
EEL 4712 Name:
Midterm 2 – Spring 2017
VERSION 1
 UFID:

Sign here to give permission for your test to be returned in class, where others might see your score:

__

COVER SHEET:

Problem#: Points
1 (12 points)
2 (12 points)
3 (5 points)
4 (8 points)
5 (20 points)
6 (20 points)
7 (20 points)
Free 3

IMPORTANT:
• Please be neat and write (or draw) carefully. If we cannot read it with a
reasonable effort, it is assumed wrong.

• As always, the best answer gets the most points.

Total:

Regrade Info:

1. (4 points) a. Create a VHDL type called my_type for a constrained two-dimensional array with 100

rows and 100 columns, where each element is 32 bits.

(4 points) b. Create a VHDL type called my_type2 that is an unconstrained array type where each

element is 16 bits.

(4 points) c. Instantiate an array of type my_type2 with 50 elements.

2. (4 points) a. What is the name of the FPGA resource that connects routing tracks from different
channels?

(4 points) b. What is the name of the FPGA resource that connects CLB I/O to routing tracks?

(4 points) c. Briefly explain the difference between a long track and a short track

3. (5 points) Briefly explain why using gates as a metric for FPGA size is not accurate.

4. (8 points) You are designing a circuit with a 33 MHz clock that generates an output rising edge after
it can guarantee that an asynchronous control input (e.g., a button) has been asserted for 500 ms.
Show the potential range of timings for the output under the assumption that you have no control
over when the button is pressed.

5. (20 points) Fill in the code to implement the following Moore finite state machine (FSM) using the
2-process FSM model. Assume that INIT is the initial state. Transitions without conditions are
always taken. Use the next page if extra room is needed.

library ieee;

use ieee.std_logic_1164.all;

entity fsm is

 port (

 clk, rst : in std_logic;

 a : in std_logic;

 output : out std_logic_vector(3 downto 0)

);

end fsm;

architecture PROC2 of fsm is

 type STATE_TYPE is (

);

 signal state, next_state : STATE_TYPE;

begin

 process(clk, rst)

 begin

 end process;

 process()

 begin

INIT

output = “0000”

STATE1

output = “0101”

STATE2

output = “1010”

STATE3

output = “1111”

a = ‘1’

a = ‘0’

a = ‘0’

a = ‘1’

 end process;

end PROC2;

6. (20 points) Create an FSMD that implements the following pseudo-code. Do not write VHDL and
instead leave the FSMD in graphical form (i.e., state machine with corresponding operations in
each state). Make sure to specify all operations and state transitions. For the array a[i], assume that
your circuit has a RAM outside the FSMD that stores the entire array, and that all values are already
stored in the RAM. To access a[i], send i to the specified output ram_rd_addr. Data from ram will
arrive on the ram_rd_data input one cycle later (i.e., there is a one-cycle read latency).

const int N = 128; // In VHDL: generic(N : positive)

Inputs: go (std_logic), ram_rd_data (std_logic_vector)

Outputs: ram_rd_addr (std_logic_vector), result (std_logic_vector), done (std_logic)

int i, result;

int a[128]; // Accessed via ram_rd_addr, data provided via ram_rd_data 1 cycle after address

// reset values for outputs

done = 0; result = 0;

while (1) {

while (go == 0);

done = 0;

 result = 0;

 for (i=0; i < 128; i++) {

 if (result < a[i]) {

 result = a[i];

}

}

done = 1;

while (go == 1);

}

7. (20 points) Draw an FSM capable of controlling the illustrated datapath to perform the pseudo-code
in question 6, by assigning or reading from the underlined control signals. Assume that go is an input
to the controller, done is an output from the controller, and that left mux inputs have a select value
of 1. Also assume that RAM contents store the a[] array and that these values have already been
stored. Note that this datapath assumes that N=128. Do not write any VHDL code, just show the
FSM and control signals. Be sure to mention default signal values to save space.

RAM

result

>

result_en

2x1

0

result_sel

i

+

<

2x1

0

128

1

i_lt_128

i_sel

i_en

addr (i)

data (a[i])

2x1

Problem 6+7 Reference

const int N = 128; // In VHDL: generic(N : positive)

Inputs: go (std_logic), ram_rd_data (std_logic_vector)

Outputs: ram_rd_addr (std_logic_vector), result (std_logic_vector), done (std_logic)

int i, result;

int a[128]; // Accessed via ram_rd_addr, data provided via ram_rd_data 1 cycle after address

// reset values for outputs

done = 0; result = 0;

while (1) {

while (go == 0);

done = 0;

 result = 0;

 for (i=0; i < 128; i++) {

 if (result < a[i]) {

 result = a[i];

}

}

done = 1;

while (go == 1);

}

RAM

result

>

result_en

2x1

0

result_sel

i

+

<

2x1

0

128

1

i_lt_128

i_sel

i_en

addr (i)

data (a[i])

2x1

