
EEL 4712 Name:
Midterm 3 – Spring 2017
VERSION 1
 UFID:

Sign here to give permission for your test to be returned in class, where others might see your score:

__

COVER SHEET:
Problem#: Points
1 (4 points)
2 (4 points)
3 (4 points)
4 (8 points)
5 (4 points)
6 (4 points)
7 (4 points)
8 (4 points)
9 (4 points)
10 (4 points)
11 (4 points)
12 (8 points)
13 (10 points)
14 (4 points)
15 (4 points)
16 (20 points)
17 (6 points) 6

IMPORTANT:

• Please be neat and write (or draw) carefully. If we cannot read it with a
reasonable effort, it is assumed wrong.

• As always, the best answer gets the most points.

Total:

Regrade Info:

1) (4 points) FPGA synthesis replaces tristates with what type of component?

Mux

2) (4 points) What is the name of the technology that uses virtual reconfigurable architectures
implemented atop an FPGA to improve productivity?

Overlays (intermediate fabrics, supernets also ok)

3) (4 points) When the behavior of a circuit demonstrates some amount of randomness, it is likely
that the output of a FF is:

metastable

4) a. (2 points) When synchronizing a single bit across clock domains, what type of synchronizer

should you use?

Dual flop

b. (2 points) When synchronizing multiple bits across clock domains and don’t care about
throughput, what type of synchronizer should you use?

Handshake or mux recirculation

c. (2 points) When synchronizing multiple bits across clock domains and throughput is
important, what type of synchronizer should you use?

FIFO

d. (2 points) In what situation can dual-flop synchronizers be used to synchronize multiple bits?

 When only one bit changes

5) (4 points) How many bits are in each MIPS instruction?

32

6) (4 points) How many registers are in the MIPS register file?

32

7) (4 points) What is the purpose of the data stored into register 31 during a jump and link
instruction?
Function return address

8) (4 points) Briefly explain the difference between the behavior of an r-type and i-type instruction.

R-type instructions use 2 registers as input.
I-type instructions use 1 register and a 16-bit immediate value for input

9) (4 points) Briefly explain the difference between a jump and branch instruction.

A jump is unconditional and uses an absolute address instead of an offest

10) (4 points) What is the purpose of the HI and LO registers in the MIPS datapath?

Multiplication produces a 64-bit product, which requires two 32-bit registers: HI and LO

11) (4 points) Describe the functionality that occurs during the instruction-fetch stage. Keep your
description high level. E.g., you do not need to mention control signals.

IR = RAM[PC]

 PC = PC + 4

12) (8 points) Write MIPS assembly code that does the following behavior. Assume the a[] starts at
address 0x1000 and the b[] array starts at 0x2000. Use $r0-$r31 for registers. Make two columns
if necessary.

for (int i =0; i < 100; i++) {

 a[i] = b[i] + 4;

}

addiu $r1, $r0, $r0 // i =0
COND:

subiu $r2, $r1, 100 // compare i and 100
bgez $r2, DONE // if i >= 100, don’t loop
lw $r3, 0x2000($r1) // $r3 = b[i]
addiu $r3, $r3, 4 // b[i] + 4

 sw $r3, 0x1000($r1) // a[i] = b[i] + 4
 addiu $r1, $r1, 1 // i++
 j COND
DONE:

13) (10 points) Create a memory initialization file for the following assembly code. Add comments as
necessary. Put a small space between different instruction fields to make it easier to read.

LOOP:

 beq $r1, $r3, DONE

 addiu $r5, $r4, 0x1000

 lw $r1, 0($r5)

 j LOOP

DONE:

 j DONE

Depth = 256;

Width = 32;

Address_radix = hex;

Data_radix = bin;

% Program RAM Data %

Content

Begin

-- LOOP

00: 000100 00001 00011 0000000000000011 -- beq

01: 001001 00100 00101 0001000000000000 -- addiu

02: 100011 00101 00001 0000000000000000 -- lw

03: 000010 0000000000000000000000000000 -- j LOOP

-- DONE

04: 000010 0000000000000000000000000100 -- j DONE

// NOTE: IF YOU USED MULTIPLES OF 4 FOR YOUR INSTRUCTION ADDRESSES, LIKE THE PROVIDED

MIF FILES, THEN THE ADDRESS OF THE FINAL JUMP ADDRESS WILL NEED TO CHANGE. THE BRANCH

OFFSET DOES NOT NEED TO CHANGE. THIS DOES NOT APPLY TO CLASSES AFTER SPRING 2017. SEE

BELOW:

-- LOOP

00: 000100 00001 00011 0000000000000011 -- beq

04: 001001 00101 00100 0001000000000000 -- addiu

08: 100011 00101 00001 0000000000000000 -- lw

0C: 000010 0000000000000000000000000000 -- j LOOP

-- DONE

10: 000010 0000000000000000000000010000 -- j DONE

End;

14) (4 points) Given a solution space with the following implementations, which of the solutions are
not Pareto optimal? If they are all Pareto optimal, state that.

a. Area: 1000 LUTs, Time: 18s
b. Area: 2000 LUTs, Time: 19s
c. Area: 3000 LUTs, Time: 8.5s
d. Area: 4000 LUTs, Time: 16s
e. Area: 5000 LUTs, Time: 20s

15) (4 points) During design-space exploration, you are considering two implementations:
1. Area: 5000 LUTs, Time: 3s
2. Area: 4000 LUTs, Time: 3s

Is the existence of implementation 2 sufficient to prove that implementation 1 is not Pareto
optimal? Explain your answer.

 Yes, implementation one is bigger with the same performance, so it is never a better options.

No is an acceptable answer under the assumption that there are other metrics not being

considered (power, energy, cost, time-to-market, etc.)

16) a. (5 points) For the following code, create a schedule for the provided datapath. Ignore muxes,
registers, and other glue logic. Like the examples in class, assume that address calculations are
done without using the specified resources (i.e., address calculations cost nothing). Do not
change the code. List any assumptions.

for (int i=0; i < 10000; i++) {

 a[i] = b[i]*10 + b[i+1]*20 + b[i+2]*30 + b[i+3]*40;

}

c = b[i]*10
d = b[i+1]*20
e = b[i+2]*30
f = b[i+3]*40

0) i=0
1) i < 10000, load b[i]
2) load b[i+1], c
3) load b[i+2], d
4) load b[i+3], e, c+d
5) f, (c+d)+e
6) (c+d+e)+f
7) store a[i], i++

Datapath
1 multipliers
1 adders
1 comparator
1 memory for b[] (can read 1 elements/cycle)
1 memory for a[] (can write 1 element/cycle)

b. (2 points) What is the execution time in total cycles based on your schedule from part a?
Show your work.

7 cycles/iteration * 10000 iterations + 1 cycle = 70001 cycles

c. (5 points) Create a new schedule for a datapath with 4 multipliers, 2 adders, 1 comparator,
and a memory for b[] that can read 4 inputs/cycle.

0) i=0
1) i < 10000, load b[i….i+3]
2) c,d,e,f
3) c+d, e+f,
4) (c+d)+(e+f)
5) store a[i], i++

d. (2 points) What is the execution time of the schedule from part c?

5*10000+1 = 50001 cycles

c. (4 points) For a pipelined implementation of the datapath in part c, what is the approximate
execution time in total cycles?

 5 + 9999 = 10004 cycles

d. (2 points) Give two reasons why pipelining should be considered before applying loop
unrolling.

1) At the same level of performance, pipelining uses less area
2) Pipelining requires lower peak memory bandwidth than loop unrolling

17) (6 points) Free points for being the first class to do the MIPS lab.

