPGA/CPLD bit-stream is called RTL VHDL and represents

only a small subset of what is included in the current VHDL standard. The file data

objects are an example of a data object that can not be implemented in a silicon

device.
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Just as side note, it is interesting to point out that it is also possible to compile

VHDL code into an executable file that can be executed, generally for simulation

purposes, with any general purpose Intel PC. For more details refer to the open-

source work of T. Gingold available at http://ghdl.free.fr.

10.2 Data Object Declarations

The first thing to note about data objects is the similarity in their declarations. The

forms for the three data objects we will be discussing are listed in Table 10.1. For

each of these declarations, the bold-face font is used to indicate VHDL keywords. The

form for the signal object should seem familiar since we have used it extensively up

to this point.

VHDL data object Declaration form

Signal signal sig name : sig type := initial value;

Variable variable var name : var type := initial value;

Constant constant const name : const type := initial value;

Table 10.1: Data object declaration forms.

Note that each of the data objects can optionally be assigned initial values. As you

know, signal declarations do not usually include initial values as opposed to constants

which generally do. Example declarations for these three flavors of data objects are

provided in Table 10.2. These examples include several new data types which will be

discussed in the next section.

Data object Declaration form

Signal signal sig var1 : std logic := ’0’;

signal tmp bus : std logic vector(3 downto 0) := "0011";

signal tmp int : integer range -128 to 127 := 0;

signal my int : integer;

Variable variable my var1, my var2 : std logic;

variable index a : integer range (0 to 255) := 0;

variable index b : integer := -34;

Constant constant sel val : std logic vector(2 downto 0) := "001";

constant max cnt : integer := 12;

Table 10.2: Example declarations for signal, variable and constant data objects.

10.3 Variables and the Assignment Operator “:=”

Although variables are similar to signals, variables are not as functional for the several

reasons mentioned in this section. Variables can only be declared and used inside of

http://ghdl.free.fr
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processes, functions and procedures (functions and procedures will not be discussed

here). Implied in this statement is the sequential nature of variable assignment state-

ments in that all statements appearing in the body of a process are sequential. One

of the early mistakes made by VHDL programmers is attempting to use variables

outside of processes.

The signal assignment operator, <=, was used to transfer the value of one signal

to another while dealing with signal data objects. When working with variables, the

assignment operator := is used to transfer the value of one variable data object to

another. As you can see from Table 10.2, the assignment operator is overloaded which

allows it to be used to assign initial values to the three listed forms of data objects.

10.4 Signals vs. Variables

The use of signals and variables can be somewhat confusing because of their similar-

ities. Generally speaking, a signal can be thought of as representing a wire or some

type of physical connection in a design. Signals thus represent a means to interface

VHDL modules which include connections to the outside world. In terms of circuit

simulation, signals can be scheduled to take on multiple values at specific times in

the simulation. The specifics of simulating circuits using VHDL are not covered here

so the last statement may not carry much meaning to you. The important difference

here is that events can be scheduled for signals while for variables, they cannot. The

assignment of variables is considered to happen immediately and cannot have a list

of scheduled events.

With relatively simple circuits, signal objects are generally sufficient. As your digital

designs become more complex, there is a greater chance that you will need more

control of your models than signals alone can provide. The main characteristic of

signals that leave them somewhat limited in complex designs is when and how they

are scheduled. More specifically, assignments made to signals inside a process are

actually only scheduled when the same process is completed. The actual assignment

is not made until after the process terminates. This is why multiple signal assignments

can be made to the same signal during the execution of a process without generating

any type of synthesis error. In the case of multiple signal assignments inside the

process, only the most recent assignment to the signal during process execution is

assigned. The important thing here is that the signal assignment is not made until

after the process terminates. The potential problem that you might face is that the

new result (the new value assigned to the signal) is not available to use inside the

process.

Variable assignment within processes is different. When a variable is assigned a

value inside of a process, the assignment is immediate and the newly assigned value

can be used immediately inside of the process. In other words, the variable assignment

is not scheduled as it was for the signal. This is a giant difference and has massive
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ramifications in both the circuit simulation and synthesis realm.

Variables cannot always be modeled as wires in a circuit. They also have no concept

of memory since they cannot store events. With all this in mind, you may wonder what

is the appropriate place to use variables. The answer is variables should only be used

as iteration counters in loops or as temporary values when executing an algorithm

that performs some type of calculation. It is possible to use variables outside of these

areas, but it should be avoided.

Even though instructions inside a process are executed consecutively, this should

not fool you in thinking that a process environment is similar to apiece of C code.

Remember that while lines of C code require some tens of clock cycles each to be

executed, VHDL instructions require very little ns to be executed, hence less than

one clock cycle. The price to pay for this enormously fast execution time is that any

signal assignment inside a process only takes place at the end of the process. It is

therefore advisable that your processes are short and simple.

10.5 Data Types

Not only does VHDL have many defined data types but VHDL also allows you to

define your own types. Here however we will only deal with few of the most widely

used types. In this section, the types that have already been discussed are listed and

a few more popular and useful types are introduces.

10.6 Commonly Used Types

The types already introduced in previous chapters as well as two new types are listed

in Table 10.3. The std logic and std logic vector types have been extensively

used so far. These types are more complex than has been previously stated and

will be discussed further in this chapter. The enumerated type was used during

the previous discussion of finite state machines. The integer type was cryptically

mentioned before but it will be discussed further along with the boolean type in

this chapter.

Type Example Usage

std logic signal my sig : std logic; all examples

std logic vectors signal busA : std logic vector(3 downto 0); all examples

enumerated type state type is (ST0,ST1,ST2,ST3); Example 18

boolean variable my test : boolean := false; None

integer signal iter cnt : integer := 0; Example 26

Table 10.3: Some popular data types already introduced in previous chapters.
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10.7 Integer Types

The use of integer types aids in the design of algorithmic-type VHDL code. This type

of coding allows VHDL to describe the behaviour of complex digital circuits. As you

progress in your digital studies, you will soon find yourself in need of more complex

descriptive VHDL tools. Data types such as integers partially fill that desire. This

section briefly looks at integer types as well as the definition of user-specified integer

types.

The range of the integer type is [-2,147,483,647 to 2,147,483,647]. These numbers

should seem familiar since they represent the standard 32-bit range for a signed num-

ber: (-231 to +231). Other types similar to integers include natural and positive types.

These types are basically integers with shifted ranges. For example, the natural and

positive types range from 0 and 1 to the full 32-bit range, respectively. Examples of

integer declarations are shown in the following listing.

-- integer declarations
signal my_int : integer range 0 to 255 := 0;
variable max_range : integer := 255;
constant start_addr : integer:= 512;

Although it could be possible to use only basic integer declarations in your code,

VHDL allows you to define your own integer types with their own personalized range

constraints. These special types should be used wherever possible to make your code

more readable. These type definitions use the type range construct and the to or

the downto keywords for the definition. Some examples of integer-type declarations

are provided in the following listing.

-- integer type declarations
type scores is range 0 to 100;
type years is range -3000 to 3000;
type apples is range 0 to 15;
type oranges is range 0 to 15;

Although each of the types listed in the previous listing are basically integers, they

are still considered different types and cannot be assigned to each other. In addition

to this, any worthy VHDL synthesizer will do range checks on your integer types.

In the context of the definitions previously presented, each of the statements in the

following listing is illegal.

-- Illegal assignment statements
signal score1 : scores := 100;
signal my_apple : apples := 0;
signal my_orange : oranges := 0;

my_apple <= my_orange; -- different types
my_orange <= 24; -- out of range
my_score <= 110; -- out of range



112 Chapter 10: Data Objects

10.8 The std logic Type

For the representation of digital signals so far in this book, we have used the std logic

type. However, one of the data types neither used not listed in this book is the bit

type. This type can take on only the values of ’1’ or ’0’. While this set of values

seems appropriate for designing digital circuits, it is actually somewhat limited. Due

to its versatility and a more complete range of possible values, the std logic type

is preferred over bit types. The std logic type is officially defined in the VHDL

STANDARD package and provides a common standard that can be used by all VHDL

programmers.

The std logic type is officially defined as an enumerated type. Two of the

possible enumerations of course include ’1’ and ’0’. The actual definition is shown

in the listing 10.1. As you can see, this definition lists std ulogic as opposed to

the std logic you are used to. The std logic type is a resolved version of the

std ulogic type. The exact meaning of resolution is beyond the scope of this book

and can be safely overlooked.

Listing 10.1: Declaration of the std ulogic enumerated type.

type std_ulogic is ( ’U’, -- uninitialised
’X’, -- forcing unknown
’0’, -- forcing 0
’1’, -- forcing 1
’Z’, -- high impedance
’W’, -- weak unknown
’L’, -- weak 0
’H’, -- weak 1
’-’ -- unspecified (do not care)

);

The std ulogic type uses the VHDL character type in its definition. Although

there are nine values in the definition shown in listing 10.1, this book only deals with

’0’, ’1’, ’Z’ and ’-’. The ’Z’ if generally used when dealing with bus structures. This

allows a signal or set of signals (a bus) to have the possibility of being driven by

multiple sources without the need to generate resolution functions. When a signal

is driven to its high impedance state, the signal is not driven from that source and

is effectively removed from the circuit. And finally, since the characters used in the

std ulogic type are part of the definition, they must be used as listed. Mind the

use of lower-case letters will generate an error.



10.8 The std logic Type 113

EXAMPLE 26. Design a clock divider

circuit that reduces the frequency of the

input signal by a factor of 64. The circuit

has two inputs as shown in the diagram.

The div en input allows the clk signal to

be divided when asserted and the sclk out-

put will exhibit a frequency 1/64 that of

the clk signal. When div en is not asserted,

the sclk output remains low. Frequency di-

vision resets when the div en signal is re-

asserted.

clk div

clk

div en

sclk

SOLUTION. As usual for more complex concepts and circuits, there are a seemingly

infinite number of solutions. A solution that uses several of the concepts discussed

in this section is presented in listing 10.2. Some of the more important issues in this

solution are listed below.

• The type declaration for my count appears in the architecture body before the

begin statement.

• A constant is used for the max count variable. This allows for quick adjustments

in the clock frequency. In this example, this concept is somewhat trivial because

the max count variable is used only once.

• The variable is declared inside of the process, after the process begin line.
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Listing 10.2: Solution to Example 26.

entity clk_div is
Port ( clk : in std_logic;

div_en : in std_logic;
sclk : out std_logic);

end clk_div;

architecture my_clk_div of clk_div is

type my_count is range 0 to 100; -- user-defined type
constant max_count : my_count := 63; -- user-defined constant
signal tmp_sclk : std_logic; -- intermediate signal for clock

begin
my_div: process (clk, div_en)

variable div_count : my_count := 0;

begin
if (rising_edge(clk)) then -- look for clock edge

if (div_en = ’1’) then -- divider enabled
if (div_count = max_count) then

tmp_sclk <= not tmp_sclk; -- toggle output
div_count := 0; -- reset count

else
div_count := div_count + 1;

end if;
else -- divider disabled

div_count := 0; -- reset count
tmp_sclk <= ’0’; -- turn off output

end if;
end if;

end process my_div;

s_clk <= tmp_sclk; -- assign to output
end my_clk_div;
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Looping Constructs

As the circuits you are required to design become more and more complex, you will

find yourself searching for more functionality and versatility from VHDL. You will

probably find what you are looking for in various looping constructs which are yet

another form of VHDL statement. This chapter provides descriptions of several types

of looping constructs and some details regarding their use.

There are two types of loops in VHDL: for loops and while loops. The names of

these loops should seem familiar from your experience with higher-level computer pro-

gramming languages. Generally speaking, you can leverage your previous experience

with these loop types when describing the behavior of digital circuits. The comforting

part is that since these two types of loops are both sequential statements, they can

only appear inside processes. You will also be able to apply to the circuits you will be

describing using VHDL the algorithmic thinking and designing skills you developed

in coding with higher-level computer languages. The syntax is slightly different but

the basic structured programming concepts are the same.

11.1 for and while Loops

The purpose of a loop construct is to allow some coding instructions to happen itera-

tively (over and over again). These two types of loops of course share this functionality.

As you probably remember from higher-level language programming, the syntax of

the language is such that you can use either type of loop in any given situation by

some modification of the code. The same is true in VHDL. But although you can

be clever in the way you design your VHDL code, the best approach is to make the

code readable and understandable. Keeping this concept in mind lets us see the func-

tional differences between for and while loops. This basic difference can be best

highlighted by examining the code provided in listing 11.1.
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Listing 11.1: The basic structure of the for and while loops.

-- for loop | -- while loop
label: for index in a_range loop | label: while (condition) loop

sequential statements... | sequential statements...
end loop label; | end loop label;

The major difference between these two loops lies in the number of iterations the

loops will perform. This difference can be classified as under what conditions the

circuit will terminate its iterations. If you know the number of iterations the loop

requires, you should use a for loop. As you will see in the examples that follow,

the for loop allows you to explicitly state the number of iterations that the loop

performs.

The while loop should be used when you do not know the number of iterations the

loop needs to perform. In this case, the loop stops iterating when the terms stated in

the condition clause are not met. Using these loops in this manner constitutes a good

programming practice. The loop labels are listed in italics to indicate that they are

optional. These labels should be always used to clarify the associated VHDL code.

Use of loop labels is an especially good idea when nested loops are used and when

loop control statements are applied.

11.1.1 for Loops

The basic form of the for loop was shown in listing 11.1. This loop uses some type of

index value to iterate through a range of discrete values. There are two options that

can be applied as to the range of discrete values: 1) the range can be specified in the

for loop statement or 2) the loop can use a previously declared range. Hereafter you

find an example.

for cnt_val in 0 to 24 loop
-- sequential_statements

end loop;

type my_range is range 0 to 24;

for cnt_val in my_range loop
-- sequential_statements

end loop;

for cnt_val in 24 downto 0 loop
-- sequential_statements

end loop;

type my_range is range 24 downto 0;

for cnt_val in my_range loop
-- sequential_statements

end loop

The index variable used in the for loop contains some strange qualities which are

listed below. Although your VHDL synthesizer should be able to flag these errors, you

should still keep these in mind when you use a for loop and you will save yourself

a bunch of debugging time. Also note that the loop body has been indented to make

the code more readable. Enhanced readability of the code is always a good thing.

• The index variable does not need to be declared, it is in fact done implicitly.

• Assignments cannot be made to the index variable. The index variable can, how-
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ever, be used in calculations within the loop body.

• The index variable can only step through the loop in increments of one.

• The identifier used for the index variable can be the same as another variable or

signal; no name collisions will occur. The index variable will effectively hide identi-

fiers with the same name inside the body of the loop. Using the same identifier for

two different values constitutes bad programming practice and should be avoided.

• The specified range for the index (when specified outside of the loop declaration)

can be of any enumerated type.

And lastly, as shown in the previous listing, for loops can also be implemented

using the downto option. This option makes more sense when the range is specified

in the for loop declaration.

11.1.2 while Loops

while loops are somewhat simpler than for loops due to the fact that they do not

contain an index variable. The major difference between the for and while loops is

that the for loop declaration contains a built-in loop termination criteria. The first

thing you should remember about while loops is that the associated code should

contain some way of exiting the loop. Examples of while loops are shown in the

following listing. Needless to say that the VHDL code appearing in the next listing

on the right should have been made with a for loop instead of a while loop because

the number of iterations is actually known.

constant max_fib : integer := 2000;
variable fib_sum : integer := 1;
variable tmp_sum : integer := 0;

while (fib_sum < max_fib) loop
fib_sum := fib_sum + tmp_sum;
tmp_sum := fib_sum;

end loop;
--

constant max_num : integer := 10;
variable fib_sum : integer := 1;
variable tmp_sum : integer := 0;
variable int_cnt : integer := 0;

while (int_cnt < max_num) loop
fib_sum := fib_sum + tmp_sum;
tmp_sum := fib_sum;
int_cnt := int_cnt + 1;

end loop;

11.1.3 Loop Control: next and exit Statements

Similarly to higher-level computer languages, VHDL provides some extra loop control

options. These options include the next statement and the exit statement. These

statements are similar to their counterparts in higher-level languages in the control

they can exert over loops. These two loop-control constructs are available for use in

either the for or the while loop.
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The next Statement

The next statement allows for the loop to bypass the remaining statements within the

body of the loop and start immediately at the next iteration. In for loops, the index

variable is incremented automatically before the start of the upcoming iteration. In

while loops, it is up to the programmer to ensure that the loop operates properly

when the next statement is used. There are two forms of the next statement and

both forms are shown in the next listing. These are two examples that use the next

statement and do not necessarily represent a good programming practice nor really

contain meaningful code.

variable my_sum : integer := 0;

for cnt_val in 0 to 50 loop
if (my_sum = 20) then

next;
end if;
my_sum := my_sum + 1;

end loop;

variable my_sum : integer := 0;

while (my_sum < 300) loop
next when (my_sum = 20);
my_sum := my_sum + 1;

end loop;
--
--

The exit Statement

The exit statement allows for the immediate termination of the loop and can be

used in both for loops and while loops. Once the exit statement is encountered

in the flow of the code, control is returned to the statement following the end loop

statement associated with the given loop. The exit statement works in nested loops

as well. The two forms of the exit statement are similar to the two forms of the next

statement. Examples of these forms are provided in the next listing.

variable my_sum : integer := 0;

for cnt_val in 0 to 50 loop
if (my_sum = 20) then

exit;
end if;
my_sum := my_sum + 1;

end loop;

variable my_sum : integer := 0;

while (my_sum < 300) loop
exit when (my_sum = 20);
my_sum := my_sum + 1;

end loop;
--
--
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Standard Digital Circuits in VHDL

As you know or as you will be finding out soon, even the most complex digital circuit

is comprised of a relatively small set of standard digital circuits plus some associated

control signals. This list of standard digital circuits is a mixed bag of combinatorial

sequential devices such as MUXes, decoders, counters, comparators, registers, etc.

The art of digital design using VHDL is centered around the proper selection and

interfacing of these devices. The actual creation and testing of these devices is de-

emphasized.

The most efficient approach to utilizing standard digital circuits using VHDL is

to use existing code for these devices and modify them according to the needs of

your particular design. This approach allows you to utilize your current knowledge of

VHDL to quickly and efficiently design complex digital circuits. The following listings

show a set of standard digital devices and the VHDL code used to describe them. The

following circuits are represented in various sizes and widths. Note that the following

circuit descriptions represent possible VHDL descriptions but are by no means the

only descriptions. They do however provide starting points for you to modify for your

own design needs.
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12.1 RET D Flip-flop (Behavioral Model)

-------------------------------------------------------------------
-- D flip-flop: RET D flip-flop with single output
--
-- Required signals:
---------------------------------------------------
-- CLK,D: in STD_LOGIC;
-- Q: out STD_LOGIC;
-------------------------------------------------------------------
process (CLK,D)
begin

if (rising_edge(CLK)) then
Q <= D;

end if;
end process;
--

12.2 FET D Flip-flop with Active-low Asynchronous Preset (Behav-

ioral Model)

-------------------------------------------------------------------
-- D flip-flop: FET D flip-flop with asynchronous preset. The
-- preset input takes precedence over the synchronous input.
--
-- Required signals:
---------------------------------------------------
-- CLK,D,S: in STD_LOGIC;
-- Q: out STD_LOGIC;
-------------------------------------------------------------------
process (CLK,D,S)
begin

if (S = ’0’) then
Q <= ’1’;

elsif (falling_edge(CLK)) then
Q <= D;

end if;
end process;
--

12.3 8-Bit Register with Load Enable (Behavioral Model)

-------------------------------------------------------------------
-- Register: 8-bit Register with load enable.
--
-- Required signals:
---------------------------------------------------
-- CLK,LD: in STD_LOGIC;
-- D_IN: in STD_LOGIC_VECTOR(7 downto 0);
-- D_OUT: out STD_LOGIC_VECTOR(7 downto 0);
-------------------------------------------------------------------
process (CLK,LD)
begin

if (rising_edge(CLK)) then
if (LD = ’1’) then -- positive logic for LD

D_OUT <= D_IN;
end if;

end if;
end process;
--
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12.4 Synchronous Up/Down Counter (Behavioral Model)

-------------------------------------------------------------------
-- Counter: synchronous up/down counter with asynchronous
-- reset and synchronous parallel load.
---------------------------------------------------
entity COUNT_8B is

port ( RESET,CLK,LD,UP : in std_logic;
DIN : in std_logic_vector (7 downto 0);

COUNT : out std_logic_vector (7 downto 0));
end COUNT_8B;
architecture my_count of COUNT_8B is

signal t_cnt : std_logic_vector(7 downto 0);
begin

process (CLK, RESET)
begin

if (RESET = ’1’) then
t_cnt <= (others => ’0’); -- clear

elsif (rising_edge(CLK)) then
if (LD = ’1’) then t_cnt <= DIN; -- load
else

if (UP = ’1’) then t_cnt <= t_cnt + 1; -- incr
else t_cnt <= t_cnt - 1; -- decr
end if;

end if;
end if;

end process;
COUNT <= t_cnt;

end my_count;
--

12.5 Shift Register with Synchronous Parallel Load (Behavioral Model)

-------------------------------------------------------------------
-- Shift Register: unidirectional shift register with synchronous
-- parallel load.
--
-- Required signals:
---------------------------------------------------
-- CLK, D_IN: in STD_LOGIC;
-- P_LOAD: in STD_LOGIC;
-- P_LOAD_DATA: in STD_LOGIC_VECTOR(7 downto 0);
-- D_OUT: out STD_LOGIC;
--
-- Required intermediate signals:
signal REG_TMP: STD_LOGIC_VECTOR(7 downto 0);
--------------------------------------------------------------------
process (CLK)
begin

if (rising_edge(CLK)) then
if (P_LOAD = ’1’) then

REG_TMP <= P_LOAD_DATA;
else

REG_TMP <= REG_TMP(6 downto 0) & D_IN;
end if;

end if;
D_OUT <= REG_TMP(3);

end process;
--
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12.6 8-Bit Comparator (Behavioral Model)

-------------------------------------------------------------------
-- Comparator: Implemented as a behavioral model. The outputs
-- include equals, less than and greater than status.
--
-- Required signals:
---------------------------------------------------
-- CLK: in STD_LOGIC;
-- A_IN, B_IN : in STD_LOGIC_VECTOR(7 downto 0);
-- ALB, AGB, AEB : out STD_LOGIC
-------------------------------------------------------------------
process(CLK)
begin

if ( A_IN < B_IN ) then ALB <= ’1’;
else ALB <= ’0’;
end if;

if ( A_IN > B_IN ) then AGB <= ’1’;
else AGB <= ’0’;
end if;

if ( A_IN = B_IN ) then AEB <= ’1’;
else AEB <= ’0’;
end if;

end process;
--

12.7 BCD to 7-Segment Decoder (Data-Flow Model)

-------------------------------------------------------------------
-- BCD to 7-Segment Decoder: Implemented as combinatorial circuit.
-- Outputs are active low; Hex outputs are included. The SSEG format
-- is ABCDEFG (segA, segB etc.)
--
-- Required signals:
---------------------------------------------------
-- BCD_IN : in STD_LOGIC_VECTOR(3 downto 0);
-- SSEG : out STD_LOGIC_VECTOR(6 downto 0);
-------------------------------------------------------------------
with BCD_IN select

SSEG <= "0000001" when "0000", -- 0
"1001111" when "0001", -- 1
"0010010" when "0010", -- 2
"0000110" when "0011", -- 3
"1001100" when "0100", -- 4
"0100100" when "0101", -- 5
"0100000" when "0110", -- 6
"0001111" when "0111", -- 7
"0000000" when "1000", -- 8
"0000100" when "1001", -- 9
"0001000" when "1010", -- A
"1100000" when "1011", -- b
"0110001" when "1100", -- C
"1000010" when "1101", -- d
"0110000" when "1110", -- E
"0111000" when "1111", -- F
"1111111" when others; -- turn off all LEDs

--
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12.8 4:1 Multiplexer (Behavioral Model)

-------------------------------------------------------------------
-- A 4:1 multiplexer implemented as behavioral model using case
-- statement.
--
-- Required signals:
---------------------------------------------------
-- SEL: in STD_LOGIC_VECTOR(1 downto 0);
-- A, B, C, D:in STD_LOGIC;
-- MUX_OUT: out STD_LOGIC;
----------------------------------------------------------------------
process (SEL, A, B, C, D)
begin

case SEL is
when "00" => MUX_OUT <= A;
when "01" => MUX_OUT <= B;
when "10" => MUX_OUT <= C;
when "11" => MUX_OUT <= D;
when others => (others => ’0’);

end case;
end process;
--

12.9 4:1 Multiplexer (Data-Flow Model)

-------------------------------------------------------------------
-- A 4:1 multiplexer implemented as data-flow model using a
-- selective signal assignment statement.
--
-- Required signals:
---------------------------------------------------
-- SEL: in STD_LOGIC_VECTOR(1 downto 0);
-- A, B, C, D:in STD_LOGIC;
-- MUX_OUT: out STD_LOGIC;
----------------------------------------------------------------------
with SEL select

MUX_OUT <= A when "00",
B when "01",
C when "10",
D when "11",
(others => ’0’) when others;

--
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12.10 Decoder

-------------------------------------------------------------------
-- Decoder: 3:8 decoder with active high outputs implemented as
-- combinatorial circuit with selective signal assignment statement
--
-- Required signals:
---------------------------------------------------
-- D_IN: in STD_LOGIC_VECTOR(2 downto 0);
-- FOUT: out STD_LOGIC_VECTOR(7 downto 0);
-------------------------------------------------------------------
with D_IN select

F_OUT <= "00000001" when "000",
"00000010" when "001",
"00000100" when "010",
"00001000" when "011",
"00010000" when "100",
"00100000" when "101",
"01000000" when "110",
"10000000" when "111",
"00000000" when others;

--
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Appendix A: VHDL Reserved Words

Table 13.1 provides a complete list of VHDL reserved words.

abs downto library postponed srl

access else linkage procedure subtype

after elsif literal process then

alias end loop pure to

all entity map range transport

and exit mod record type

architecture file nand register unaffected

array for new reject units

assert function next rem until

attribute generate nor report use

begin generic not return variable

block group null rol wait

body guarded of ror when

buffer if on select while

bus impure open severity with

case in or signal xnor

component inertial others shared xor

configuration inout out sla

constant is package sll

disconnect label port sra

Table 13.1: A complete list of VHDL reserved words.
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Appendix B: Standard VHDL Packages

After years of development by the US Department of Defense, in February 1986 all

VHDL rights were transferred to the Institute of Electrical and Electronics Engineers

(IEEE) which since then has carried on the process of standardisation of the language.

After three main language standardisation steps that took place in 1987, 1993 and

in 2002, VHDL now includes a large set of packages that, once included in your code,

give to the user the possibility of using several mathematical constants, numerical

functions, overloaded operators, type conversion functions, enhanced signal types and

much more.

The main VHDL language library packages that you will probably need to use

in your career as an engineer can be included in your code by using the following

statements:

library IEEE;

-- essential IEEE libraries

use IEEE.std_logic_1164.all;

use IEEE.numeric_std.all;

-- more IEEE libraries

use IEEE.numeric_bit.all;

use IEEE.math_real.all;

use IEEE.math_complex.all;

-- Synoptics libraries that ARE NOT part of

-- the IEEE standard. TRY TO AVOID THEM !

use IEEE.std_logic_signed.all;

use IEEE.std_logic_unsigned.all;

use IEEE.std_logic_arith.all;
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For instance, the inclusion of the package std logic 1164 in your code, will give

you the ability to use the assignment operator = to compare two different data types.

The following listing shows a simple coding example of some of the many advantages

of using these libraries.

Listing 14.1: Example of operators and types available with some IEEE packages.

-- typical packages declaration
library IEEE;
use ieee.std_logic_1164.all ;
use ieee.numeric_std.all ;

-- notice how the use of these libraries was avoided
-- use ieee.std_logic_arith.all ;
-- use ieee.std_logic_unsigned.all ;

-- entity
entity my_blk is

port ( IN1, IN2 : in std_logic;
CLK, CLR : in std_logic;
OUT1 : out std_logic);

end my_blk;

-- architecture
architecture arch of my_blk is
signal A,B : unsigned(7 downto 0); -- note how for internal signals the
signal Y1 : unsigned(7 downto 0); -- unsigned and integer types replaced
signal Y2 : unsigned(8 downto 0); -- the simpler std_logic_vector
signal X : integer range 0 to 255;

begin
sync_proc: process(CLK,CLR)
begin
if CLR = ’1’ then

OUT1 <= ’0’;
elsif rising_edge(CLK) then --std_logic_1164 gives you "rising_edge()"

Y1 <= A + B + unsigned("0" & IN1); --numeric_std defines addition
--for unsigned types.

Y2 <= resize(A, Y2’length) + B + ("0" & IN1);
X <= to_integer(A); --numeric_std gives you "to_integer()"

OUT1 <= IN1 AND IN2;
end if;

end process sync_proc;
end arch;

As it becomes clear from the previous listing, the inclusion of these main standard

libraries allows you to write very powerful VHDL code. A quite useful cheat-sheet

about VHDL standard libraries and what they can offer is available from here:

http://www.vhdl.org/rassp/vhdl/guidelines/vhdlqrc.pdf

http://www.vhdl.org/rassp/vhdl/guidelines/1164qrc.pdf

The IEEE standardized libraries heavily enhance the VHDL language capability

giving you a long list of functions that you can freely use in your VHDL source code.

A list of these libraries cannot be included here for obvious copyright reasons but all

IEEE libraries source code is freely available to you from the following link:
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http://standards.ieee.org/downloads/1076/1076.2-1996/

Alternatively, the same VHDL libraries can be browsed and downloaded from the

GHDL website:

http://ghdl.free.fr

Finally, the software development tool (e.g. Xilinx ISE) that you use for the synthesis

of your VHDL code will include these libraries. A quick look at the source code will

give you a pretty good idea of what is available to you and how to use it. For instance,

a quick look at the math real.vhdl library, available from:

http://standards.ieee.org

will show you that the constant of type real MATH PI = 3.1415926 is available

to you as soon as you include the "use IEEE.math real.all;" line. The square

root function SQRT() is just another example.

14.1 Non-standard Libraries

If you often use google for learning purposes, you will soon discover that the use of

the non-standard library:

library ieee;

ieee.std logic arith.all;

is amazingly common among VHDL programmers.

The std logic arith library, as well as the std logic unsigned and the

std logic signed libraries, were written and packaged by Synoptics to provide

extended VHDL programming functionalities. Using these libraries eliminates the

need for data conversion and, for instance, it allows you to write:

a logic vector <= a logic vector + 1;

Despite the great advantage that these non-standard libraries seem to give you, their

use is not considered a good practice. Because of compatibility issues during synthesis,

we strongly discourage the use of these libraries.

14.2 IEEE Standard Libraries

In VHDL, basic arithmetics is defined for the integer data type and for the natural

data type. In order to have more control during synthesis over the various data for-

mats, other libraries were developed and included into the IEEE standard.

The library numeric std extended the standard VHDL by adding the signed and

the unsigned data types as well as the arithmetics for them. These libraries are IEEE

standard packages and their behaviour is governed by the standard, therefore assuring

compatibility. In this book, we highly recommend the use of the numeric std library

over the std logic arith library.

As a natural consequence, we recommend using the types unsigned, signed and

integer instead of the simpler std logic vector type for the many needs you

http://standards.ieee.org/downloads/1076/1076.2-1996/
http://ghdl.free.fr
http://standards.ieee.org
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might have. Refer to listing 14.1 for en example of the wise use of the type unsigned

or the type integer over the type std logic vector.
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Appendix C: VHDL Reference Cards

Hereafter you can find two sets of very useful VHDL reference cards made by Qualis

Design Corporation.

http://www.vhdl.org/rassp/vhdl/guidelines/vhdlqrc.pdf

http://www.vhdl.org/rassp/vhdl/guidelines/1164qrc.pdf
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p
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u
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 c
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 c
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c
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g

 |
 e

rr
o

r 
|

 f
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R
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n
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n
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t 
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e
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;

e
x
it

 [
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B
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e
n
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;
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;
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e
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p
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 m
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p
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;
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=
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