EEL4712 Name: SOLUTION

Midterm 1 — Spring 2016
VERSION 1
UFID:

Sign here to give permission to return your test in class, where other students might see your score:

IMPORTANT:

* Please be neat and write (or draw) carefully. If we cannot read it with a
reasonable effort, it is assumed wrong.

* As always, the best answer gets the most points.

COVER SHEET:

Problemtit: Points

1 (16 points)

2 (6 points) Total:

3 (16 points)

4 (16 points)

5 (5 points)

6 (16 points)

7 (6 points)

8 (16 points)

9 (3 points) 3

Regrade Info:

ENTITY entity name IS

PORT (__ input name, input name : IN STD LOGIC;
__input vector name : IN STD LOGIC VECTOR(_ high downto low);
__bidir name, bidir name : INOUT STD LOGIC;

__output name, output name : OUT STD LOGIC) ;
END entity name;

ARCHITECTURE a OF entity name IS
SIGNAL signal name : STD LOGIC;
BEGIN

—-— Process Statement

-- Concurrent Signal Assignment

-- Conditional Signal Assignment

—-- Selected Signal Assignment

-- Component Instantiation Statement

END a;
__instance name: _ component name PORT MAP (_component port =>
__component port => connect port);

WITH expression SELECT

__signal <= expression WHEN _ constant value,
__expression WHEN _ constant value,
__expression WHEN _ constant value,
__expression WHEN constant value;

__signal <= __exprggsion WHEN __boolean expression ELSE
__expression WHEN boolean expression ELSE
__expression;

IF expression THEN
___statement;
___statement;

ELSIF expression THEN
___statement;
___statement;

ELSE

___statement;
___statement;

END IF;

CASE expression IS
WHEN constant value =>
___statement;
___statement;
WHEN constant value =>
___statement;
___statement;
WHEN OTHERS =>
___statement;

statement;
END CASE;

<generate label>: FOR <loop id> IN <range> GENERATE
—-—- Concurrent Statement (s)

END GENERATE;

type array type is array(_ upperbound downto _ lowerbound) ;

___connect port,

1)

(16 points) Fill in the following VHDL to implement the illustrated circuit. Assume that clk and rst
connect to every register. All wires/operations are width bits. Ignore adder overflow.

inl in2 i$3 in4
library ieee; v *
use ieee.std logic_1164.all;
use ieee.numeric std.all; Reg Reg Reg Reg
entity example is
generic (
width : positive := 16);
port (
clk, rst in std logic;
inl, in2, in3, in4 : in std logic vector (width-1 downto 0);
outl, out2 out std logic vector (width-1 downto 0));
end example; Reg
i Reg
outl
architecture BHV of example is OUt2¢
signal reg inl, reg in2, reg in3, reg in4 : unsigned(width-1 downto 0);
signal sum no reg unsigned (width-1 downto 0);
begin
process (clk, rst)
begin
if (rst = '1') then
reg inl <= (others => '0'");
reg in2 <= (others => '0'");
reg in3 <= (others => '0');
reg in4 <= (others => '0');
outl <= (others => '0'");
out2 <= (others => '0'");
elsif (clk'event and clk = '1l') then
reg inl <= unsigned(inl);
reg in2 <= unsigned(in2);
reg_in3 <= unsigned(in3);
reg_in4 <= unsigned(in4);
outl <= std logic vector(reg_inl + reg in2);
out2 <= std logic vector(sum no reg + reg ind);
end if;

end process;

sum _no_reg <= reg_in2 + reg in3;

end BHV;

2) (6 points) Given the following entity, specify the widths of each instantiation in parts a-c.

entity test is

generic (
width : positive := 32);
port (
inl : in std logic vector (width-1 downto 0);

in2 : in std logic vector (width-1 downto 0);
output : out std logic vector(width-1 downto 0));
end test;

a.

U A : entity work.test
generic map (width => 16)
port map (inl => inl,
in2 => in2,
output => output);

16

U B : entity work.test
port map (inl => inl,
in2 => in2,
output => output);

32

c. When entity test is used as the top-level entity.

32

3) (16 points) Fill out the outputs of the waveform for the following two architectures. Assume the left
column is the start of the simulation.

library ieee;
use ieee.std logic_1164.all;
use ieee.numeric std.all;

entity mult is

generic (
width : positive := 16);
port (
inputl, input2 : in std logic vector(width-1 downto 0);
output : out std logic vector (width-1 downto 0);
overflow : out std logic);
end mult;

architecture BHV1 of mult is

signal temp : unsigned(2*width-1 downto 0);

begin
process (inputl, input2)
begin
temp <= unsigned(inputl) * unsigned(input2);
output <= std logic vector (temp(width-1 downto 0));
if (temp(2*width-1 downto width) = 0) then
overflow <= '0"';
else
overflow <= '1';
end if;
end process;
end BHV1;
inputl 1 4
input2 10 5
output U 10 10 9
overflow u 0 0 0
architecture BHV2 of mult is
begin
process (inputl, input2)
variable temp : unsigned(2*width-1 downto O0);
begin
temp := unsigned (inputl) * unsigned(input2);
output <= std logic vector (temp(width-1 downto 0));
if (temp (2*width-1 downto width) = 0) then
overflow <= '0';
else
overflow <= '1';
end if;
end process;
end BHV2;
inputl 1 3
input2 10 5 3 5
output 10 10 9 20
overflow 0 0 0 0

4) (16 points points) a. Identify any violations of the synthesis coding guidelines for combinational logic
and b. specify the effect on the synthesized circuit.

library ieee;
use ieee.std logic 1164.all;
use ieee.numeric std.all;

entity mult is

generic (
width : positive := 16);

port (
inputl, input2 : in std logic vector(width-1 downto 0);
output : out std logic_vector (width-1 downto 0);
overflow : out std logic);

end mult;

architecture BHV4 of mult is
begin
process (inputl, input2)
variable temp : unsigned(2*width-1 downto 0);
begin
temp := unsigned (inputl) * unsigned (input2);
output <= std logic vector (temp(width-1 downto 0));

if (temp(2*width-1 downto width) /= 0) then
overflow <= 'l';
end if;
end process;
end BHV4;

a. Overflow isn’t specified on the else path
b. Infers a latch

5) (5 points) The following code is correct and will synthesize to combinational logic, but what
suggestion does it not follow?
architecture BHV3 of mult is

signal temp : unsigned(2*width-1 downto 0) := (others => '0');
begin

temp <= unsigned(inputl) * unsigned(input2);
output <= std logic vector (temp (width-1 downto 0));

process (temp)

begin
if (temp (2*width-1 downto width) = 0) then
overflow <= '0';
else
overflow <= '1"';
end if;
end process;
end BHV3;

Signals and variables should not be initialized in synthesizable code.

6)

(16 points) Fill in the provided code to create the illustrated structural architecture using a series of
pre-existing ff and mux2x1 components. Use the component declarations to determine their I/0.
Note that there are a total of width registers and width-1 muxes. The shift input acts as the select

for all muxes.
input

R
v v

library ieee;
use ieee.std logic 1164.all;

entity test is

generic (width : positive := 8);
port (
clk, rst, shift, input : in std logic;
output : out std:logic); output
end test;

architecture STR of test is

component ff
port (
clk, rst, D : in std logic;
Q : out std logic);
end component;

component mux2xl
port (
inl, in2, sel : in std logic;
output : out std logic);
end component;

signal g : std logic vector(width-1 downto 0);
signal mux out : std logic vector (width-1 downto 1);

begin

U FFO : ff port map (

clk => clk,
rst => rst,
d => input,
q => g (0)

U FFS : for 1 in 1 to width-1 generate

U FF : ff port map (
clk => clk,
rst => rst,

d => mux_out (i),
a => q(i)
)7

U _MUX : mux2xl port map (

inl => input,
in2 => q(i-1),
sel => shift,

output => mux out (i)

)
end generate U_FFS;
output <= g(width-1);

end STR;

7) a. (2 points) What is the propagation delay of operations during a functional simulation?
0
b. (2 points) What file represents the vhdl for a synthesized circuit used in timing simulations?
VHO
c. (2 points) What file specifies propagation delays of signals during timing simulations?

SDO

8) a. (9 points) Define the logic for the first 3 carry outs (c; to c;) of a carry lookahead adder (CLA) in
terms of the propagate signals (p;), generate signals (g;), and carry in (c).

¢l =g0 + p0cO

c2=gl+ plg0+ plp0cO
c3=g2 +p2gl + p2pl1g0 + p2plp0cO

b. (2 points) Define the propagate signal (p;) in terms of adder inputs x; and y..

pi=xi+vyi

c. (2 points) Define the generate signal (g;) in terms of adder inputs x; and y;.

gi =xiandyi

d. (3 points) True/false. Adding extra levels of carry lookahead logic trades off propagation delay for
reduced area compared to a single-level carry lookahead adder.

true

9) 3 free points for having to take a test at 8:30am.

