
A Scalable Performance Prediction Heuristic for
Implementation Planning on Heterogeneous Systems

John R. Wernsing, Dr. Greg Stitt
Department of Electrical & Computer Engineering

University of Florida
Gainesville, FL 32611

wernsing@ufl.edu, gstitt@ece.ufl.edu

Abstract—Despite speedups of 10x to 1000x, effective usage of
multi-core and heterogeneous systems has largely been limited to
experts due to increased application design complexity resulting
from the requirement for significantly different algorithms for
different device types and amounts. Compiler and high-level
synthesis research has attempted to address this problem but is
fundamentally limited to the algorithm specified by the high-level
code. Thus, future compilers will need to choose from numerous
implementations/algorithms for a given function when optimizing
for a multi-core heterogeneous system. This emerging problem,
which we refer to as the implementation planning problem,
requires compilers and similar tools to rapidly determine
performance of a particular implementation on different devices
for all possible input parameters. To help solve the
implementation planning problem, we introduce a heuristic that
repeatedly selects statistically significant input values, measures
actual execution time, and then statistically analyzes the results to
predict the execution time for all inputs within requested
accuracy and confidence levels. We evaluated the heuristic using
twelve examples on three different platforms with up to 16
microprocessor cores and a field-programmable gate array,
achieving an average prediction error of 6.2% and a root-mean-
squared error of 7.4%, which required an average of only 463
samples and 51 seconds to complete.

Keywords—elastic computing; heterogeneous computing;
implementation planning; performance prediction

I. INTRODUCTION
Embedded architectures have started on a clear trend

towards increased parallelism, as evidenced by the widespread
usage of multi-core microprocessors, and also increased
heterogeneity, with graphics processing units (GPUs) and field-
programmable-gate-arrays (FPGAs) being increasingly used to
achieve speedup ranging from 10x to more than 1000x
[5][11][27]. Despite significant advantages, usage of multi-core
heterogeneous systems for real-time multimedia and other
embedded domains has been limited due to increased design
complexity compared to software design.

To enable more widespread usage, numerous studies on
tools for hardware/software co-design, compilation, high-level
synthesis, and hardware/software partitioning (which for
simplicity we collectively refer to as compilation tools) have
focused on optimizing a single high-level implementation (e.g.,
a multimedia kernel) for heterogeneous systems
[3][12][15][24][28]. Although such previous work has reduced
design complexity, a fundamental problem that has limited the
effectiveness of existing compilation tools is that different

devices in heterogeneous systems often require significantly
different algorithms for efficient execution [9][24]. For
example, a software sorting implementation would likely use a
Quick Sort algorithm, whereas an FPGA implementation
would likely use a Merge Sort or Bitonic Sort algorithm. If a
compiler optimized a Quick Sort-based implementation for an
FPGA, the performance could be orders of magnitude slower
than a Bitonic Sort implementation [24]. This problem is not
limited to heterogeneous devices; multi-core devices with
different numbers of cores may also exhibit widely differing
performances for different implementations [21]. The problem
is further complicated by a common dependence on input
parameters, where no single implementation is optimal for all
inputs. For example, the optimal algorithm for sorting 10
elements on a particular device is likely different than the
optimal algorithm for sorting 1,000,000 elements.

To effectively optimize applications for multi-core
heterogeneous systems, future compilation tools will need to
rapidly select the best implementation for a given function call.
Due to potentially large numbers of function calls,
implementations, and input possibilities, it is impractical for a
compiler to evaluate all implementation possibilities at
compile-time. Therefore, compilation tools must plan ahead
what implementations to use for different resource
combinations and input parameters, which we define as the
implementation planning problem. Compilers can then use
planning results to quickly select an efficient implementation
for each function call at compile-time, which is critical for
meeting constraints in real-time multimedia systems.

The main challenge of implementation planning is dealing
with scalability issues that result from numerous combinations
of implementations, resources, and input parameters. In this
paper, we introduce a heuristic that repeatedly selects
statistically significant invocation parameters, measures actual
execution time, and then statistically analyzes results to predict
execution time for all combinations of input parameters. The
goal of the heuristic is to minimize implementation planning
execution time by executing as few input combinations as
possible, while attempting to meet specified accuracy and
confidence levels. For twelve case studies, the presented
heuristic achieved an average error of 6.2% and a root-mean-
squared error of 7.4% on three significantly different systems
that included 16 microprocessor cores and an FPGA, while
executing an average of only 463 input combinations out of a
parameter space with millions of combinations. Total planning
time averaged 51 seconds.

This research was supported by the National Science Foundation (CNS-
0914474).

The paper is formatted as follows. Section II discusses
related work. Section III describes the heuristic. Section IV
discusses an interface abstraction used by the heuristic. Section
V discusses limitations. Section VI presents experimental
results.

II. RELATED WORK
Performance prediction, estimation, and analysis are widely

studied topics with challenges similar to implementation
planning challenges. Performance prediction is often used to
evaluate the amenability of a particular architecture for certain
applications [1][13][22], to assist design space exploration [18]
and verification [26], to help identify performance bottlenecks
[19][25], among others. Although the majority of previous
work focuses on microprocessors, several previous approaches
have focused on performance prediction for FPGAs using
analytical [13] and simulation [10] methods. Although existing
performance prediction techniques are related to
implementation planning in that they must predict performance
of an application for a particular device, implementation
planning must also predict performances for different devices
and for all possible input combinations.

Numerous compiler studies have focused on automatic
parallelizing transformations [6][8][14] and adaptive
optimization techniques [4][17] to optimize applications for
different multi-core architectures. For FPGAs, high-level
synthesis tools [3][12][15][28] have focused on translating
high-level code into custom circuits. For GPUs, languages such
as CUDA [20], Brook [2], and OpenCL [16] provide constructs
for explicit parallelism that can be compiled onto numerous
cores. One main limitation of all such tools is that efficiency is
fundamentally limited by the single algorithm described in
application code. The implementation planning heuristic in this
paper is complementary, enabling rapid evaluation of multiple
candidate implementations.

Previous work on adaptive software libraries is
conceptually similar to implementation planning. FFTW
(Fastest Fourier Transform in the West) [7] is an adaptive
implementation of FFT that tunes its implementation by
measuring the execution time of alternative ways of performing
an FFT and choosing the fastest. ATLAS [29] is a software
package of linear algebra kernels that are capable of
automatically tuning themselves through a combination of
tweaking code parameters, custom code generation, and
choosing between alternative implementations. SPIRAL [23] is
a similar framework but explores algorithmic and
implementation choices to optimize DSP transforms. Such
approaches perform a limited form of implementation planning
specific to microprocessor architectures and particular
domains. The presented heuristic is a solution for the more
general problem of choosing between any implementation, for
any domain, running on any device, invoked with any input
parameters.

III. THE PLANNER HEURISTIC
Due to the large exploration space of implementation

planning, an exhaustive solution is clearly not feasible. To
solve implementation planning in a reasonable amount of time,
performance prediction must be used to estimate a large

percentage of the exploration space. Although a large amount
of previous work has focused on performance prediction, those
approaches are specific to particular architectures
[10][13][22][26] and/or applications [7][29], often requiring
significant developer effort to adapt the performance predictor
for new devices and applications. Implementation planning
largely automates this process by executing and measuring
actual execution time on different devices using different
inputs, allowing the effective prediction of performance for any
possible implementation written in any language, for any
resource combination provided by the target system, and for all
invocation parameters. For brevity, the following sections limit
discussion to a single implementation and resource
combination. Extending the heuristic for all implementations
and resource combinations is trivial, only requiring a loop
around the presented heuristic.

A. Overview
For simplicity, we initially describe the heuristic for

implementations whose execution time depends on a single-
dimensional parameter space, such as a function whose
execution time depends on the input size. Although we use
input size for the descriptions in this section, the heuristic is
capable of handling multi-dimensional parameter spaces, as
discussed in Section IV.

One naïve possibility for an implementation planning
heuristic would involve selecting random input parameters,
measuring the actual execution time (which we refer to as
sampling), and then interpolating the results for all inputs.
Although straightforward, such an approach is not adaptive and
may collect too few samples in regions of high variance and
too many samples in regions where interpolation would suffice.
This approach additionally raises questions such as how many
samples to collect. Another approach would be to select input
parameters at fixed intervals (e.g., every 100th input size) with
interpolation used in between. While this approach answers the
question of how many samples to collect, it raises other
questions such as what spacing to use between samples and
still does not adapt to the variance in the profile. Because a
performance prediction heuristic must invoke the
implementation and measure its execution time for each sample
collected, it is critical for a heuristic to minimize the total
number of samples required while not sacrificing accuracy.

To address these problems, we present an adaptive
heuristic, referred to as the planner. Given an implementation
and a set of prediction parameters that specify the input sizes,
accuracy, and confidence levels, the planner generates a two-
dimensional piecewise linear function (e.g., Fig. 1), referred to
as a performance profile, with input size on the x-axis and
estimated execution time on the y-axis. The performance
profile is stored as the ordered set of points describing each
piecewise linear segment, allowing for compilation tools to
estimate execution time for any input size by interpolating the
nearest points. The adaptive capabilities of the planner are
demonstrated in Fig. 1, where the profile uses more linear
segments for input ranges with rapid changes in execution
time.

The planner comprises of two iterative steps – segment
generation and profile generation – that focus on predicting

performance for a small region of input sizes, referred to as the
interval of interest (IOI), which gradually shifts across the
entire input parameter space starting from the smallest sizes in
order to create the resulting performance profile.

The main purpose of segment generation is to identify
groups of samples that can be approximated by a segment of a
linear regression. When high accuracy is requested, such
segments may represent only several, closely located samples.
When accuracy requirements are lowered, segments may
represent distant samples. Segment generation works by
sampling an input size within the IOI, measuring the execution
time of the implementation at that input size, and then
statistically analyzing intervals of samples to find linear trends
that meet specified accuracy requirements.

Profile generation selects the best subset of these segments
to create the performance profile. Profile generation starts at a
segment with a point at the lowest input size and proceeds to
connect segments that progress the performance profile
towards the largest input size, all the while attempting to
minimize the number of segments and the total number of
samples with large error. As a result, the performance profile
“grows” from the smallest to the largest input size as more
samples are added and sufficiently linear segments are found.
After expanding the performance profile, profile generation
adjusts the IOI and the planner repeats segment generation. The
planner completes once profile generation finds a set of
segments that span the entire specified input range.

B. Segment Generation
Segment generation is responsible for sampling the

relationship between input size and execution time, and then
inferring the most-likely linear trends, represented as segments,
from those samples. For each iteration of the planner, segment
generation starts by randomly selecting an input size within the
current IOI, and then measuring the execution time of the
implementation at that input size to form a new sample data
point. Details regarding the determination of the IOI are
discussed in the profile generation section. Although segment
generation could potentially use any form of time
measurement, we currently use time-stamp counters on the
processor to ensure high-precision. Segment generation then
generates new segments, and corrects previously generated

segments, by considering the new sample collectively with all
previous iterations.

Segment generation infers the linear trends from the
samples by performing a linear regression analysis. Linear
regression analysis is a standard statistical tool that calculates
the line that minimizes the mean-squared distance between the
line and the samples. Segment generation then shortens the line
to a segment by bounding its input size to have the same range
as the samples used for the analysis. In addition to the segment,
the regression analysis also allows determination of the
confidence in the linear trend by calculating the corresponding
confidence interval. A confidence interval is another standard
statistical tool that specifies how accurately the segment can
specify the execution time at any particular input size. For
example, the confidence interval might specify that at an input
size of 100, the generated segment is 95% confident that the
average execution time is within 95-105ms. The results of the
linear regression analyses, and the samples themselves, are all
stored within a data structure referred to as the sample matrix.

Segment generation performs a linear regression analysis
on all possible intervals of sequential samples, and stores the
corresponding results as cells within the sample matrix data
structure. The sample matrix is an upper-right triangular matrix
with the number of rows and columns equal to the number of
collected samples that have unique input sizes (segment
generation combines samples with identical input sizes). Each
cell within the sample matrix stores the output of a single linear
regression analysis (in addition to other information)
performed on a subset of the samples collected. The
coordinates of each cell specifies the interval of samples used
for that analysis, with the row index equaling the index of the
starting sample and the column index equaling the index of the
ending sample. As sample generation indexes all of the
samples in ascending input size order, an interval of samples
corresponds to all of the samples collected within a range of
input sizes. For example, the linear regression analysis of the
samples indexed between 10 and 20 would be found in the
matrix in the cell located at row 10, column 20. If the input size
of the sample at index 10 was 35 and the input size of the
sample at index 20 was 110, the linear regression analysis
would then similarly correspond to any linear trend inferred for
the input size range of 35 through 110. As a linear regression
analysis requires only the accumulation of data-point statistics
for its calculations, sample generation significantly reduces the
processing time required to populate the sample matrix by
using a dynamic programming algorithm that calculates the
linear regression of larger segments from the intermediate
results saved from smaller sub-segments. As a result, sample
generation can perform the linear regression analysis on one
interval of samples by partitioning the interval into two sub-
intervals and simply accumulating the intermediate results
stored in the corresponding cells of the two sub-intervals.
Lastly, the cells located along the matrix’s diagonal represent
intervals of only a single sample (or multiple samples that all
have the same input size). Segment generation populates the
diagonal cells with the statistics of the collected samples
directly, which in turn form the base cases for generating
segments of larger intervals using the dynamic programming
algorithm.

Figure 1. A comparison of actual implementation performance and the
performance profile output of the planner (shifted up for visualization), which
determines maximum-sized regions that can be linearly approximated.

When populating each cell of the sample matrix, segment
generation performs several checks to gauge the
appropriateness of the segment approximation. The first check
is to verify that the current interval contains at least three
samples so that the linear regression result is non-trivial. The
second check is to see if the segment approximation is
sufficiently accurate by excluding segments with too wide of a
confidence interval. The variance and spread of the samples
determines the width of the confidence interval. Likewise, the
wider the confidence interval, the less accurately the segment
predicts the execution time. A prediction parameter, referred to
as the segment error threshold, specifies the maximum percent
width (i.e., the width of the confidence interval relative to its
execution time) allowed by a segment’s confidence interval. If
any of these checks fail, segment generation flags the
corresponding cell as not containing a valid segment. If the
segment does pass all the checks, segment generation
calculates one last metric, referred to as the sample out-of-
range count, to use for the profile generation step. Sample
generation calculates the sample out-of-range count by
counting the number of samples within the interval that have a
“large” percent error when compared to the value estimated by
the segment. A prediction parameter, referred to as the sample
error threshold, determines the threshold of what constitutes a
“large” percent error. The sample out-of-range count provides
a fair comparison between alternate segments in the sample
matrix as it lessens the impact of any anomalous samples.
Profile generation will then attempt to minimize this count
when finding the best set of connected segments to use to form
the resulting performance profile.

As illustrated in Fig. 2 (and described in pseudo-code in
Fig. 3), each iteration of sample generation requires collecting
a new sample, finding the sorted index of the new sample,
inserting a new row and column into the sample matrix
(assuming the sample has a unique input size), and then
reprocessing the cells whose results may change as a result of
the new sample. Any cells located at a column less than the
newly inserted column or with a row greater than the newly
inserted row correspond to intervals of samples located entirely
before or after the newly inserted sample, and therefore do not
need regeneration. The remaining cells are located in a
rectangular region bordered by the newly inserted row and
column inclusively. Segment generation populates the newly
created diagonal cell with the statistics of the new sample and
then processes the remaining cells in decreasing row and
increasing column order. Processing the cells in this order
allows for the reuse of intermediate calculations for the linear
regression analysis, as discussed previously.

C. Profile Generation
Profile generation determines the longest set of segments

from the sample matrix that can be connected together to form
the performance profile that minimizes the total sample out-of-
range count. Profile generation uses a dynamic programming
algorithm that “grows” the performance profile from the
smallest input size towards the largest. The algorithm operates
by traversing the sample matrix in increasing row and
increasing column order. As the algorithm reaches each cell, it
determines and saves in the cell the best candidate segment to
precede the current segment, such that the resulting connected

set of segments, referred to as a chain, has the lowest sample
out-of-range count (or the least number of total segments in the
event of a tie). A candidate segment is any segment which
starts prior and ends during the interval of the current segment
(i.e., the segments overlap and the endpoint is progressing
forward). After the algorithm completes, the best chain of
segments is the one that ends at the largest input size, with the
lowest sample out-of-range count, and with the fewest number
of segments (evaluated in that order). The endpoint of the best
chain of segments corresponds to how much of the
performance profile the planner has sufficiently determined so
far. The planner is complete when the best chain of segments
extends all the way to the last valid input size. Upon
completion, the planner returns the performance profile as the
intersection points between the segments as well as the
endpoints for the first and last valid input size values.

Profile generation is also responsible for locating the IOI to
encourage the picking of samples that will promote the growth
of the best chain of segments in the subsequent iteration. In the

Figure 2. A single iteration of segment generation.

Figure 3. Pseudo-code of the segment generation algorithm.

first few iterations when the sample matrix contains no
segments, the planner locates the IOI at the lower bound of the
input size to pick samples that will help establish the first
segments. In later iterations, profile generation centers the IOI
at the input size of the last endpoint of the best chain of
segments. Centering the IOI at the last endpoint extends the
interval beyond the end of the chain, promoting the generation
of new segments that will further lengthen the chain.
Additionally, the interval extends prior to the last endpoint to
allow for the reinforcement or correction of segments recently
generated. The width of the IOI is adaptive and set
proportionally to the product of execution time and the inverse
of the slope of the last endpoint. A prediction parameter,
referred to as the interval growth factor, specifies the
proportionality factor.

As illustrated in Fig. 4 and Fig. 5, each iteration of profile
generation requires the reconsideration of some of the cells in
the matrix as segments in the best possible chain. Any cell with
a column less than the index of the newly inserted sample (for
the current iteration), would not have any of its predecessors
affected by the sample insertion, and therefore would still be
valid. However, any cells with a column greater-than or equal
to the newly inserted sample could either itself have changed
and/or might have a different selection of predecessors,
possibly invalidating any previous predecessor decisions.
Profile generation loops through the cells that require
reconsideration in increasing row and increasing column order,
so that all of the possible predecessors are already valid. To
reduce the time complexity, the algorithm keeps track of the
best predecessor segment as it traverses the cells (omitted from
the figures for simplicity), as opposed to searching for the best
predecessor candidate for each cell individually. Lastly, the
algorithm searches the sample matrix and returns the best chain
(omitted for brevity). Implementation assessment is complete if
the chain extends to the last valid work metric value, or
alternatively uses the chain to determine the next iteration’s
IOI.

IV. THE ADAPTER INTERFACE ABSTRACTION
Abstraction is required to keep the planner independent of

the implementation. For example, each implementation expects
specific invocation syntax and semantics to execute. Software
implementations require valid initializations of input
parameters, some of which may require the further allocation
and population of data arrays (e.g., invoking a sorting
subroutine requires the population of an input array with data
to sort). Similarly, heterogeneous implementations may require
device-specific code to initialize resources and initiate
execution. Since the goal of the planner is to predict
performance for implementations running on any resource in a
multi-core heterogeneous system, keeping these details out of
the planner is critical for wide applicability.

To achieve these goals, the planner uses an
implementation-specialized abstraction layer between the
planner and the implementation, which we refer to as the
adapter. The main responsibility of the adapter is to adapt (i.e.,
map) the abstract interface of the planner to the specific
interface required by the implementation. The planner defines
an abstract quantity called the work metric that it passes into

the adapter during sample execution. The adapter internally
maps the work metric to input parameters for the
implementation, executes the implementation with those
parameters, and then returns the implementation’s execution
time to the planner. The adapter additionally performs any
necessary initialization and tear-down required by the
implementation, which is excluded from the returned execution
time. The previous discussion of the planner assumed that the
adapter used the input size as the work metric.

Note that although it may be possible in some situations to
automatically create an appropriate adapter for a given
implementation, we currently assume that the adapter is
designer specified. One envisioned usage case is that designers
of a specialized function library with multiple implementations
of each function would also provide an appropriate adapter for
each implementation. Automatic generation of adapters is left
as future work.

Automatically adapting the work metric to an
implementation’s input parameters is essential for the effective
operation of the planner. As far as the planner is considered,
the sampled collection of work metric and execution time pairs
is the only information the planner can collect from an
implementation. As the number of samples increases, the
underlying trend of how the work metric affects execution time
is central to the statistical analyses steps. As a result, making

Figure 4. A single iteration of profile generation.

Figure 5. Pseudo-code of the profile generation algorithm.

these trends identifiable should be a design goal of the
adapter’s designer.

In many cases the adapter can directly map work metrics to
input parameters. For example, Fig. 6 demonstrates an adapter
for an insertion-sort implementation that maps the work metric
to the size of the input array to sort. Internally, the adapter
allocates and populates an array with random values before
actually invoking the insertion-sort subroutine. The adapter
measures the execution time of the insertion-sort subroutine,
which is then returned to the planner. For this sorting example,
the points on a work metric versus execution time graph will
show an underlying trend of quadratic execution time growth
with increasing work metric (as insertion-sort is an O(n2)
algorithm where n is the number of items to sort).

Similar techniques work for implementations whose
execution time is dependent on input values as opposed to size.
For example, an adapter for a Fibonacci function
implementation could map the work metric to the particular
input value. In many cases, a particular implementation’s
execution time may depend on both input size and input values.
For example, a sorting implementation may perform differently
depending on whether the data is mostly sorted or randomly
distributed. To deal with these situations, multiple adapters
could potentially be used to create multiple performance
profiles, which a user could select based on characteristics of
their targeted application.

Creating an adapter for multiple-parameter
implementations requires a bit of ingenuity on behalf of the
adapter designer, but can typically be done by taking advantage
of knowledge of the underlying algorithm. As an example,
consider discrete circular convolution that convolves two input
arrays. Unlike the sorting example, whose input size mapped
easily to the work metric, convolution has two input parameters
whose sizes both significantly affect the execution time of the
implementation. The adapter in this case can be written by
taking advantage of the asymptotic performance analysis of the
circular convolution algorithm. For example, if the designer
knows that the asymptotic performance of the implementation
is Θ(|x|*|h|), that is the execution time is proportional to the
product of the sizes of the two operands, then a simplification
can be made by noting that the proportionality factor in the

asymptotic analysis should be approximately constant for all
lengths of x and h. In other words, the execution time of
convolving a 20-element array with a 30-element array is likely
to be similar to convolving a 10-element array with a 60-
element array, due to the product of both being 600. As a
result, the adapter can be written as shown in Fig. 7, which
maps the work metric to the size of one of the input operands
and fixes the size of the second to a constant value (16 in this
example). The resulting performance profile can then be used
to predict the performances of any invocation by simply
finding the product of the sizes of the two operands and
dividing that product by 16. Similar methods can be applied to
create adapters for many other multiple-parameter
implementations.

Note that as opposed to being “duct tape” that makes the
planner support multiple dimensions, the adapter provides
several important advantages. First, by mapping to a single
dimension, the adapter enables the planner to complete quickly,
as shown by the results. In addition, the adapter also reduces
the size of the resulting performance profile, which potentially
enables implementation selection at runtime. For example, a
runtime optimization framework could implement a function
call by first determining available resources and the current
input parameter values, and then using the performance
profiles to quickly identify the most efficient implementation
for the current situation. Lastly, the simplicity of a single
dimensional performance profile allows for efficient post-
processing, such as overlaying multiple performance profiles
and storing only the lowest envelope (i.e., fastest)
implementation. For future work, we plan to extend the adapter
to natively support multiple dimensions by extending the
planner to perform multi-dimensional regressions using multi-
dimensional intervals of interest. However, even with support
for multiple dimensions, there are likely many situations where
mapping to a single dimension will greatly reduce planning
time, while still meeting accuracy requirements.

In addition to mapping the work metric to input parameters,
the adapter also provides an inverse mapping to map from

Figure 6. Pseudo-code of an insertion-sort adapter.

Figure 7. Pseudo-code of a circular convolution adapter.

input parameters to a corresponding work metric. As the
planner deals only with the work metric abstraction, the
performance profile output is defined in terms of the work
metric, essentially predicting the execution time for a given
work metric. As a result, using the performance profile to
predict the execution time of a particular invocation requires
mapping that invocation’s parameters to its corresponding
work metric. In most cases, this mapping from the parameters
to the work metric is simpler than the reverse. In the insertion-
sort example, the inverse mapping would simply use the
number of elements of that sort as the work metric (as the
adapter used the work metric as the number of elements to
sort). In the circular convolution example, the inverse mapping
would be to calculate the work metric by multiplying the
lengths of the two input operands and dividing by 16.

V. LIMITATIONS
Most of the limitations of the planner arise from some

implementations not having suitable adapters. First, an
implementation should have predictable and well-behaved
performance characteristics to allow for the creation of an
adapter. For implementations that are not deterministic (e.g.,
random execution times) or do not have a good mapping for
the work metric (e.g., multi-dimensional parameter spaces that
can’t be accurately approximated with a single dimension), the
planner will likely have reduced prediction accuracy. Second,
caching, data alignment, and other architecture-specific effects
may add nondeterministic effects that will increase the error of
the performance profile. However, as shown by the results, in
many cases these effects are minimal and have little effect on
the predicted execution times. Lastly, adapters for multi-
dimensional implementations typically neglect corner cases.
For example, the asymptotic analysis of the circular
convolution algorithm, described in Section IV, assumed a
constant proportionality factor for all input parameter
combinations. However, this assumption is likely incorrect for
corner cases such as when one of the input vectors is a single
element (e.g., convolving 1,000,000 elements with 1 element
would likely have a significantly different execution time than
convolving two 1,000 element vectors, despite having the same
product). This limitation could potentially be improved with
more complicated adapters or by extending the work metric to
directly handle multiple dimensions, which we plan as future
work.

VI. EXPERIMENTS

A. Experimental Setup
Table I describes the implementations that we created to

evaluate the planner. We selected these implementations in
order to represent common functions from different
programming and application domains. Implementation
describes the function/algorithm used by the implementation.
Work Metric Range defines the range of work metrics for
which the planner predicted performance. Note that in order to
allow the planner to complete in a reasonable amount of time,
we chose all work metric ranges such that the worst-case
sample execution (usually the largest work metric) took less-
than a few seconds to complete. Although these limits exclude
portions of the input parameter space, the evaluated ranges are
representative of common usage. Adapter Details explains the

methodology the adapter uses to map work metrics to input
parameters. The table groups the implementations into three
different types. The Single-threaded Implementations group
lists the implementations using sequential algorithms. The
Multi-threaded Implementations group lists the
implementations that can partition work across one or more
threads. Lastly, the FPGA Implementations group lists the
implementations that perform their processing on an FPGA
with basic support from a microprocessor to transfer data. The
single-threaded and FPGA implementations can execute on
only one specific set of resources and therefore require only a
single performance profile for a system. The multi-threaded
implementations, however, have different execution times
based on the number of available CPUs and therefore require a
different performance profile for different CPU counts.

We evaluated the planner using twelve examples. Insertion
Sort, Heap Sort, and Quick Sort are in-place sorting algorithms

TABLE I. IMPLEMENTATION DETAILS

Implementation Work Metric
Range Adapter Details

Single-threaded Implementations
Heap Sort [1, 4000000] Work metric is size of sort.

Random data populates input
array.

Insertion Sort [1, 65000] Work metric is size of sort.
Random data populates input
array.

Longest Common
Subsequence

[1, 1000000] Work metric is length of one
string, other string is fixed to
length 256.

Quick Sort [1, 10000000] Work metric is size of sort.
Random data populates input
array.

Multi-threaded Implementations
2D Convolution [1, 10000] Work metric is number of rows

of image, number of columns is
fixed to 128. Convolving
window is fixed to 8x8

Circular
Convolution

[1, 2500000] Work metric is length of one of
the operands, other operand is
fixed to length 256.

Floyd-Warshall [1, 600] Work metric is number of
vertices. All edges have random
weights.

Inner Product [1, 10000000] Work metric is length of both
input operands.

Matrix Multiply [1, 2500000] Work metric is one dimension’s
length, other two dimensions
are fixed to length 16.

Mean Filter [1, 25000] Work metric is number of rows
of image, number of columns is
fixed to 256.

Optical Flow [1, 10000] Work metric is number of rows
of image, number of columns is
fixed to 128. Template image is
fixed to 8x8.

Prewitt [1, 25000] Work metric is number of rows
of image, number of columns is
fixed to 256.

FPGA Implementations
Circular
Convolution

[1, 1000000] Work metric is length of one of
the operands, other operand is
fixed to length 2048.

Inner Product [1, 1048576] Work metric is length of both
input operands.

Matrix Multiply [1, 4096] Work metric is one dimension’s
length, other two dimensions
are fixed to length 256.

with different asymptotic complexities. Longest Common
Subsequence (LCS) finds the longest, not necessarily
contiguous, series of common characters between two strings
using a dynamic programming-based Θ(|a|*|b|) algorithm,
where |a| and |b| are the lengths of the two input strings. 2D
Convolution, Mean Filter, Optical Flow, and Prewitt apply a
sliding window to an image using an Θ(x*y) algorithm, where
x and y are the dimensions of the image. Circular Convolution
convolves two vectors using an Θ(|x|*|h|) algorithm, where |x|
and |h| are the sizes of the two input operands. Floyd-Warshall
is a dynamic programming-based graph algorithm that finds the
shortest path between all pairs of vertices in a directed
weighted graph. Inner Product calculates the inner-product on
two identically sized vectors using an Θ(n) algorithm, when n
is the length of each vector. Matrix Multiply multiplies two, not
necessarily square, matrices using an Θ(m*n*p) algorithm,
where one operand is of dimension m x n and the second
operand is of dimensions n x p.

We evaluate the planner on three platforms. Platform #1
has a hyper-threading 3.2GHz Intel Xeon processor with an
attached Nallatech H101-PCIXM FPGA accelerator board,
which has a Xilinx Virtex IV LX100 FPGA. Hyper-threading
makes platform #1 appear as though it has two cores, but the
cores must partially contend for the same processing resources,
which increases the difficulty of implementation planning.
Platform #2 has eight 2.4GHz dual-core AMD Opteron
processors (16 cores total). Platform #3 has two 2.6 GHz quad-
core Intel Xeon processors (8 cores total). We selected these
platforms due to their numerous processing resources and
differing system architectures. We wrote the planner and
software implementations in C++ and compiled them on each
platform individually using g++ with highest-level
optimizations. We wrote the FPGA implementations in VHDL
and compiled them using Xilinx ISE 10.1i.

B. Analysis of Prediction Error
In this section, we evaluate the planner’s prediction error by

comparing the predicted and actual execution times of 100
executions using random input parameters. For all of the
examples, the planner uses prediction parameters specifying
that the segment error threshold, sample error threshold, and
the interval growth factor are all set to 10%. Additionally, all
confidence calculations use a confidence level of 95%.

Table II summarizes the results of the profiling process for
each implementation. The results are averaged across all
platforms and differing resource amounts, for each
implementation. Implementation is the name of the
implementation. Planner Time is the average time required for
the planner to create the performance profile, which includes
the time executing each sample. Samples is the average number
of samples the planner collected to create the performance
profile. Profile Points is the average number of points in the
resulting performance profile. Mean Error is the average
percentage of prediction error of the performance profile.
RMSE is the average percentage of root-mean-squared error of
the performance profile.

Fig. 8 shows the average percent prediction error,
represented by the bars and the root-mean-squared error,
represented by the lines, for each implementation. The results
for each implementation were averaged across all resource
amounts available on a platform (for multi-threaded and
heterogeneous implementations). For example, on platform #2,
which has 16 cores, the results represent the average error for
all possible resource allocations (i.e., 1 to 16 cores).

On average, the planner collected 463 samples, which
required only 51.1 seconds to complete, and generated a
performance profile averaging only 11.7 points for each
implementation. Although the planning time will increase for
longer-running implementations, the small number of samples
should enable planning for many commonly used functions.
Despite the low number of profile points, the performance
profile achieved an average prediction error of less-than 6%
and a root-mean-squared error of less-than 9% for all but two
of the implementations. The circular convolution
implementation achieved a prediction error of 11.0% and

TABLE II. SUMMARY OF PLANNER RESULTS

Implementation Planner
Time Samples Profile

Points
Mean
Error RMSE

2D Convolution 36.2 sec 295 11.6 5.9% 8.5%
Circular
Convolution

42.4 sec 534 4.4 11.0% 11.5%

Floyd-Warshall 31.9 sec 382 16.4 5.7% 8.2%
Heap Sort 76.8 sec 633 14.7 1.8% 2.2%
Inner Product 20.6 sec 392 7.6 1.6% 2.2%
Insertion Sort 81.4 sec 582 23.0 2.5% 2.8%
LCS 97.4 sec 578 13.7 2.1% 3.7%
Matrix Multiply 64.2 sec 502 9.5 38.3% 41.1%
Mean Filter 24.8 sec 350 6.6 2.0% 3.9%
Optical Flow 42.8 sec 304 8.9 0.6% 1.0%
Prewitt 33.9 sec 353 10.4 1.4% 2.3%
Quick Sort 60.8 sec 654 12.7 1.3% 1.6%
Average 51.1 sec 463 11.6 6.2% 7.4%

Figure 8. Average prediction error % (bars) and root-mean-squared error %
(lines) of the performance profiles generated for each implementation.

matrix multiply achieved an error of 38.3%. The larger
prediction error of circular convolution and matrix multiply is
largely due to inaccurate assumptions made by their adapters.
Both adapters assumed the number of multiply-accumulate
operations was a good predictor of processing time for the
implementation (i.e., the implementation was computation-
bound). Likewise, the adapter assumed that input parameters
requiring a similar number of multiply-accumulates would
require approximately the same amount of execution time. On
the evaluated systems, the implementations were partially data-
bound, with their processing time related more to the amount
of data read and written by the implementation. Platform #3
showed the least prediction error for both circular convolution
and matrix multiply due to its significantly faster memory
reducing the data-transfer bottleneck and improving the
computation-bound assumption. Results for these examples
could potentially be improved by integrating micro-
benchmarking results into the adapter to better estimate the
effects of data transfer times. We leave such extensions as
future work.

Note that although a 38% prediction error for matrix
multiply may seem limiting, there are instances of
implementation planning where such an error may be
acceptable. For example, if a compiler was attempting to
identify the best implementation for a system with a
microprocessor and FPGA, the FPGA implementations may
often be orders of magnitude faster, which makes the 38%
prediction error negligible.

There are of course situations where a 38% error is not
acceptable. As future work, we plan to extend to the adapter to
natively support multiple dimensions by extending the planner
to perform multi-dimensional regressions using multi-
dimensional intervals of interest. Note that even after directly
supporting multiple dimensions, mapping onto a single
dimension has unique advantages, as discussed in Section IV.
We also plan to add a tuning process that refines the
performance profile over time as actual executions show that
particular results are inaccurate.

C. Analysis of Prediction Parameters
In this section, we analyze the effects of the prediction

parameters on both the planner execution time and average
prediction error of the planner. For all reported results, the

corresponding values were first averaged across all platforms
and different resource amounts and then normalized. The
confidence level was kept constant at 95%.

Fig. 9 illustrates how planner time and prediction error are
affected by the interval growth factor prediction parameter. The
segment error threshold and sample error threshold were kept
constant at 10%. As shown in the figure, increasing the interval
growth factor can significantly improve the planner execution
time without worsening the prediction error. The factor is
inversely related to the planner’s execution time, as
demonstrated by the halving of the execution time as the factor
is doubled. This makes sense as the width of the IOI, and
correspondingly the average space between samples, increases
linearly with the interval growth factor. Most interestingly, the
prediction error was not significantly affected by changing the
factor, which is largely attributed to the segment error
threshold still being sufficient for segment generation to
determine the appropriateness of segments, despite the
increased spacing between samples.

Fig. 10 illustrates how the planner time and prediction error
are affected by the segment error threshold and sample error
threshold. Both error thresholds were set to the same value.
The interval growth factor was kept constant at 10%. The
results show that the error thresholds have only a minor impact
on the planner execution time and prediction error. Increasing
the error thresholds from 5% to 25% linearly increased the
(normalized) average prediction error from 0.92 to 1. An
increase in the prediction error is expected as the thresholds for
rejecting a segment in the segment generation step are
increased. The relatively small change in prediction error is
likely due to the out-of-range count still being sufficient for
determining the best chain of segments to form the
performance profile. The planner execution time initially
decreases as the error threshold sweeps from 5% to 10%, and
then increases from 10% to 25%. The initial decrease is due to
the lessening number of samples required to meet the segment
error threshold. The subsequent increase is due to the greater
number of candidate segments in the profile generation step, as
more segments meet the segment error threshold.

Figure 9. Effect of changing the interval growth factor on planner time and
prediction error.

Figure 10. Effect of changing the segment error threshold and sample error
threshold (both set to the same value) on planner time and prediction error.

VII. CONCLUSIONS
To deal with the widely varying algorithms required by

different devices on multi-core heterogeneous systems, future
compilers will need to identify efficient implementations from
among numerous possibilities for any possible resource and
combination of invocation parameters. To help solve this
problem, which we defined as implementation planning, we
present a performance prediction heuristic that automatically
samples input parameters of an implementation, statistically
analyzes the resulting execution times, and creates a
performance profile that may then be used by a compiler to
predict the execution time of the implementation for any
combination of input parameters. On average, the heuristic
achieved a prediction error of 6.2% and a root-mean-squared
error of 7.4% for three widely varying systems, while only
sampling 463 points per implementation, resulting in an
average execution time of only 51 seconds.

REFERENCES
[1] T. Austin, E. Larson, and D. Ernst, “Simplescalar: An infrastructure for

computer system modeling,” Computer, vol. 35, no. 2, pp. 59–67, 2002.
[2] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston, and

P. Hanrahan, “Brook for gpus: stream computing on graphics hardware,”
in SIGGRAPH ’04: ACM SIGGRAPH 2004 Papers, (New York, NY,
USA), pp. 777–786, ACM, 2004.

[3] B. Buyukkurt, Z. Guo, and W. Najjar, “Impact of loop unrolling on
throughput, area and clock frequency in ROCCC: C to VHDL compiler
for FPGAs,” in ARC ’06: Proceedings of the International Workshop On
Applied Reconfigurable Computing (ARC 2006), 2006.

[4] K. D. Cooper, D. Subramanian, and L. Torczon, “Adaptive optimizing
compilers for the 21st century,” J. Supercomput., vol. 23, no. 1, pp. 7–
22, 2002.

[5] A. DeHon, “The density advantage of configurable computing,”
Computer, vol. 33, no. 4, pp. 41–49, 2000.

[6] A. Eichenberger, K. O’Brien, P. Wu, T. Chen, P. Oden, D. Prener,
J. Shepherd, B. So, Z. Sura, A. Wang, T. Zhang, P. Zhao, and
M. Gschwind, “Optimizing compiler for the cell processor,” in Parallel
Architectures and Compilation Techniques, 2005. PACT 2005. 14th
International Conference on, pp. 161–172, Sept. 2005.

[7] M. Frigo and S. G. Johnson, “The design and implementation of
FFTW3,” Proceedings of the IEEE, vol. 93, no. 2, pp. 216–231, 2005.
Special issue on “Program Generation, Optimization, and Platform
Adaptation”.

[8] M. Girkar and C. D. Polychronopoulos, “Extracting task-level
parallelism,” ACM Trans. Program. Lang. Syst., vol. 17, no. 4, pp. 600–
634, 1995.

[9] B. Grattan, G. Stitt, and F. Vahid, “Codesign-extended applications,” in
CODES ’02: Proceedings of the tenth international symposium on
Hardware/software codesign, (New York, NY, USA), pp. 1–6, ACM,
May 2002.

[10] E. Grobelny, C. Reardon, A. Jacobs, and A. George, "Simulation
Framework for Performance Prediction in the Engineering of RC
Systems and Applications," in ERSA ’07: Proc. of 2007 International
Conference on Engineering of Reconfigurable Systems and Algorithms,
June 25-28, 2007.

[11] Z. Guo, W. Najjar, F. Vahid, and K. Vissers, “A quantitative analysis of
the speedup factors of FPGAs over processors,” in FPGA ’04:
Proceedings of the 2004 ACM/SIGDA 12th international symposium on
Field programmable gate arrays, (New York, NY, USA), pp. 162–170,
ACM, 2004.

[12] S. Gupta, N. Dutt, R. Gupta, and A. Nicolau, “Spark: a high-level
synthesis framework for applying parallelizing compiler
transformations,” in VLSI Design, 2003. Proceedings. 16th International
Conference on, pp. 461–466, Jan. 2003.

[13] B. Holland, K. Nagarajan, and A. D. George, “Rat: Rc amenability test
for rapid performance prediction,” ACM Trans. Reconfigurable Technol.
Syst., vol. 1, no. 4, pp. 1–31, 2009.

[14] C. S. Ierotheou, S. P. Johnson, P. F. Leggett, M. Cross, E. W. Evans,
H. Jin, M. Frumkin, and J. Yan, “The semi-automatic parallelisation of
scientific application codes using a computer aided parallelisation
toolkit,” Sci. Program., vol. 9, no. 2,3, pp. 163–173, 2001.

[15] Impulse Accleratated Technologies. 2010.
http://www.impulseaccelerated.com/.

[16] Khronos Group. OpenCL 1.0. 2010. http://www.khronos.org/opencl/.
[17] P. M. W. Knijnenburg, T. Kisuki, and M. F. P. O’Boyle, Iterative

compilation, pp. 171–187. New York, NY, USA: Springer-Verlag New
York, Inc., 2002.

[18] G. Madl, N. Dutt, and S. Abdelwahed, “Performance estimation of
distributed real-time embedded systems by discrete event simulations,”
in EMSOFT ’07: Proceedings of the 7th ACM & IEEE international
conference on Embedded software, (New York, NY, USA), pp. 183–
192, ACM, 2007.

[19] G. R. Nudd, D. J. Kerbyson, E. Papaefstathiou, S. C. Perry, J. S. Harper,
and D. V. Wilcox, “Pace–a toolset for the performance prediction of
parallel and distributed systems,” Int. J. High Perform. Comput. Appl.,
vol. 14, no. 3, pp. 228–251, 2000.

[20] Nvidia. CUDA Programming Guide. 2008.
http://www.nvidia.com/object/cuda_develop.html.

[21] F. Petrini, G. Fossum, J. Fernandez, A. Varbanescu, N. Kistler, and
M. Perrone, “Multi-core surprises: Lessons learned from optimizing
sweep3d on the cell broadband engine,” in Parallel and Distributed
Processing Symposium, 2007. IPDPS 2007. IEEE International, pp. 1–
10, March 2007.

[22] W. Pfeiffer and N. J. Wright, “Modeling and predicting application
performance on parallel computers using hpc challenge benchmarks,” in
22nd IEEE International Parallel and Distributed Processing
Symposium, Hyatt Regency Hotel, Miami, FL, 2008, 2008.

[23] M. Puschel, J. Moura, J. Johnson, D. Padua, M. Veloso, B. Singer,
J. Xiong, F. Franchetti, A. Gacic, Y. Voronenko, K. Chen, R. Johnson,
and N. Rizzolo, “Spiral: Code generation for dsp transforms,”
Proceedings of the IEEE, vol. 93, pp. 232–275, Feb. 2005.

[24] S. Sirowy, G. Stitt, and F. Vahid, “C is for circuits: capturing FPGA
circuits as sequential code for portability,” in FPGA ’08: Proceedings of
the 16th international ACM/SIGDA symposium on Field programmable
gate arrays, (New York, NY, USA), pp. 117–126, ACM, February
2008.

[25] A. Snavely, L. Carrington, N. Wolter, J. Labarta, R. Badia, and
A. Purkayastha, “A framework for performance modeling and
prediction,” in Supercomputing, ACM/IEEE 2002 Conference, pp. 21–
21, Nov. 2002.

[26] Y. tsun Steven Li, S. Malik, and A. Wolfe, “Performance estimation of
embedded software with instruction cache modeling,” in ACM
Transactions on Design Automation of Electronic Systems, pp. 380–387,
1995.

[27] P. Trancoso and M. Charalambous, “Exploring graphics processor
performance for general purpose applications,” in Digital System
Design, 2005. Proceedings. 8th Euromicro Conference on, pp. 306–313,
Aug.-3 Sept. 2005.

[28] F. Vahid, G. Stitt, and R. Lysecky, “Warp processing: Dynamic
translation of binaries to FPGA circuits,” Computer, vol. 41, pp. 40–46,
July 2008.

[29] R. C. Whaley, A. Petitet, and J. J. Dongarra, “Automated empirical
optimization of software and the ATLAS project,” Parallel Computing,
vol. 27, no. 1–2, pp. 3–35, 2001.

http://www.impulseaccelerated.com/�
http://www.khronos.org/opencl/�
http://www.nvidia.com/object/cuda_develop.html�

	I. Introduction
	II. Related Work
	III. The Planner Heuristic
	A. Overview
	B. Segment Generation
	C. Profile Generation

	IV. The Adapter Interface Abstraction
	V. Limitations
	VI. Experiments
	A. Experimental Setup
	B. Analysis of Prediction Error
	C. Analysis of Prediction Parameters

	VII. Conclusions
	References

