

2. (7 points) List the different interconnect resources that an FPGA uses to route between two

components in an FPGA.

Connection box, tracks, switch boxes

3. (7 points) The Cyclone III EP3C16 has 56 M9k block RAMs, which provide 8192 bits of memory.
Assuming an image consisting of 24-bit pixels, calculate the maximum square image size you could
store in the FPGA.

Total bits = 56 * 8192 = 458752
Total pixels = 458752 / 24 = 19114

Maximum square image = floor(sqrt(19114)) = 138x138

4. a. (4 points) You are given a 75 MHz clock and must divide it to create a 23 kHz clock. How many 75

MHz cycles does the divider have to wait for a full period of the 23 kHz clock? i.e. The divider can
produce a frequency that is slight slower than 23 kHz, but no faster.

1/75M * x = 1/23k
x = 75M/23k = 3260.8

of cycles = ceil(3260.8) = 3261

b. (4 points) Calculate the actual frequency of the divided clock. Show at least two fractional digits.

1/75M * 3261 = 1/f

F = 75M/3261 = 22999.08 Hz

5. (18 points) Fill in the code to implement the following Moore finite state machine (FSM) using the
2-process FSM model. Assume that INIT is the initial state. Assume that d takes priority over n.
Assume there are implicit edges back to the current state for any condition not explicitly shown.
Transitions without conditions are always taken. Use the next page if extra room is needed.

library ieee;

use ieee.std_logic_1164.all;

entity fsm is

 port (

 clk, rst : in std_logic;

 n, d : in std_logic;

 a : out std_logic_vector(3 downto 0);

 valid : out std_logic

);

end fsm;

architecture PROC2 of fsm is

 type STATE_TYPE is (S_INIT, S_FIVE, S_TEN);

 signal state, next_state : STATE_TYPE;

begin

 process(clk, rst)

 begin

 if (rst = '1') then

 state <= S_INIT;

 elsif (rising_edge(clk)) then

 state <= next_state;

 end if;

 end process;

 process(state, n, d)

 begin

 valid <= '0';

 next_state <= state;

 case state is

 when S_INIT =>

 a <= "0000";

 if (d = '1') then

 next_state <= S_TEN;

 elsif (n = '1') then

 next_state <= S_FIVE;

 end if;

 when S_FIVE =>

 a <= "0101";

INIT

a = “0000”

valid = ‘0’

FIVE

a = “0101”

valid = ‘0’

TEN

a = “1010”

valid = ‘0’

n = ‘1’ n = ‘1’

d = ‘1’

 if (n = '1') then

 next_state <= S_TEN;

 end if;

 when S_TEN =>

 a <= "1010";

 valid <= '1';

 next_state <= S_INIT;

 end case;

 end process;

end PROC2;

Problem 6 Reference

const int N = 32; // In VHDL: generic(N : positive)

Inputs: go (std_logic), input (std_logic_vector)

Outputs: result (std_logic_vector), done (std_logic)

int i, result, input_reg;

int a[N]; // Stored as a ROM in the circuit, assume already filled with appropriate data

// reset values for outputs

done = 0; result = 0;

while (1) {

while (go == 0);

done = 0;

// Store input into register

input_reg = input;

 result = 0;

 for (i=0; i < N; i++) {

 result = result + a[i] * input_reg;

}

done = 1;

while (go == 1);

}

i

+

<

2x1

0

32

1

i_lt_32

i_sel

i_en

input_reg

*

result

+

ROM

result_en

input_reg_en

done

2x1

01

done_sel

done_en

addr (i)

data (a[i])

input

done

2x1

0

result_sel

