
EEL 4712 Name:
Midterm 1 – Spring 2020
VERSION 1
 UFID:

Sign here to give permission to return your test in class, where other students might see your score:

__

COVER SHEET:

Problem#: Points
1 (25 points)
2 (12 points)
3 (15 points)
4 (18 points)
5 (12 points)
6 (5 points)
7 (4 points)
8 (4 points)
9 (5 points) 5

IMPORTANT:
• Please be neat and write (or draw) carefully. If we cannot read it with a
reasonable effort, it is assumed wrong.

• As always, the best answer gets the most points.

Total:

Regrade Info:

ENTITY _entity_name IS

PORT(__input_name, __input_name : IN STD_LOGIC;

__input_vector_name : IN STD_LOGIC_VECTOR(__high downto __low);

__bidir_name, __bidir_name : INOUT STD_LOGIC;

__output_name, __output_name : OUT STD_LOGIC);

END __entity_name;

ARCHITECTURE a OF __entity_name IS

SIGNAL __signal_name : STD_LOGIC;

BEGIN

-- Process Statement

-- Concurrent Signal Assignment

-- Conditional Signal Assignment

-- Selected Signal Assignment

-- Component Instantiation Statement

END a;

__instance_name: __component_name

GENERIC MAP(__component_generic => __connect_generic)

PORT MAP (__component_port => __connect_port,

__component_port => __connect_port);

WITH __expression SELECT

__signal <= __expression WHEN __constant_value,

__expression WHEN __constant_value,

__expression WHEN __constant_value,

__expression WHEN __constant_value;

__signal <= __expression WHEN __boolean_expression ELSE

__expression WHEN __boolean_expression ELSE

__expression;

IF __expression THEN

__statement;

__statement;

ELSIF __expression THEN

__statement;

__statement;

ELSE

__statement;

__statement;

END IF;

CASE __expression IS

WHEN __constant_value =>

__statement;

__statement;

WHEN __constant_value =>

__statement;

__statement;

WHEN OTHERS =>

__statement;

__statement;

END CASE;

<generate_label>: FOR <loop_id> IN <range> GENERATE

-- Concurrent Statement(s)

END GENERATE;

type array_type is array(__upperbound downto __lowerbound);

1) (25 points) Fill in the VHDL to implement the illustrated circuit. Assume that clk and rst connect to
every register in the schematic. All wires/operations are width bits. Ignore adder overflow.

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity example is

 generic (width : positive := 8);

 port(

 clk, rst : in std_logic;

 in1, in2, in3 : in std_logic_vector(width-1 downto 0);

 out1 : out std_logic_vector(width-1 downto 0));

end example;

architecture BHV of example is

 signal regIn1, regIn2 : std_logic_vector(width-1 downto 0);

 signal regAdd1, regAdd2 : std_logic_vector(width-1 downto 0);

begin

 process(clk, rst)

 begin

 if (rst = '1') then

 regIn1 <= (others => '0');

 regIn2 <= (others => '0');

 regAdd1 <= (others => '0');

 regAdd2 <= (others => '0');

 elsif (rising_edge(clk)) then

 regIn1 <= in1;

 regIn2 <= in2;

 regAdd1 <= std_logic_vector(unsigned(regIn1) + unsigned(regAdd1));

 regAdd2 <= std_logic_vector(unsigned(regIn2) + unsigned(in3));

 end if;

 end process;

 out1 <= std_logic_vector(unsigned(regAdd1) + unsigned(regAdd2));

end BHV;

in1

Reg

+

out1

in2

Reg

+

in3

+

Reg Reg

2) (12 points) Fill in the VHDL to implement a simple testbench for the specified mux component. The
testbench should instantiate a mux using an architecture IF_STATEMENT. The testbench should
test 3 separate input combinations, waiting 10 ns in between tests. The testbench does not need to
verify the correct output. Declare all signals as std_logic.

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity mux_tb is

end mux_tb;

architecture TB of mux_tb is

 signal in1, in2, sel, output : std_logic;

begin -- TB

 UUT : entity work.mux_2x1(IF_STATEMENT)

 port map (

 in1 => in1,

 in2 => in2,

 sel => sel,

 output => output);

 process

 begin

 in1 <= '0';

 in2 <= '0';

 sel <= '0';

 wait for 10 ns;

 in1 <= '0';

 in2 <= '1';

 sel <= '0';

 wait for 10 ns;

 in1 <= '1';

 in2 <= '0';

 sel <= '1';

 wait;

 end process;

end TB;

3) a. (12 points) Identify the violation of the synthesis coding guidelines for combinational logic in the
following priority encoder code, and state the effect on the synthesized circuit. Note: there are no
syntax, casting, or width-mismatch errors.

b. (3 points) Fix the violation with a single line of code.

library ieee;

use ieee.std_logic_1164.all;

entity pe is

 port (

 input : in std_logic_vector(3 downto 0);

 output : out std_logic_vector(1 downto 0);

 valid : out std_logic

);

end pe;

architecture default of pe is

begin

 process(input)

 begin

 valid <= ‘1’;

 if (input(3) = '1') then

 output <= "11";

 elsif (input(2) = '1') then

 output <= "10";

 elsif (input(1) = '1') then

 output <= "01";

 elsif (input(0) = '1') then

 output <= "00";

 else

 output <= "00";

 valid <= '0';

 end if;

 end process;

end default;

Valid not specified on all paths, results in
inferred latches during synthesis

4) (18 points) Fill in the provided code to create the illustrated circuit as a structural architecture using
the specified reg and add components. Connect each reg to the clock and reset (not shown in
figure). All reg and add instances should use the width of the structure entity. Use the next page if
necessary.

library ieee;

use ieee.std_logic_1164.all;

entity structure is

 generic (width : positive := 16);

 port (clk : in std_logic;

 rst : in std_logic;

 in1, in2 : in std_logic_vector(width-1 downto 0);

 output : out std_logic_vector(width-1 downto 0));

end structure;

architecture STR of structure is

 component reg

 generic (width : positive := 8);

 port (clk, rst : in std_logic;

 input : in std_logic_vector(width-1 downto 0);

 output : out std_logic_vector(width-1 downto 0));

 end component;

 component add

 generic (width : positive := 8);

 port (in1, in2 : in std_logic_vector(width-1 downto 0);

 output : out std_logic_vector(width-1 downto 0));

 end component;

 signal regIn1, regIn2 : std_logic_vector(width-1 downto 0);

begin

 U_REG1 : reg

 generic map (width => width)

 port map (clk => clk,

 rst => rst,

 input => in1,

 output => regIn1);

 U_REG2 : reg

 generic map (width => width)

 port map (clk => clk,

 rst => rst,

 input => in2,

 output => regIn2);

 U_ADD : add

 generic map (width => width)

 port map (in1 => regIn1,

 in2 => regIn2,

 output => output);

end STR;

output

Reg Reg

+

in1 in2

5) (12 points)
a. (3 points) Resources grow ______ with width for a carry lookahead adder.

quadratically

b. (3 points) True/false. Due to fan-in limitations, carry lookahead adders tend to have a
latency that increases quadratically with width.

false

c. (3 points) True/false. A ripple-carry adder using blocks of carry-lookahead adders instead of

full adders has a delay that increases logarithmically with width.

false

d. (3 points) Define the logic for the carry out c4 of a carry look-ahead adder (CLA) in terms of
the propagate signals (pi), generate signals (gi), and carry in (c0).

c4 = g3 or p3g2 or p3p2g1 or p3p2p1g0 or p3p2p1p0c0

6) (5 points) For the following process, what will the values of x and y be at the end of the process

when x= 20, y = 30, and the process is triggered by in1 becoming 50? Explain your answer for partial
credit.

signal x, y, in1 : unsigned(7 downto 0);
…
process(in1)
begin
 x <= in1 + 10;
 y <= x + 10;
end process;

x = 60, y = 30 because x has not been updated yet from the previous value of 20.

7) (4 points) True/false. A single assignment to all outputs at the beginning of a process for
combinational logic will guarantee there are no latches for that logic.

true

8) (4 points) True/false. Multiple concurrent assignments to a signal are not synthesizable, but it is
valid to assign the same signal sequentially inside a process and concurrently outside a process.

False, these are still concurrent assignments

9) 5 free points for having to take a test at 8:30am.

