
EEL 4712 Name:
Midterm 2 – Spring 2018
VERSION 1
 UFID:

Sign here to give permission for your test to be returned in class, where others might see your score:

__

COVER SHEET:

Problem#: Points
1 (12 points)
2 (8 points)
3 (16 points)
4 (20 points)
5 (20 points)
6 (20 points)
Free 4

IMPORTANT:
• Please be neat and write (or draw) carefully. If we cannot read it with a
reasonable effort, it is assumed wrong.

• As always, the best answer gets the most points.

Total:

Regrade Info:

1. a. (4 points) In the VGA lab, the ROM stored blocks that were displayed as 2x2 pixels to the screen.

For blocks consisting of 16x16 pixels, show the row and column addressing logic as a function of the

h_count and v_count for an image that is displayed at the top-left of the screen.

b. (4 points) Briefly describe the purpose of the horizontal sync signal in the VGA lab.

c. (4 points) What is the purpose of a MIF file?

2. (8 points) You are designing a circuit that controls a display with a signal similar to h_sync in the VGA
lab. This signal must be held low for 1.1 µs (1100 ns) and then high for 5.2 µs (5200 ns), which then
repeats indefinitely. For a 50 MHz clock, show the corresponding timer values for the rising edge
and falling edge of the signal. Assume that a timer value of 0 corresponds to the beginning of the
low section.

3. a. (4 points) What is the relationship between number of inputs and the number of SRAM bits in a
LUT? Assume a single output.

b. (4 points) Other than the reconfigurable interconnect, name three resources provided by existing
FPGAs.

c. (4 points) The carry chain between LUTs in a CLB is frequently used for what type of resource?

d. (4 points) Why do CLBs provide a mux to select between a FF and a LUT output?

4. (20 points) Fill in the code to implement the following Moore finite state machine (FSM) using the
2-process FSM model. Assume that INIT is the initial state. Transitions without conditions are
always taken. Use the next page if extra room is needed.

library ieee;

use ieee.std_logic_1164.all;

entity fsm is

 port (

 clk, rst : in std_logic;

 a : in std_logic;

 output : out std_logic_vector(3 downto 0)

);

end fsm;

architecture PROC2 of fsm is

 type STATE_TYPE is (

);

 signal state, next_state : STATE_TYPE;

begin

 process(clk, rst)

 begin

 end process;

 process()

 begin

INIT

output = “0000”

STATE1

output = “0110”

STATE2

output = “0001”

STATE3

output = “1000”

a = ‘1’

a = ‘0’

a = ‘0’

a = ‘1’

a = ‘0’

a = ‘1’

 end process;

end PROC2;

5. (20 points) Create an FSMD that implements the following pseudo-code. Do not write VHDL and
instead leave the FSMD in graphical form (i.e., state machine with corresponding operations in
each state).

Inputs: go (std_logic), N (std_logic_vector)

Outputs: result (std_logic_vector), done (std_logic)

// reset values for outputs

done = 0; result = 0;

while (1) {

while (go == 0);

done = 0;

x = 0;

i = 1;

nReg = N; // store input N into a register

while (i <= nReg) {

 x = x + (2*i) - 1;

 i = i + 1;

}

 result = x;

done = 1;

while (go == 1);

}

6. (20 points) Draw an FSM capable of controlling the illustrated datapath to perform the pseudo-code
in question 5, by assigning or reading from the underlined control signals. The controller should
have an additional input for go (not shown in the datapath). Note that the controller specifies the
done status through ctrl_done, but that the datapath connects this signal to the actual done output.
Assume that left mux inputs have a select value of 1. Do not write any VHDL code, just show the
FSM and control signals. Be sure to mention default signal values to save space. NOTE: this FSM
might have different states than your FSMD in problem 5.

+

<=

x i

done

ctrl_done

done_en

done

Shift Left

+

-

1

1

nReg

N

result

i_le_n

n_enx_en

i_en

2x1

0

2x1

1

x_sel i_sel

Problem 5+6 Reference

Inputs: go (std_logic), N (std_logic_vector)

Outputs: result (std_logic_vector), done (std_logic)

// reset values for outputs

done = 0; result = 0;

while (1) {

while (go == 0);

done = 0;

x = 0;

i = 1;

nReg = N; // store input N into a register

while (i <= nReg) {

 x = x + (2*i) - 1;

 i = i + 1;

}

 result = x;

done = 1;

while (go == 1);

}

+

<=

x i

done

ctrl_done

done_en

done

Shift Left

+

-

1

1

nReg

N

result

i_le_n

n_enx_en

i_en

2x1

0

2x1

1

x_sel i_sel

