
EEL 4712 Name:
Midterm 3 – Spring 2015
VERSION 1
 UFID:

Sign here to give permission for your test to be returned in class, where others might see your score:

__

COVER SHEET:

Problem#: Points
1 (10 points)
2 (5 points)
3 (5 points)
4 (5 points)
5 (5 points)
6 (5 points)
7 (5 points)
8 (15 points)
9 (10 points)
10 (5 points)
11 (10 points)
12 (20 points)

IMPORTANT:
• Please be neat and write (or draw) carefully. If we cannot read it with a
reasonable effort, it is assumed wrong.

• As always, the best answer gets the most points.

Total:

Regrade Info:

1) (10 points) Draw a schematic of the FPGA mux-based circuit that would be synthesized for the
following bus structure. Assume there are tri-states at every location that writes to the bus.
Show how the A-F components connect to the inputs and outputs of the mux. You can omit
control signals.

2) (5 points) Why does a dual-flop synchronizer work for synchronizing single bits, but not for
multiple bits?

With a dual flop, the output is either the previous value or the correct value. For multiple bits, the
output could be incorrect.

3) (5 points) In what situation can a dual-flop synchronizer be used for multiple bits? Describe the
situation, don’t just give an example of a synchronizer that does this.

When the input is guaranteed to change by only 1 bit at a time (e.g. gray coding).

A B

D E

C

F

4x1 Mux

A B E F C D

4) (5 points) In many of the labs, you used a circuit similar to the following one. Extend this circuit
to prevent metastability from propagating into the finite state machine

5) (5 points) Name two synchronizers that can correctly handle multiple bits.

FIFO, handhake, mux recirculation

6) (5 points) Explain why the SBCR (subtract with borrow) instruction mathematically requires the
SETC (set carry) instruction to be executed first.

Two’s complement subtraction: output = in1 + not(in2) + 1
SBCR: output = in1 + not(in2) + C

If C != 1, then SBCR does not do a correct subtraction.

7) (5 points) In what situation would a program not use a SETC carry instruction before the SBCR
instruction?

When doing subtraction with inputs larger then 8 bits. For example, a 16-bit subtraction would do:

SETC

SBCR

SBCR

where the second subtraction potentially uses a borrow from the first subtract.

ff Finite State
Machine

clk

go
button ff

8) (15 points) Create a memory initialization file for the following assembly code. Add a comment
to show the beginning of each instruction and each variable in memory. Break your answer up
into two columns and/or use the following page.

OUTPORT0 EQU $FFFE

BEGIN:

 LDAI $03

 STAA COUNT

 LDXI BUFF

 LDAI $00

 STAR D

 CLRC

AGAIN:

 LDAA 0,X

 ADCR D

 STAR D

 LDAA COUNT

 DECA

 STAA COUNT

 INCX

 BNEA AGAIN

 LDAD

 STAA OUTPORT0

INFINITE_LOOP:

 CLRC

 BCCA INFINITE_LOOP

* Data Area

BUFF: dc.b $01

 dc.b $02

 dc.b $03

COUNT: ds.b 1

Depth = 256;

Width = 8;

Address_radix = hex;

Data_radix = hex;

% Program RAM Data %

Content

 Begin

0000: 84; --LDAI

0001: 03;

0002: F6; --STAA

0003: 26; --countL

0004: 00; --countH

0005: 8A; --LDXI

0006: 23; --buffL

0007: 00; --buffH

0008: 84; --LDAI

0009: 00;

000A: F1; --STAR

000B: F9; --CLRC

000C: BC; --LDAA 0,X AGAIN:

000D: 00;

000E: 01; --ADCR

000F: F1; --STAR

0010: 88; --LDAA

0011: 26; --countL

0012: 00; --countH

0013: FB; --DECA

0014: F6; --STAA

0015: 26; --countL

0016: 00; --countH

0017: FC; --INCX

0018: B4; --BNEA

0019: 0C;

001A: 00;

001B: 81; --LDAD

001C: F6; --STAA

001D: FE;

001E: FF;

001F: F9; --CLRC, INFINITE_LOOP:

0020: B0; --BCCA

0021: 1F;

0022: 00;

0023: 01; --BUFF[0], DATA_SEGMENT

0024: 02; --BUFF[1]

0025: 03; --BUFF[2]

0026: 01; --COUNT

[..00FF] : 00;

End;

9) (10 points) Describe what would happen during a simulation of the following 2-process FSMD

when the state reaches S_COUNT. Hint: this is the exact same code used in class.

architecture bhv of fsmd is

 type STATE_TYPE is (S_START, S_COUNT, S_DONE);

 signal state, next_state : STATE_TYPE;

 signal count : unsigned(3 downto 0);

 constant MAX_COUNT_VAL : natural := 10;

begin

 process (clk, rst)

 begin

 if (rst = '1') then

 state <= S_START;

 elsif (clk = '1' and clk'event) then

 state <= next_state;

 end if;

 end process;

 process(go, state, count)

 begin

 case state is

 when S_START =>

 done <= '0';

 count <= to_unsigned(1, count'length);

 if (go = '0') then

 next_state <= S_START;

 else

 next_state <= S_COUNT;

 end if;

 when S_COUNT =>

 done <= '0';

 count <= count + 1;

 if (count = MAX_COUNT_VAL) then

 next_state <= S_DONE;

 else

 next_state <= S_COUNT;

 end if;

 when S_DONE =>

 count <= to_unsigned(MAX_COUNT_VAL, count'length);

 done <= '1';

 next_state <= S_DONE;

 when others => null;

 end case;

 end process;

end bhv;

Process is sensitive to a signal
that it also defines. This causes an
infinite simulation loop.

10) (5 points) Assuming that the stack pointer is initially set to address 0x0206, show the state of the
stack and stack pointer immediately after the CALL FUNCTION3 instruction. Assume that none of
the instructions executed between function calls are returns.

CALL FUNCTION1 * addr 0x0010
 ….

FUNCTION1: ….
….
CALL FUNCTION2 * addr 0x0020
….

 FUNCTION2: ….
 ….
 CALL FUNCTION3 * addr = 0x0110
 ….

11) a. (5 points) Given a solution space with the following implementations, which of the solutions
are not Pareto optimal? If they are all Pareto optimal, state that.

a. Area: 5000 LUTs, Time: 3s
b. Area: 4000 LUTs, Time: 2s
c. Area: 3000 LUTs, Time 5s
d. Area: 2000 LUTs, Time 6s
e. Area: 1000 LUTs, Time 8s

b. (5 points) Given a solution space with the following implementations, which of the solutions
are not Pareto optimal? If they are all Pareto optimal, state that.

a. Area: 5000 LUTs, Time: 3s, Energy=10mJ
b. Area: 4000 LUTs, Time: 2s, Energy=15mJ
c. Area: 3000 LUTs, Time 5s, Energy=20mJ
d. Area: 2000 LUTs, Time 6s, Energy=25mJ
e. Area: 1000 LUTs, Time 8s, Energy=30mJ

They are all Pareto optimal. a is worse in both area and time, but best in energy.

0x0206

0x0205

0x0204

Memory

0x0203

0x0202

0x0201

0x0200

0x13

0x23

0x13

0x01

0x00

0x00

SP

12) a. (5 points) For the following code, create a schedule for the provided datapath. Ignore muxes
and other glue logic. Like the examples in class, assume that address calculations are done
without using the specified resources (i.e., address calculations cost nothing). Do not change the
code. List any assumptions.

for (int i=0; i < 1000000; i++) {

 a[i] = b[i]*22 + b[i+1]*28 + b[i+2]*54 + b[i+3]*97;

}

0) i=0
1) i < 1M
2) load b[i], b[i+1]
3) load b[i+2],b[i+3], a, b
4) c, d, e
5) g
6) f
7) i++

b. (5 points) What is the execution time in total cycles based on your schedule from part a?
Show your work.

Each iteration = 7 cycles, Total iterations = 1M
Execution time = 7 *1M = 7M cycles (actually 7M+1, but the +1 is negligible)

c. (5 points) Create a new schedule for the same code and datapath, except this time using 4
multipliers and 2 adders.

0) i=0
1) i < 1M
2) load b[i], b[i+1]
3) load b[i+2],b[i+3], a, b
4) c, d, e
5) g
6) f
7) i++

This is the same schedule.

d. (5 points) Given a solution space consisting of only the solutions from a and c, is c a Pareto
optimal solution? Explain your answer.

 C is not Pareto optimal because it has the same performance, but more area.

Datapath
2 multipliers
1 adder
1 comparator
1 memory for b[] (can read 2 elements/cycle)
1 memory for a[] (can write 1 element/cycle)

a b c d e f g

