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Abstract—Despite speedups of 10x to 1000x, effective usage of 
multi-core and heterogeneous systems has largely been limited to 
experts due to increased application design complexity resulting 
from the requirement for significantly different algorithms for 
different device types and amounts. Compiler and high-level 
synthesis research has attempted to address this problem but is 
fundamentally limited to the algorithm specified by the high-level 
code. Thus, future compilers will need to choose from numerous 
implementations/algorithms for a given function when optimizing 
for a multi-core heterogeneous system. This emerging problem, 
which we refer to as the implementation planning problem, 
requires compilers and similar tools to rapidly determine 
performance of a particular implementation on different devices 
for all possible input parameters. To help solve the 
implementation planning problem, we introduce a heuristic that 
repeatedly selects statistically significant input values, measures 
actual execution time, and then statistically analyzes the results to 
predict the execution time for all inputs within requested 
accuracy and confidence levels. We evaluated the heuristic using 
twelve examples on three different platforms with up to 16 
microprocessor cores and a field-programmable gate array, 
achieving an average prediction error of 6.2% and a root-mean-
squared error of 7.4%, which required an average of only 463 
samples and 51 seconds to complete. 
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implementation planning; performance prediction 

I. INTRODUCTION 
Embedded architectures have started on a clear trend 

towards increased parallelism, as evidenced by the widespread 
usage of multi-core microprocessors, and also increased 
heterogeneity, with graphics processing units (GPUs) and field-
programmable-gate-arrays (FPGAs) being increasingly used to 
achieve speedup ranging from 10x to more than 1000x 
[5][11][27]. Despite significant advantages, usage of multi-core 
heterogeneous systems for real-time multimedia and other 
embedded domains has been limited due to increased design 
complexity compared to software design.  

To enable more widespread usage, numerous studies on 
tools for hardware/software co-design, compilation, high-level 
synthesis, and hardware/software partitioning (which for 
simplicity we collectively refer to as compilation tools) have 
focused on optimizing a single high-level implementation (e.g., 
a multimedia kernel) for heterogeneous systems 
[3][12][15][24][28]. Although such previous work has reduced 
design complexity, a fundamental problem that has limited the 
effectiveness of existing compilation tools is that different 

devices in heterogeneous systems often require significantly 
different algorithms for efficient execution [9][24]. For 
example, a software sorting implementation would likely use a 
Quick Sort algorithm, whereas an FPGA implementation 
would likely use a Merge Sort or Bitonic Sort algorithm. If a 
compiler optimized a Quick Sort-based implementation for an 
FPGA, the performance could be orders of magnitude slower 
than a Bitonic Sort implementation [24]. This problem is not 
limited to heterogeneous devices; multi-core devices with 
different numbers of cores may also exhibit widely differing 
performances for different implementations [21]. The problem 
is further complicated by a common dependence on input 
parameters, where no single implementation is optimal for all 
inputs. For example, the optimal algorithm for sorting 10 
elements on a particular device is likely different than the 
optimal algorithm for sorting 1,000,000 elements. 

To effectively optimize applications for multi-core 
heterogeneous systems, future compilation tools will need to 
rapidly select the best implementation for a given function call. 
Due to potentially large numbers of function calls, 
implementations, and input possibilities, it is impractical for a 
compiler to evaluate all implementation possibilities at 
compile-time. Therefore, compilation tools must plan ahead 
what implementations to use for different resource 
combinations and input parameters, which we define as the 
implementation planning problem. Compilers can then use 
planning results to quickly select an efficient implementation 
for each function call at compile-time, which is critical for 
meeting constraints in real-time multimedia systems. 

The main challenge of implementation planning is dealing 
with scalability issues that result from numerous combinations 
of implementations, resources, and input parameters. In this 
paper, we introduce a heuristic that repeatedly selects 
statistically significant invocation parameters, measures actual 
execution time, and then statistically analyzes results to predict 
execution time for all combinations of input parameters. The 
goal of the heuristic is to minimize implementation planning 
execution time by executing as few input combinations as 
possible, while attempting to meet specified accuracy and 
confidence levels. For twelve case studies, the presented 
heuristic achieved an average error of 6.2% and a root-mean-
squared error of 7.4% on three significantly different systems 
that included 16 microprocessor cores and an FPGA, while 
executing an average of only 463 input combinations out of a 
parameter space with millions of combinations. Total planning 
time averaged 51 seconds.  

This research was supported by the National Science Foundation (CNS-
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The paper is formatted as follows. Section II discusses 
related work. Section III describes the heuristic. Section IV 
discusses an interface abstraction used by the heuristic. Section 
V discusses limitations. Section VI presents experimental 
results. 

II. RELATED WORK 
Performance prediction, estimation, and analysis are widely 

studied topics with challenges similar to implementation 
planning challenges. Performance prediction is often used to 
evaluate the amenability of a particular architecture for certain 
applications [1][13][22], to assist design space exploration [18] 
and verification [26], to help identify performance bottlenecks 
[19][25], among others. Although the majority of previous 
work focuses on microprocessors, several previous approaches 
have focused on performance prediction for FPGAs using 
analytical [13] and simulation [10] methods. Although existing 
performance prediction techniques are related to 
implementation planning in that they must predict performance 
of an application for a particular device, implementation 
planning must also predict performances for different devices 
and for all possible input combinations. 

Numerous compiler studies have focused on automatic 
parallelizing transformations [6][8][14] and adaptive 
optimization techniques [4][17] to optimize applications for 
different multi-core architectures. For FPGAs, high-level 
synthesis tools [3][12][15][28] have focused on translating 
high-level code into custom circuits. For GPUs, languages such 
as CUDA [20], Brook [2], and OpenCL [16] provide constructs 
for explicit parallelism that can be compiled onto numerous 
cores. One main limitation of all such tools is that efficiency is 
fundamentally limited by the single algorithm described in 
application code. The implementation planning heuristic in this 
paper is complementary, enabling rapid evaluation of multiple 
candidate implementations. 

Previous work on adaptive software libraries is 
conceptually similar to implementation planning. FFTW 
(Fastest Fourier Transform in the West) [7] is an adaptive 
implementation of FFT that tunes its implementation by 
measuring the execution time of alternative ways of performing 
an FFT and choosing the fastest. ATLAS [29] is a software 
package of linear algebra kernels that are capable of 
automatically tuning themselves through a combination of 
tweaking code parameters, custom code generation, and 
choosing between alternative implementations. SPIRAL [23] is 
a similar framework but explores algorithmic and 
implementation choices to optimize DSP transforms. Such 
approaches perform a limited form of implementation planning 
specific to microprocessor architectures and particular 
domains. The presented heuristic is a solution for the more 
general problem of choosing between any implementation, for 
any domain, running on any device, invoked with any input 
parameters. 

III. THE PLANNER HEURISTIC 
Due to the large exploration space of implementation 

planning, an exhaustive solution is clearly not feasible. To 
solve implementation planning in a reasonable amount of time, 
performance prediction must be used to estimate a large 

percentage of the exploration space. Although a large amount 
of previous work has focused on performance prediction, those 
approaches are specific to particular architectures 
[10][13][22][26] and/or applications [7][29], often requiring 
significant developer effort to adapt the performance predictor 
for new devices and applications. Implementation planning 
largely automates this process by executing and measuring 
actual execution time on different devices using different 
inputs, allowing the effective prediction of performance for any 
possible implementation written in any language, for any 
resource combination provided by the target system, and for all 
invocation parameters. For brevity, the following sections limit 
discussion to a single implementation and resource 
combination. Extending the heuristic for all implementations 
and resource combinations is trivial, only requiring a loop 
around the presented heuristic. 

A. Overview 
For simplicity, we initially describe the heuristic for 

implementations whose execution time depends on a single-
dimensional parameter space, such as a function whose 
execution time depends on the input size. Although we use 
input size for the descriptions in this section, the heuristic is 
capable of handling multi-dimensional parameter spaces, as 
discussed in Section IV. 

One naïve possibility for an implementation planning 
heuristic would involve selecting random input parameters, 
measuring the actual execution time (which we refer to as 
sampling), and then interpolating the results for all inputs. 
Although straightforward, such an approach is not adaptive and 
may collect too few samples in regions of high variance and 
too many samples in regions where interpolation would suffice. 
This approach additionally raises questions such as how many 
samples to collect. Another approach would be to select input 
parameters at fixed intervals (e.g., every 100th input size) with 
interpolation used in between. While this approach answers the 
question of how many samples to collect, it raises other 
questions such as what spacing to use between samples and 
still does not adapt to the variance in the profile. Because a 
performance prediction heuristic must invoke the 
implementation and measure its execution time for each sample 
collected, it is critical for a heuristic to minimize the total 
number of samples required while not sacrificing accuracy. 

To address these problems, we present an adaptive 
heuristic, referred to as the planner. Given an implementation 
and a set of prediction parameters that specify the input sizes, 
accuracy, and confidence levels, the planner generates a two-
dimensional piecewise linear function (e.g., Fig. 1), referred to 
as a performance profile, with input size on the x-axis and 
estimated execution time on the y-axis. The performance 
profile is stored as the ordered set of points describing each 
piecewise linear segment, allowing for compilation tools to 
estimate execution time for any input size by interpolating the 
nearest points. The adaptive capabilities of the planner are 
demonstrated in Fig. 1, where the profile uses more linear 
segments for input ranges with rapid changes in execution 
time.  

The planner comprises of two iterative steps – segment 
generation and profile generation – that focus on predicting 



performance for a small region of input sizes, referred to as the 
interval of interest (IOI), which gradually shifts across the 
entire input parameter space starting from the smallest sizes in 
order to create the resulting performance profile.  

The main purpose of segment generation is to identify 
groups of samples that can be approximated by a segment of a 
linear regression. When high accuracy is requested, such 
segments may represent only several, closely located samples. 
When accuracy requirements are lowered, segments may 
represent distant samples. Segment generation works by 
sampling an input size within the IOI, measuring the execution 
time of the implementation at that input size, and then 
statistically analyzing intervals of samples to find linear trends 
that meet specified accuracy requirements.  

Profile generation selects the best subset of these segments 
to create the performance profile. Profile generation starts at a 
segment with a point at the lowest input size and proceeds to 
connect segments that progress the performance profile 
towards the largest input size, all the while attempting to 
minimize the number of segments and the total number of 
samples with large error. As a result, the performance profile 
“grows” from the smallest to the largest input size as more 
samples are added and sufficiently linear segments are found. 
After expanding the performance profile, profile generation 
adjusts the IOI and the planner repeats segment generation. The 
planner completes once profile generation finds a set of 
segments that span the entire specified input range. 

B. Segment Generation 
Segment generation is responsible for sampling the 

relationship between input size and execution time, and then 
inferring the most-likely linear trends, represented as segments, 
from those samples. For each iteration of the planner, segment 
generation starts by randomly selecting an input size within the 
current IOI, and then measuring the execution time of the 
implementation at that input size to form a new sample data 
point. Details regarding the determination of the IOI are 
discussed in the profile generation section. Although segment 
generation could potentially use any form of time 
measurement, we currently use time-stamp counters on the 
processor to ensure high-precision. Segment generation then 
generates new segments, and corrects previously generated 

segments, by considering the new sample collectively with all 
previous iterations.  

Segment generation infers the linear trends from the 
samples by performing a linear regression analysis. Linear 
regression analysis is a standard statistical tool that calculates 
the line that minimizes the mean-squared distance between the 
line and the samples. Segment generation then shortens the line 
to a segment by bounding its input size to have the same range 
as the samples used for the analysis. In addition to the segment, 
the regression analysis also allows determination of the 
confidence in the linear trend by calculating the corresponding 
confidence interval. A confidence interval is another standard 
statistical tool that specifies how accurately the segment can 
specify the execution time at any particular input size. For 
example, the confidence interval might specify that at an input 
size of 100, the generated segment is 95% confident that the 
average execution time is within 95-105ms. The results of the 
linear regression analyses, and the samples themselves, are all 
stored within a data structure referred to as the sample matrix. 

Segment generation performs a linear regression analysis 
on all possible intervals of sequential samples, and stores the 
corresponding results as cells within the sample matrix data 
structure. The sample matrix is an upper-right triangular matrix 
with the number of rows and columns equal to the number of 
collected samples that have unique input sizes (segment 
generation combines samples with identical input sizes). Each 
cell within the sample matrix stores the output of a single linear 
regression analysis (in addition to other information) 
performed on a subset of the samples collected. The 
coordinates of each cell specifies the interval of samples used 
for that analysis, with the row index equaling the index of the 
starting sample and the column index equaling the index of the 
ending sample. As sample generation indexes all of the 
samples in ascending input size order, an interval of samples 
corresponds to all of the samples collected within a range of 
input sizes. For example, the linear regression analysis of the 
samples indexed between 10 and 20 would be found in the 
matrix in the cell located at row 10, column 20. If the input size 
of the sample at index 10 was 35 and the input size of the 
sample at index 20 was 110, the linear regression analysis 
would then similarly correspond to any linear trend inferred for 
the input size range of 35 through 110. As a linear regression 
analysis requires only the accumulation of data-point statistics 
for its calculations, sample generation significantly reduces the 
processing time required to populate the sample matrix by 
using a dynamic programming algorithm that calculates the 
linear regression of larger segments from the intermediate 
results saved from smaller sub-segments. As a result, sample 
generation can perform the linear regression analysis on one 
interval of samples by partitioning the interval into two sub-
intervals and simply accumulating the intermediate results 
stored in the corresponding cells of the two sub-intervals. 
Lastly, the cells located along the matrix’s diagonal represent 
intervals of only a single sample (or multiple samples that all 
have the same input size). Segment generation populates the 
diagonal cells with the statistics of the collected samples 
directly, which in turn form the base cases for generating 
segments of larger intervals using the dynamic programming 
algorithm. 

 
Figure 1.  A comparison of actual implementation performance and the 
performance profile output of the planner (shifted up for visualization), which 
determines maximum-sized regions that can be linearly approximated. 



When populating each cell of the sample matrix, segment 
generation performs several checks to gauge the 
appropriateness of the segment approximation. The first check 
is to verify that the current interval contains at least three 
samples so that the linear regression result is non-trivial. The 
second check is to see if the segment approximation is 
sufficiently accurate by excluding segments with too wide of a 
confidence interval. The variance and spread of the samples 
determines the width of the confidence interval. Likewise, the 
wider the confidence interval, the less accurately the segment 
predicts the execution time. A prediction parameter, referred to 
as the segment error threshold, specifies the maximum percent 
width (i.e., the width of the confidence interval relative to its 
execution time) allowed by a segment’s confidence interval. If 
any of these checks fail, segment generation flags the 
corresponding cell as not containing a valid segment. If the 
segment does pass all the checks, segment generation 
calculates one last metric, referred to as the sample out-of-
range count, to use for the profile generation step. Sample 
generation calculates the sample out-of-range count by 
counting the number of samples within the interval that have a 
“large” percent error when compared to the value estimated by 
the segment. A prediction parameter, referred to as the sample 
error threshold, determines the threshold of what constitutes a 
“large” percent error. The sample out-of-range count provides 
a fair comparison between alternate segments in the sample 
matrix as it lessens the impact of any anomalous samples. 
Profile generation will then attempt to minimize this count 
when finding the best set of connected segments to use to form 
the resulting performance profile. 

As illustrated in Fig. 2 (and described in pseudo-code in 
Fig. 3), each iteration of sample generation requires collecting 
a new sample, finding the sorted index of the new sample, 
inserting a new row and column into the sample matrix 
(assuming the sample has a unique input size), and then 
reprocessing the cells whose results may change as a result of 
the new sample. Any cells located at a column less than the 
newly inserted column or with a row greater than the newly 
inserted row correspond to intervals of samples located entirely 
before or after the newly inserted sample, and therefore do not 
need regeneration. The remaining cells are located in a 
rectangular region bordered by the newly inserted row and 
column inclusively. Segment generation populates the newly 
created diagonal cell with the statistics of the new sample and 
then processes the remaining cells in decreasing row and 
increasing column order. Processing the cells in this order 
allows for the reuse of intermediate calculations for the linear 
regression analysis, as discussed previously. 

C. Profile Generation 
Profile generation determines the longest set of segments 

from the sample matrix that can be connected together to form 
the performance profile that minimizes the total sample out-of-
range count. Profile generation uses a dynamic programming 
algorithm that “grows” the performance profile from the 
smallest input size towards the largest. The algorithm operates 
by traversing the sample matrix in increasing row and 
increasing column order. As the algorithm reaches each cell, it 
determines and saves in the cell the best candidate segment to 
precede the current segment, such that the resulting connected 

set of segments, referred to as a chain, has the lowest sample 
out-of-range count (or the least number of total segments in the 
event of a tie). A candidate segment is any segment which 
starts prior and ends during the interval of the current segment 
(i.e., the segments overlap and the endpoint is progressing 
forward). After the algorithm completes, the best chain of 
segments is the one that ends at the largest input size, with the 
lowest sample out-of-range count, and with the fewest number 
of segments (evaluated in that order). The endpoint of the best 
chain of segments corresponds to how much of the 
performance profile the planner has sufficiently determined so 
far. The planner is complete when the best chain of segments 
extends all the way to the last valid input size. Upon 
completion, the planner returns the performance profile as the 
intersection points between the segments as well as the 
endpoints for the first and last valid input size values. 

Profile generation is also responsible for locating the IOI to 
encourage the picking of samples that will promote the growth 
of the best chain of segments in the subsequent iteration. In the 

 
Figure 2. A single iteration of segment generation. 

 
Figure 3. Pseudo-code of the segment generation algorithm. 



first few iterations when the sample matrix contains no 
segments, the planner locates the IOI at the lower bound of the 
input size to pick samples that will help establish the first 
segments. In later iterations, profile generation centers the IOI 
at the input size of the last endpoint of the best chain of 
segments. Centering the IOI at the last endpoint extends the 
interval beyond the end of the chain, promoting the generation 
of new segments that will further lengthen the chain. 
Additionally, the interval extends prior to the last endpoint to 
allow for the reinforcement or correction of segments recently 
generated. The width of the IOI is adaptive and set 
proportionally to the product of execution time and the inverse 
of the slope of the last endpoint. A prediction parameter, 
referred to as the interval growth factor, specifies the 
proportionality factor. 

As illustrated in Fig. 4 and Fig. 5, each iteration of profile 
generation requires the reconsideration of some of the cells in 
the matrix as segments in the best possible chain. Any cell with 
a column less than the index of the newly inserted sample (for 
the current iteration), would not have any of its predecessors 
affected by the sample insertion, and therefore would still be 
valid. However, any cells with a column greater-than or equal 
to the newly inserted sample could either itself have changed 
and/or might have a different selection of predecessors, 
possibly invalidating any previous predecessor decisions. 
Profile generation loops through the cells that require 
reconsideration in increasing row and increasing column order, 
so that all of the possible predecessors are already valid. To 
reduce the time complexity, the algorithm keeps track of the 
best predecessor segment as it traverses the cells (omitted from 
the figures for simplicity), as opposed to searching for the best 
predecessor candidate for each cell individually. Lastly, the 
algorithm searches the sample matrix and returns the best chain 
(omitted for brevity). Implementation assessment is complete if 
the chain extends to the last valid work metric value, or 
alternatively uses the chain to determine the next iteration’s 
IOI. 

IV. THE ADAPTER INTERFACE ABSTRACTION 
Abstraction is required to keep the planner independent of 

the implementation. For example, each implementation expects 
specific invocation syntax and semantics to execute. Software 
implementations require valid initializations of input 
parameters, some of which may require the further allocation 
and population of data arrays (e.g., invoking a sorting 
subroutine requires the population of an input array with data 
to sort). Similarly, heterogeneous implementations may require 
device-specific code to initialize resources and initiate 
execution. Since the goal of the planner is to predict 
performance for implementations running on any resource in a 
multi-core heterogeneous system, keeping these details out of 
the planner is critical for wide applicability.  

To achieve these goals, the planner uses an 
implementation-specialized abstraction layer between the 
planner and the implementation, which we refer to as the 
adapter. The main responsibility of the adapter is to adapt (i.e., 
map) the abstract interface of the planner to the specific 
interface required by the implementation. The planner defines 
an abstract quantity called the work metric that it passes into 

the adapter during sample execution. The adapter internally 
maps the work metric to input parameters for the 
implementation, executes the implementation with those 
parameters, and then returns the implementation’s execution 
time to the planner. The adapter additionally performs any 
necessary initialization and tear-down required by the 
implementation, which is excluded from the returned execution 
time. The previous discussion of the planner assumed that the 
adapter used the input size as the work metric. 

Note that although it may be possible in some situations to 
automatically create an appropriate adapter for a given 
implementation, we currently assume that the adapter is 
designer specified. One envisioned usage case is that designers 
of a specialized function library with multiple implementations 
of each function would also provide an appropriate adapter for 
each implementation. Automatic generation of adapters is left 
as future work. 

Automatically adapting the work metric to an 
implementation’s input parameters is essential for the effective 
operation of the planner. As far as the planner is considered, 
the sampled collection of work metric and execution time pairs 
is the only information the planner can collect from an 
implementation. As the number of samples increases, the 
underlying trend of how the work metric affects execution time 
is central to the statistical analyses steps. As a result, making 

 
Figure 4.  A single iteration of profile generation. 

 
Figure 5.  Pseudo-code of the profile generation algorithm. 



these trends identifiable should be a design goal of the 
adapter’s designer.  

In many cases the adapter can directly map work metrics to 
input parameters. For example, Fig. 6 demonstrates an adapter 
for an insertion-sort implementation that maps the work metric 
to the size of the input array to sort. Internally, the adapter 
allocates and populates an array with random values before 
actually invoking the insertion-sort subroutine. The adapter 
measures the execution time of the insertion-sort subroutine, 
which is then returned to the planner. For this sorting example, 
the points on a work metric versus execution time graph will 
show an underlying trend of quadratic execution time growth 
with increasing work metric (as insertion-sort is an O(n2) 
algorithm where n is the number of items to sort).  

Similar techniques work for implementations whose 
execution time is dependent on input values as opposed to size. 
For example, an adapter for a Fibonacci function 
implementation could map the work metric to the particular 
input value. In many cases, a particular implementation’s 
execution time may depend on both input size and input values. 
For example, a sorting implementation may perform differently 
depending on whether the data is mostly sorted or randomly 
distributed. To deal with these situations, multiple adapters 
could potentially be used to create multiple performance 
profiles, which a user could select based on characteristics of 
their targeted application. 

Creating an adapter for multiple-parameter 
implementations requires a bit of ingenuity on behalf of the 
adapter designer, but can typically be done by taking advantage 
of knowledge of the underlying algorithm. As an example, 
consider discrete circular convolution that convolves two input 
arrays. Unlike the sorting example, whose input size mapped 
easily to the work metric, convolution has two input parameters 
whose sizes both significantly affect the execution time of the 
implementation. The adapter in this case can be written by 
taking advantage of the asymptotic performance analysis of the 
circular convolution algorithm. For example, if the designer 
knows that the asymptotic performance of the implementation 
is Θ(|x|*|h|), that is the execution time is proportional to the 
product of the sizes of the two operands, then a simplification 
can be made by noting that the proportionality factor in the 

asymptotic analysis should be approximately constant for all 
lengths of x and h. In other words, the execution time of 
convolving a 20-element array with a 30-element array is likely 
to be similar to convolving a 10-element array with a 60-
element array, due to the product of both being 600. As a 
result, the adapter can be written as shown in Fig. 7, which 
maps the work metric to the size of one of the input operands 
and fixes the size of the second to a constant value (16 in this 
example). The resulting performance profile can then be used 
to predict the performances of any invocation by simply 
finding the product of the sizes of the two operands and 
dividing that product by 16. Similar methods can be applied to 
create adapters for many other multiple-parameter 
implementations. 

Note that as opposed to being “duct tape” that makes the 
planner support multiple dimensions, the adapter provides 
several important advantages. First, by mapping to a single 
dimension, the adapter enables the planner to complete quickly, 
as shown by the results. In addition, the adapter also reduces 
the size of the resulting performance profile, which potentially 
enables implementation selection at runtime. For example, a 
runtime optimization framework could implement a function 
call by first determining available resources and the current 
input parameter values, and then using the performance 
profiles to quickly identify the most efficient implementation 
for the current situation. Lastly, the simplicity of a single 
dimensional performance profile allows for efficient post-
processing, such as overlaying multiple performance profiles 
and storing only the lowest envelope (i.e., fastest) 
implementation. For future work, we plan to extend the adapter 
to natively support multiple dimensions by extending the 
planner to perform multi-dimensional regressions using multi-
dimensional intervals of interest. However, even with support 
for multiple dimensions, there are likely many situations where 
mapping to a single dimension will greatly reduce planning 
time, while still meeting accuracy requirements. 

In addition to mapping the work metric to input parameters, 
the adapter also provides an inverse mapping to map from 

 
Figure 6.  Pseudo-code of an insertion-sort adapter. 

 
Figure 7.  Pseudo-code of a circular convolution adapter. 



input parameters to a corresponding work metric. As the 
planner deals only with the work metric abstraction, the 
performance profile output is defined in terms of the work 
metric, essentially predicting the execution time for a given 
work metric. As a result, using the performance profile to 
predict the execution time of a particular invocation requires 
mapping that invocation’s parameters to its corresponding 
work metric. In most cases, this mapping from the parameters 
to the work metric is simpler than the reverse. In the insertion-
sort example, the inverse mapping would simply use the 
number of elements of that sort as the work metric (as the 
adapter used the work metric as the number of elements to 
sort). In the circular convolution example, the inverse mapping 
would be to calculate the work metric by multiplying the 
lengths of the two input operands and dividing by 16. 

V. LIMITATIONS 
Most of the limitations of the planner arise from some 

implementations not having suitable adapters. First, an 
implementation should have predictable and well-behaved 
performance characteristics to allow for the creation of an 
adapter. For implementations that are not deterministic (e.g., 
random execution times) or do not have a good mapping for 
the work metric (e.g., multi-dimensional parameter spaces that 
can’t be accurately approximated with a single dimension), the 
planner will likely have reduced prediction accuracy. Second, 
caching, data alignment, and other architecture-specific effects 
may add nondeterministic effects that will increase the error of 
the performance profile. However, as shown by the results, in 
many cases these effects are minimal and have little effect on 
the predicted execution times. Lastly, adapters for multi-
dimensional implementations typically neglect corner cases. 
For example, the asymptotic analysis of the circular 
convolution algorithm, described in Section IV, assumed a 
constant proportionality factor for all input parameter 
combinations. However, this assumption is likely incorrect for 
corner cases such as when one of the input vectors is a single 
element (e.g., convolving 1,000,000 elements with 1 element 
would likely have a significantly different execution time than 
convolving two 1,000 element vectors, despite having the same 
product). This limitation could potentially be improved with 
more complicated adapters or by extending the work metric to 
directly handle multiple dimensions, which we plan as future 
work. 

VI. EXPERIMENTS 

A. Experimental Setup 
Table I describes the implementations that we created to 

evaluate the planner. We selected these implementations in 
order to represent common functions from different 
programming and application domains. Implementation 
describes the function/algorithm used by the implementation. 
Work Metric Range defines the range of work metrics for 
which the planner predicted performance. Note that in order to 
allow the planner to complete in a reasonable amount of time, 
we chose all work metric ranges such that the worst-case 
sample execution (usually the largest work metric) took less-
than a few seconds to complete. Although these limits exclude 
portions of the input parameter space, the evaluated ranges are 
representative of common usage. Adapter Details explains the 

methodology the adapter uses to map work metrics to input 
parameters. The table groups the implementations into three 
different types. The Single-threaded Implementations group 
lists the implementations using sequential algorithms. The 
Multi-threaded Implementations group lists the 
implementations that can partition work across one or more 
threads. Lastly, the FPGA Implementations group lists the 
implementations that perform their processing on an FPGA 
with basic support from a microprocessor to transfer data. The 
single-threaded and FPGA implementations can execute on 
only one specific set of resources and therefore require only a 
single performance profile for a system. The multi-threaded 
implementations, however, have different execution times 
based on the number of available CPUs and therefore require a 
different performance profile for different CPU counts. 

We evaluated the planner using twelve examples. Insertion 
Sort, Heap Sort, and Quick Sort are in-place sorting algorithms 

TABLE I. IMPLEMENTATION DETAILS 

Implementation Work Metric 
Range Adapter Details 

Single-threaded Implementations 
Heap Sort [1, 4000000] Work metric is size of sort. 

Random data populates input 
array. 

Insertion Sort [1, 65000] Work metric is size of sort. 
Random data populates input 
array. 

Longest Common 
Subsequence 

[1, 1000000] Work metric is length of one 
string, other string is fixed to 
length 256. 

Quick Sort [1,  10000000] Work metric is size of sort. 
Random data populates input 
array. 

Multi-threaded Implementations 
2D Convolution [1, 10000] Work metric is number of rows 

of image, number of columns is 
fixed to 128. Convolving 
window is fixed to 8x8 

Circular 
Convolution 

[1, 2500000] Work metric is length of one of 
the operands, other operand is 
fixed to length 256. 

Floyd-Warshall [1, 600] Work metric is number of 
vertices. All edges have random 
weights. 

Inner Product [1, 10000000] Work metric is length of both 
input operands. 

Matrix Multiply [1,  2500000] Work metric is one dimension’s 
length, other two dimensions 
are fixed to length 16. 

Mean Filter [1, 25000] Work metric is number of rows 
of image, number of columns is 
fixed to 256. 

Optical Flow [1, 10000] Work metric is number of rows 
of image, number of columns is 
fixed to 128. Template image is 
fixed to 8x8. 

Prewitt [1, 25000] Work metric is number of rows 
of image, number of columns is 
fixed to 256. 

FPGA Implementations 
Circular 
Convolution 

[1, 1000000] Work metric is length of one of 
the operands, other operand is 
fixed to length 2048. 

Inner Product [1, 1048576] Work metric is length of both 
input operands. 

Matrix Multiply [1, 4096] Work metric is one dimension’s 
length, other two dimensions 
are fixed to length 256. 

 



with different asymptotic complexities. Longest Common 
Subsequence (LCS) finds the longest, not necessarily 
contiguous, series of common characters between two strings 
using a dynamic programming-based Θ(|a|*|b|) algorithm, 
where |a| and |b| are the lengths of the two input strings. 2D 
Convolution, Mean Filter, Optical Flow, and Prewitt apply a 
sliding window to an image using an Θ(x*y) algorithm, where 
x and y are the dimensions of the image. Circular Convolution 
convolves two vectors using an Θ(|x|*|h|) algorithm, where |x| 
and |h| are the sizes of the two input operands. Floyd-Warshall 
is a dynamic programming-based graph algorithm that finds the 
shortest path between all pairs of vertices in a directed 
weighted graph. Inner Product calculates the inner-product on 
two identically sized vectors using an Θ(n) algorithm, when n 
is the length of each vector. Matrix Multiply multiplies two, not 
necessarily square, matrices using an Θ(m*n*p) algorithm, 
where one operand is of dimension m x n and the second 
operand is of dimensions n x p. 

We evaluate the planner on three platforms. Platform #1 
has a hyper-threading 3.2GHz Intel Xeon processor with an 
attached Nallatech H101-PCIXM FPGA accelerator board, 
which has a Xilinx Virtex IV LX100 FPGA. Hyper-threading 
makes platform #1 appear as though it has two cores, but the 
cores must partially contend for the same processing resources, 
which increases the difficulty of implementation planning. 
Platform #2 has eight 2.4GHz dual-core AMD Opteron 
processors (16 cores total). Platform #3 has two 2.6 GHz quad-
core Intel Xeon processors (8 cores total). We selected these 
platforms due to their numerous processing resources and 
differing system architectures. We wrote the planner and 
software implementations in C++ and compiled them on each 
platform individually using g++ with highest-level 
optimizations. We wrote the FPGA implementations in VHDL 
and compiled them using Xilinx ISE 10.1i. 

B. Analysis of Prediction Error 
In this section, we evaluate the planner’s prediction error by 

comparing the predicted and actual execution times of 100 
executions using random input parameters. For all of the 
examples, the planner uses prediction parameters specifying 
that the segment error threshold, sample error threshold, and 
the interval growth factor are all set to 10%. Additionally, all 
confidence calculations use a confidence level of 95%. 

Table II summarizes the results of the profiling process for 
each implementation. The results are averaged across all 
platforms and differing resource amounts, for each 
implementation. Implementation is the name of the 
implementation. Planner Time is the average time required for 
the planner to create the performance profile, which includes 
the time executing each sample. Samples is the average number 
of samples the planner collected to create the performance 
profile. Profile Points is the average number of points in the 
resulting performance profile. Mean Error is the average 
percentage of prediction error of the performance profile. 
RMSE is the average percentage of root-mean-squared error of 
the performance profile. 

Fig. 8 shows the average percent prediction error, 
represented by the bars and the root-mean-squared error, 
represented by the lines, for each implementation. The results 
for each implementation were averaged across all resource 
amounts available on a platform (for multi-threaded and 
heterogeneous implementations). For example, on platform #2, 
which has 16 cores, the results represent the average error for 
all possible resource allocations (i.e., 1 to 16 cores).  

On average, the planner collected 463 samples, which 
required only 51.1 seconds to complete, and generated a 
performance profile averaging only 11.7 points for each 
implementation. Although the planning time will increase for 
longer-running implementations, the small number of samples 
should enable planning for many commonly used functions. 
Despite the low number of profile points, the performance 
profile achieved an average prediction error of less-than 6% 
and a root-mean-squared error of less-than 9% for all but two 
of the implementations. The circular convolution 
implementation achieved a prediction error of 11.0% and 

TABLE II. SUMMARY OF PLANNER RESULTS 

Implementation Planner 
Time Samples Profile 

Points 
Mean 
Error RMSE 

2D Convolution 36.2 sec 295 11.6 5.9% 8.5% 
Circular 
Convolution 

42.4 sec 534 4.4 11.0% 11.5% 

Floyd-Warshall 31.9 sec 382 16.4 5.7% 8.2% 
Heap Sort 76.8 sec 633 14.7 1.8% 2.2% 
Inner Product 20.6 sec 392 7.6 1.6% 2.2% 
Insertion Sort 81.4 sec 582 23.0 2.5% 2.8% 
LCS 97.4 sec 578 13.7 2.1% 3.7% 
Matrix Multiply 64.2 sec 502 9.5 38.3% 41.1% 
Mean Filter 24.8 sec 350 6.6 2.0% 3.9% 
Optical Flow 42.8 sec 304 8.9 0.6% 1.0% 
Prewitt 33.9 sec 353 10.4 1.4% 2.3% 
Quick Sort 60.8 sec 654 12.7 1.3% 1.6% 
Average 51.1 sec 463 11.6 6.2% 7.4% 

 

 
Figure 8.  Average prediction error % (bars) and root-mean-squared error % 
(lines) of the performance profiles generated for each implementation. 



matrix multiply achieved an error of 38.3%. The larger 
prediction error of circular convolution and matrix multiply is 
largely due to inaccurate assumptions made by their adapters. 
Both adapters assumed the number of multiply-accumulate 
operations was a good predictor of processing time for the 
implementation (i.e., the implementation was computation-
bound). Likewise, the adapter assumed that input parameters 
requiring a similar number of multiply-accumulates would 
require approximately the same amount of execution time. On 
the evaluated systems, the implementations were partially data-
bound, with their processing time related more to the amount 
of data read and written by the implementation. Platform #3 
showed the least prediction error for both circular convolution 
and matrix multiply due to its significantly faster memory 
reducing the data-transfer bottleneck and improving the 
computation-bound assumption. Results for these examples 
could potentially be improved by integrating micro-
benchmarking results into the adapter to better estimate the 
effects of data transfer times. We leave such extensions as 
future work. 

Note that although a 38% prediction error for matrix 
multiply may seem limiting, there are instances of 
implementation planning where such an error may be 
acceptable. For example, if a compiler was attempting to 
identify the best implementation for a system with a 
microprocessor and FPGA, the FPGA implementations may 
often be orders of magnitude faster, which makes the 38% 
prediction error negligible. 

There are of course situations where a 38% error is not 
acceptable. As future work, we plan to extend to the adapter to 
natively support multiple dimensions by extending the planner 
to perform multi-dimensional regressions using multi-
dimensional intervals of interest. Note that even after directly 
supporting multiple dimensions, mapping onto a single 
dimension has unique advantages, as discussed in Section IV. 
We also plan to add a tuning process that refines the 
performance profile over time as actual executions show that 
particular results are inaccurate. 

C. Analysis of Prediction Parameters  
In this section, we analyze the effects of the prediction 

parameters on both the planner execution time and average 
prediction error of the planner. For all reported results, the 

corresponding values were first averaged across all platforms 
and different resource amounts and then normalized. The 
confidence level was kept constant at 95%. 

Fig. 9 illustrates how planner time and prediction error are 
affected by the interval growth factor prediction parameter. The 
segment error threshold and sample error threshold were kept 
constant at 10%. As shown in the figure, increasing the interval 
growth factor can significantly improve the planner execution 
time without worsening the prediction error. The factor is 
inversely related to the planner’s execution time, as 
demonstrated by the halving of the execution time as the factor 
is doubled. This makes sense as the width of the IOI, and 
correspondingly the average space between samples, increases 
linearly with the interval growth factor. Most interestingly, the 
prediction error was not significantly affected by changing the 
factor, which is largely attributed to the segment error 
threshold still being sufficient for segment generation to 
determine the appropriateness of segments, despite the 
increased spacing between samples.  

Fig. 10 illustrates how the planner time and prediction error 
are affected by the segment error threshold and sample error 
threshold. Both error thresholds were set to the same value. 
The interval growth factor was kept constant at 10%. The 
results show that the error thresholds have only a minor impact 
on the planner execution time and prediction error. Increasing 
the error thresholds from 5% to 25% linearly increased the 
(normalized) average prediction error from 0.92 to 1. An 
increase in the prediction error is expected as the thresholds for 
rejecting a segment in the segment generation step are 
increased. The relatively small change in prediction error is 
likely due to the out-of-range count still being sufficient for 
determining the best chain of segments to form the 
performance profile. The planner execution time initially 
decreases as the error threshold sweeps from 5% to 10%, and 
then increases from 10% to 25%. The initial decrease is due to 
the lessening number of samples required to meet the segment 
error threshold. The subsequent increase is due to the greater 
number of candidate segments in the profile generation step, as 
more segments meet the segment error threshold. 

 
Figure 9.  Effect of changing the interval growth factor on planner time and 
prediction error. 

 
Figure 10.  Effect of changing the segment error threshold and sample error 
threshold (both set to the same value) on planner time and prediction error. 



VII. CONCLUSIONS 
To deal with the widely varying algorithms required by 

different devices on multi-core heterogeneous systems, future 
compilers will need to identify efficient implementations from 
among numerous possibilities for any possible resource and 
combination of invocation parameters. To help solve this 
problem, which we defined as implementation planning, we 
present a performance prediction heuristic that automatically 
samples input parameters of an implementation, statistically 
analyzes the resulting execution times, and creates a 
performance profile that may then be used by a compiler to 
predict the execution time of the implementation for any 
combination of input parameters. On average, the heuristic 
achieved a prediction error of 6.2% and a root-mean-squared 
error of 7.4% for three widely varying systems, while only 
sampling 463 points per implementation, resulting in an 
average execution time of only 51 seconds. 
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