
EEL 4712 Name:
Midterm 2 – Spring 2019
VERSION 1
 UFID:

Sign here to give permission for your test to be returned in class, where others might see your score:

__

COVER SHEET:

Problem#: Points
1 (12 points)
2 (6 points)
3 (6 points)
4 (25 points)
5 (25 points)
6 (26 points)

IMPORTANT:
• Please be neat and write (or draw) carefully. If we cannot read it with a
reasonable effort, it is assumed wrong.

• As always, the best answer gets the most points.

Total:

Regrade Info:

1. (12 points) Assume you are given an FPGA that consists of the following CLB structures with one 3-

input, 2-output LUT and optional registers on each output.

Map the following circuit onto these CLBs by drawing boxes to represent
CLBs. Do not try to optimize or modify the circuit in any way.

2. (6 points) Name three primary FPGA resources, excluding interconnect.

3. (6 points) You are designing a circuit that repeatedly outputs a 1-cycle pulse at 6 µs, 11 µs, and 15
µs. Assuming a 50 MHz clock, at what count values should each pulse occur?

3-in, 2-out

LUT

FF

2x1

FF

2x1

4. (25 points) Fill in the code to implement the following Moore finite state machine (FSM) using the
2-process FSM model. Assume that INIT is the initial state. Transitions without conditions are
always taken. Use the next page if extra room is needed.

library ieee;

use ieee.std_logic_1164.all;

entity fsm is

 port (

 clk, rst : in std_logic;

 go, stall : in std_logic;

 output : out std_logic_vector(3 downto 0)

);

end fsm;

architecture PROC2 of fsm is

 type STATE_TYPE is (

);

 signal state, next_state : STATE_TYPE;

begin

 process(clk, rst)

 begin

 end process;

 process()

 begin

INIT
output = 0000

START
output = 0001

DONE
output = 1110

COMPUTE
output = 0010

stall = 0

 go = 1

stall = 1

 go = 1

go = 0

go = 0

 end process;

end PROC2;

5. (25 points) Create an FSMD that implements the following pseudo-code. Do not write VHDL and
instead leave the FSMD in graphical form (i.e., state machine with corresponding operations in
each state).

Inputs: go (std_logic), N (std_logic_vector)

Outputs: result (std_logic_vector), done (std_logic)

// reset values for outputs

done = 0; result = 0;

while (1) {

while (go == 0);

done = 0;

x = 0;

y = 1;

z = 2;

i = 0;

nReg = N; // store input N into a register

while (i < nReg) }

 z = 3*y + 5*x;

 x = y;

 y = z;

 i++;

}

 result = z;

done = 1;

while (go == 1);

}

6. (26 points) Draw an FSM capable of controlling the illustrated datapath to perform the pseudo-code
in question 5, by assigning or reading from the underlined control signals. The controller should
have an additional input for go and an output for done (not shown in the datapath). Assume that
left mux inputs have a select value of 1. Do not write any VHDL code, just show the FSM and control
signals. Be sure to mention default signal values to save space. NOTE: this FSM might have different
states than your FSMD in problem 5.

<

x i

+

1

nReg

N

i_lt_n

n_enx_en

i_en

2x1

0

2x1

0

x_sel i_sel

zz_en

2x1

2

z_sel

yy_en

2x1

1

y_sel

* *

+

5
3

resultresult_en

Problem 5+6 Reference

Inputs: go (std_logic), N (std_logic_vector)

Outputs: result (std_logic_vector), done (std_logic)

// reset values for outputs

done = 0; result = 0;

while (1) {

while (go == 0);

done = 0;

x = 0;

y = 1;

z = 2;

i = 0;

nReg = N; // store input N into a register

while (i < nReg) }

 z = 3*y + 5*x;

 x = y;

 y = z;

 i++;

}

 result = z;

done = 1;

while (go == 1);

}

<

x i

+

1

nReg

N

i_lt_n

n_enx_en

i_en

2x1

0

2x1

0

x_sel i_sel

zz_en

2x1

2

z_sel

yy_en

2x1

1

y_sel

* *

+

5
3

resultresult_en

