
EEL 4712 Name: SOLUTION
Midterm 2 – Spring 2019
VERSION 1
 UFID:

Sign here to give permission for your test to be returned in class, where others might see your score:

__

COVER SHEET:

Problem#: Points
1 (12 points)
2 (6 points)
3 (6 points)
4 (25 points)
5 (25 points)
6 (26 points)

IMPORTANT:
• Please be neat and write (or draw) carefully. If we cannot read it with a
reasonable effort, it is assumed wrong.

• As always, the best answer gets the most points.

Total:

Regrade Info:

1. (12 points) Assume you are given an FPGA that consists of the following CLB structures with one 3-

input, 2-output LUT and optional registers on each output.

Map the following circuit onto these CLBs by drawing boxes to represent
CLBs. Do not try to optimize or modify the circuit in any way.

2. (6 points) Name three primary FPGA resources, excluding interconnect.

DSPs, LUTs (or CLBs), Block RAM, I/O, PCIe Express, transceivers

3. (6 points) You are designing a circuit that repeatedly outputs a 1-cycle pulse at 6 µs, 11 µs, and 15
µs. Assuming a 50 MHz clock, at what count values should each pulse occur?

One 50 MHz clock period = 1s / 50M = 20 ns.

Clock periods for 6 µs = 6 µs / 20 ns = 300

Clock periods for 11 µs = 11 µs / 20 ns = 550

Clock periods for 15 µs = 15 µs / 20 ns = 750

3-in, 2-out

LUT

FF

2x1

FF

2x1

4. (25 points) Fill in the code to implement the following Moore finite state machine (FSM) using the
2-process FSM model. Assume that INIT is the initial state. Transitions without conditions are
always taken. Use the next page if extra room is needed.

library ieee;

use ieee.std_logic_1164.all;

entity fsm is

 port (

 clk, rst : in std_logic;

 go, stall : in std_logic;

 output : out std_logic_vector(3 downto 0)

);

end fsm;

architecture PROC2 of fsm is

 type STATE_TYPE is (INIT, START, COMPUTE, DONE);

 signal state, next_state : STATE_TYPE;

begin

 process(clk, rst)

 begin

 if (rst = '1') then

 state <= INIT;

 elsif (rising_edge(clk)) then

 state <= next_state;

 end if;

 end process;

 process(state, go, stall)

 begin

 next_state <= state;

 case state is

 when INIT =>

 output <= "0000";

 if (go = '1') then

 next_state <= START;

 end if;

 when START =>

 output <= "0001";

 next_state <= COMPUTE;

 when COMPUTE =>

 output <= "0010";

 if (stall = '0') then

INIT
output = 0000

START
output = 0001

DONE
output = 1110

COMPUTE
output = 0010

stall = 0

 go = 1

stall = 1

 go = 1

go = 0

go = 0

 next_state <= DONE;

 end if;

 when DONE =>

 output <= "1110";

 if (go = '0') then

 next_state <= START;

 end if;

 end case;

 end process;

end PROC2;

