
EEL 4712 Name:
Midterm 1 – Spring 2017
VERSION 1
 UFID:

Sign here to give permission to return your test in class, where other students might see your score:

__

COVER SHEET:

Problem#: Points
1 (15 points)
2 (4 points)
3 (5 points)
4 (5 points)
5 (5 points)
6 (4 points)
7 (4 points)
8 (4 points)
9 (5 points)
10 (12 points)
11 (15 points)
12 (4 points)
13 (13 points)
14 (5 points) 5

IMPORTANT:
• Please be neat and write (or draw) carefully. If we cannot read it with a
reasonable effort, it is assumed wrong.

• As always, the best answer gets the most points.

Total:

Regrade Info:

ENTITY _entity_name IS

PORT(__input_name, __input_name : IN STD_LOGIC;

__input_vector_name : IN STD_LOGIC_VECTOR(__high downto __low);

__bidir_name, __bidir_name : INOUT STD_LOGIC;

__output_name, __output_name : OUT STD_LOGIC);

END __entity_name;

ARCHITECTURE a OF __entity_name IS

SIGNAL __signal_name : STD_LOGIC;

BEGIN

-- Process Statement

-- Concurrent Signal Assignment

-- Conditional Signal Assignment

-- Selected Signal Assignment

-- Component Instantiation Statement

END a;

__instance_name: __component_name

GENERIC MAP(__component_generic => __connect_generic)

PORT MAP (__component_port => __connect_port,

__component_port => __connect_port);

WITH __expression SELECT

__signal <= __expression WHEN __constant_value,

__expression WHEN __constant_value,

__expression WHEN __constant_value,

__expression WHEN __constant_value;

__signal <= __expression WHEN __boolean_expression ELSE

__expression WHEN __boolean_expression ELSE

__expression;

IF __expression THEN

__statement;

__statement;

ELSIF __expression THEN

__statement;

__statement;

ELSE

__statement;

__statement;

END IF;

CASE __expression IS

WHEN __constant_value =>

__statement;

__statement;

WHEN __constant_value =>

__statement;

__statement;

WHEN OTHERS =>

__statement;

__statement;

END CASE;

<generate_label>: FOR <loop_id> IN <range> GENERATE

-- Concurrent Statement(s)

END GENERATE;

type array_type is array(__upperbound downto __lowerbound);

1) (15 points) Fill in the VHDL to implement the illustrated circuit. Assume that clk and rst connect to
every register in the schematic. All wires/operations are width bits. Ignore adder overflow.

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity example is

 generic (

 width : positive := 16);

 port (

 clk,rst : in std_logic;

 in1, in2, in3 : in std_logic_vector(width-1 downto 0);

 out1, out2, out3 : out std_logic_vector(width-1 downto 0));

end example;

architecture BHV of example is

 signal regIn1, regAddOut, addOut : std_logic_vector(width-1 downto 0);

begin

 process(clk, rst)

 begin

 if (rst = '1') then

 regIn1 <= (others => '0');

 regAddOut <= (others => '0');

 out1 <= (others => '0');

 out2 <= (others => '0');

 elsif (rising_edge(clk)) then

 regIn1 <= in1;

 regAddOut <= std_logic_vector(unsigned(in2)+unsigned(in3));

 out2 <= regAddOut;

 out1 <= std_logic_vector(unsigned(addOut)+unsigned(regAddOut));

 end if;

 end process;

 addOut <= std_logic_vector(unsigned(regIn1)+unsigned(in2));

 out3 <= regAddOut;

end BHV;

NOTE: There are many possible answers

Reg

+

in2 in3in1

Reg

+

Reg

+

out1

Reg

out2

out3

2) (4 points) When an entity with generics is used as the top-level entity for synthesis, what values
does the synthesis tool use for the generics?

The default values for each generic.

3) (5 points) Briefly explain why you should not initialize signals in synthesizable code.

Initializing a signal doesn’t always make sense in hardware (e.g., a wire), and can case differences

between synthesis and simulation.

4) (5 points) Complete the following waveform. Pay close attention to the sensitivity list of the process.

entity alu is

 generic (

 width : positive := 8);

 port (

 in1, in2 : in std_logic_vector(width-1 downto 0);

 sel : in std_logic;

 output : out std_logic_vector(width-1 downto 0));

end alu;

architecture BHV of alu is

begin

 process(in1, in2)

 begin

 case sel is

 when '0' =>

 output <= std_logic_vector(unsigned(in1)+unsigned(in2));

 when '1' =>

 output <= std_logic_vector(unsigned(in1)-unsigned(in2));

 when others => null;

 end case;

 end process;

end BHV;

Note that the process does not re-execute when only the select value changes, so the output doesn’t

change.

input1 5 5 15 15 2

input2 5 5 5 5 4

sel ‘0’ ‘1’ ‘1’ ‘0’ ‘0’

output 10 10 10 10 6

5) (5 points) For signals assigned using sequential statements inside a process, when does the signal
get updated with the value from the assignment?

At the end of the process.

6) (4 points) True/false. Testbenches should follow the same synthesis coding as other entities.

False, testbenches are not synthesized so you can use any constructs you want.

7) (4 points) True/false. Sequential statements inside a process can reassign a signal any number of
times.

true

8) (4 points) True/false. Concurrent statements can reassign a signal any number of times.

False

9) (5 points) Assuming you use a variable solely to get an immediately updated value, what will type of
hardware resource will be synthesized?

A wire

10) (12 points points) a. Identify any violations of the synthesis coding guidelines for combinational logic

and b. specify the effect on the synthesized circuit.

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity alu is

 generic (

 width : positive := 8);

 port (

 in1, in2 : in std_logic_vector(width-1 downto 0);

 sel : in std_logic;

 output : out std_logic_vector(width-1 downto 0);

 neg : out std_logic);

end alu;

architecture BHV of alu is

begin

 process(sel)

 variable temp : std_logic_vector(width-1 downto 0);

 begin

 case sel is

 when '0' =>

 output <= std_logic_vector(signed(in1)+signed(in2));

 when '1' =>

 temp := std_logic_vector(signed(in1)-signed(in2));

 neg <= temp(width-1);

 output <= temp;

 when others => null;

 end case;

 end process;

end BHV;

a) Sensitivity list does not have all inputs, and neg isn’t defined on all paths through the process
b) A latch will be inferred for not defining neg on all paths

11) (15 points) Fill in the provided code to create the illustrated structural architecture using the

specified add and mul components.

library ieee;

use ieee.std_logic_1164.all;

entity structure is

 generic (width : positive := 16);

 port (in1, in2, in3, in4 : in std_logic_vector(width-1 downto 0);

 output : out std_logic_vector(2*width-1 downto 0));

end structure;

architecture STR of structure is

 component add

 generic (width : positive);

 port (in1, in2 : in std_logic_vector(width-1 downto 0);

 output : out std_logic_vector(width-1 downto 0));

 end component;

 component mul

 generic (width : positive);

 port (in1, in2 : in std_logic_vector(width-1 downto 0);

 output : out std_logic_vector(2*width-1 downto 0));

 end component;

 signal mulOut1, mulOut2 : std_logic_vector(2*width-1 downto 0);

begin

 U_MUL1 : entity work.mul

 generic map (width => width)

 port map (in1 => in1,

 in2 => in2,

 output => mulOut1);

 U_MUL2 : entity work.mul

 generic map (width => width)

 port map (in1 => in3,

 in2 => in4,

 output => mulOut2);

 U_ADD : entity work.add

 generic map (width => 2*width)

 port map (in1 => mulOut1,

 in2 => mulOut2,

 output => output);

end STR;

*

in1 in2

output

+

*

in3 in4

12) a. (2 points) What information is provided by an sdo file?

Propagation delays

b. (2 points) How is a vho file different than a normal vhd file?

The vho represents the synthesized circuit.

13) a. (8 points) Define the logic for the carry out c4 of a carry look-ahead adder (CLA) in terms of the

propagate signals (pi), generate signals (gi), and carry in (c0).

C4 = g3 + p3g2 + p3p2g1 + p3p2p1g0 + p3p2p1p0c0

b. (1 point) True/false. The delay of a ripple-carry adder increases linearly with width.

true

c. (1 point) True/false. Ignoring fan-in limitations, a CLA has a constant delay for any width.

true

d. (1 point) True/false. Ignoring fan-in limitations, a two-level CLA has a constant delay for any
width.

 true

e. (1 point) True/false. Ignoring fan-in limitations, a hierachical CLA has a constant delay for any
width.

false

f. (1 point) True/false. The delay of an adder than uses a ripple-carry connection between CLA
blocks increases linearly with width.

 true. It actually follows a stepwise increase for each new CLA block, but each step is linear.

14) 5 free points for having to take a test at 8:30am.

