EEL 4712 - Digital Design
Test 2 — Spring Semester 2009 Name

IMPORTANT:

¢ Please be neat and write (or draw) carefully throughout the test. If we cannot read it with a
reasonable effort, it is assumed wrong.

* As always, the best answer gets the most points.

1. Miscellaneous. (/0 M‘)
—(a) Clock debouncing using a shift register and a clock divider

Design a switch debouncing circuit using a clock divider and a shift register (with an AND
gate) with the following assumptions:

e The bouncing period of a switch is determined to be 8 milli-seconds.

e The system clock is 20 MHz

o The clock divider is designed using 16 flip-flops.

What is the minimum number of flip-flops can be used for the shift register that will “cover”
the bounding period of the switch?

(For credit, show work here) Z (answer)

fuedie 2745536
ﬁ”f F &’f " Mwww?m

L5526 <
r - — -
_ _ 65 2L
| el T - f’g,vzszza BHS ermemene
20KF0 |
+hcount = 0
. . lveount=0
(b) VGA display calculation: 'here
VSYNC_END i Pixel information for 4 (of 480) rows {4 x 640 pixels]
r —
VSYNC_BEGIN Pixel inforniation Jor 1 row (640 pixels)

r -~ -~

Video_On <“-D- "__l l_____, u I_

Horiz_Sync l__J “>:.E B é !_l !_I

4 4 44 ,
Vert_sync | HSYNC BEC!IN :
* 1 Horiz_Sync - H_DISPLAY_END g‘ - 3;;; ug
pulse for each = . u
I Vert_Sync row refresh (480 HSYNC_END D =25.17 uS
pulse for each rows per screen) B ’ u
screen refresh E= 0.94uS

%
For Lab 5, assuming the board clock frequency is 20 MHz, what constant. should be use for

HSYNC_END? For credit, please show work. S,? g % ﬂ?’ wa

(For credit, show work here.) (answeQ

/7’;’)/4/5 fps DFEAP = 2517+ 094427727885
Mf’ ij/ﬂéu ;0”2; (,' 2 {: 272?%/0 5-?7é

SOXp~ 7
i ,Q’fff

EEL 4712 - Digital Design

Test 2 — Spring Semester 2009 Name

/8

2. ASM/VHDL. Given below is a timing diagram (functional simulation) showing the desired
timings among the states and signals of a controller.

Name: jg 100.0ns 200.0ns 300.0ns

Resetn _I _
Clock 1L LT LT 1] 1]
AP state 2 WSt ¥s2 ¥ so ¥s2 ¥s1Ys2.
. — " C / : |

Outy B l |
—w5 OutZ LT L |]

@ (a) Construct an ASM diagram that will produce the above behavior. ,,(&@,)(

(b) Complete the VHDL specification (on the next page) of your ASM diagram. Please don't
change the structure of the code. In other words, you have to use the second CASE
statement to implement the conditional and unconditional outputs. (10 pts.)

ENTITY Test2P2 IS o -
PORT (Clock, Resetn, I~ :IN STD_LOGIC: --AQadtor +° Le7r? Lz~
outY, Outz . OUT STD_LOGIC);

END Test2P2;

EEL 4712 - Digital Design
Test 2 — Spring Semester 2009 Name

D) ARCHITECTURE ASMArch OF Test2P2 IS
/ TYPE ASMstateType IS (S0, S1, S2) ; -- User defined signal type
SIGNAL state : ASMstateType ;

BEGIN
PROCESS W%, W) -- state transitions

BEGIN
IF Resetn ='0' THEN s72¢¢ <= £z

ELSIF ((&pzd W7 An2 [fpefl= 7 °) THEN
CASE state IS
WHEN S0 =>

ZF zoX = 07 THEY <ﬁz‘é <= .fc)
LUSF sfale <= 525

EVD(F
WHEN S1 =>

s/l <=

WHEN S2 =>
ZF IX=p' Tvey S7ak< =50
LL58 =787 <= Sy

}Z)‘

ELD (F 5
END CASE ;
END IF ;
END PROCESS
PROCESS (7’@ -Z/?) -- conditional and uncond. outputs
BEGIN -
o7y e="0" —~MMJW% /%/ez%a, %O
L7 £ <= gt
CASE state IS — You have to use this CASE statement for the outputs.
WHEN S0 =>
WHEN S1 =>
7Y <= 0
aoery P
WHEN S2 => 2 x
V7T =
T~ _Z;.,,X (9 Wg/ﬁ/ &%7'}”4 /
P 1 F)
END CASE ; £ -

END PROCESS ;
END ASMArch ;

EEL 4712 - Digital Design
Test 2 — Spring Semester 2009 Name

P 3. VHDL / ASM. Given the VHDL specification, draw the corresponding ASM chart. (Put ASM

chart on the next page.)

/ 7 ENTITY Prob3 IS
PORT (Clock, ResetA, ResetB, EN :IN STD_LOGIC;
ReglLD, WE, SEL :OUT STD_LOGIC);
END Prob3 ;

ARCHITECTURE ASMArch OF Prob3 IS
SIGNAL state : STD_LOGIC_Vector (1 DOWNTO 0);
CONSTANT A : STD_LOGIC_Vector (1 DOWNTO 0):="01",
CONSTANT B : STD_LOGIC_Vector (1 DOWNTO 0):="11";
CONSTANT C : STD_LOGIC_Vector (1 DOWNTO 0):= "00";
CONSTANT D : STD_LOGIC_Vector (1 DOWNTO 0):="10"
BEGIN
PROCESS (state, ResetB, EN)
BEGIN
ReglLD <=0
WE <=0,
CASE state IS
WHEN A =>
IF ResetB = '1" AND EN ='1' THEN ReglLD <="1"; END IF;
WHEN B =>
ReglLD <= "1
WHEN C =>
ReglLD <="1",
IF ResetB ='0' AND EN ="'1' THEN WE <="1"; END IF;
WHEN OTHERS =>
END CASE ;
END PROCESS ;

SEL <="1" WHEN (state = “11") OR (state = "00" AND ResetB ='0' AND EN ='0') ELSE '0’;

PROCESS (ResetA, Clock) -- State transitions
BEGIN
IF ResetA ='0' THEN
state <= B ;
ELSIF (Clock'EVENT AND Clock ='1') THEN
CASE state IS
WHEN A =>
IF ResetB ='1' THEN state <= A ;
ELSIF EN ='0' THEN state <= C;
ELSE state <= “11";
END IF ;
WHEN B =>
IF ResetB = '1' THEN state <= A ;
ELSE state <= “10";
END IF;
WHEN “00" =>
IF ResetB = '1' THEN state <= A:
ELSE state <= D;

ENDIF;

WHEN D =>
state <= A;

WHEN OTHERS =>
state <= A;

END CASE ;
END IF ;
END PROCESS ;
END ASMArch ;

EEL 4712 - Digital Design
Test 2 — Spring Semester 2009 Name

3. (Continued)
(a) Put the ASM chart for Problem 3 here.

72

? (circle one)

(b) Is ResetA synchronous or@s ,
Is ResetB §¥! isor asynchronous? (circle one)

EEL 4712 - Digital Design
Test 2 — Spring Semester 2009

4. AltSynRam Problem

Name

|7

R __idatal7 0]

alts.érzcram1 al?..m; S

2k _z¢:Lio:c'5K

= sv?g;ess[T.O] L {V} ‘:f
- _D_ ‘2 |
: 'clock =

mst Blcck T;pe A

boATAmn o

DA 01
ThW

RAM

) data [tsynoramZ
- Bddress 7..%
" ooiwren a
oidata BI7.0 3
S ...address bi/..0 7%%
R | R .. iwrenb _D—%
Crte S N
et IR (/s S—]
Ve CLOCK: nsﬁgeocwme AUTO

g bI7.0L.

—AUTRILC > SinglePortZ[7.0] -

——RURI D alrueDualZ(7.0] ;-

“" ramdat.mif

Complete the following timing diagram.
Assume all flip-flops are initialized to ‘0’.
Both RAM’s has the same data (ramdat.mif).

01

s 5{}9 ns

’i{}[}]{} ns

15[}}{} ns

‘2&[}}{} ns

02:
03:
04
05:
06 :

Depth = 256;

Width = 8;
Address_radix = hex;
Data_radix = hex;
Content
Begin
00:

70;
L 71,
72,
73;
74;
75;
76;

07 :
08:
09:
OA :
0B:
0C:
efc.

77,
78;
79;
TA;
7B;
7C;

CLOCK

aDATAR

ahdar

allRen

I

|

|
|

==
Dol

= A

bDATAR

bAddr

e} ______

bWRen

=
Lo
L &

RN RN |

el

00| gl 2 4070 Rzl A2 R TR A
::::::::::;f?ﬂ::z@.:ef?zz@ ____ R TR0 R0 o) wr
""""" kﬁb ';é?'-'%f"":”"'é) "'Zé@"'jcif W5y s s/ RO-4/

_____________ t.-_-..___.._-______--_-_..___

Please put values in hex and an “X” where the value changes for SlngIePortZ, aTrueDualZ, and bTrueDualZ.

6

EEL 4712 — Digital Design

Test 2 — Spring Semester 2009 Name
5. FIR filter ASM problem
.F,U.:Q- datai31.0] This simple dual-port
Used by .| - alaicl . RAM replaces the
other .{ data[31..0] q[31..0] wraddress[s. .U input ROM in Lab 6 to
component L wrreq WEern =t H E - produce Input[31..0]
— rdreq empty — s % | toFIR Filter.
Connected [rdaddress]7. 0] 5
—pelock tolab6 {r-d-en =z
FIR Filter i H @ Input
|32 bits « 256 words clock & [31..0]
RDY
CtrCLR—> Address | wradddress
CtrEN —»| Generator > . Controll Lab 6
> Other —») ontroller FIR
Outputs .
Synchronous. Controller —» Controller — CUP Filter
. I —>»
e CLR clears counter nputs Start o
s EN increments counter clock—»{>

You are to design the controller of following component to fill the Input RAM for a Lab 6 FIR
filter (from Location 0 to Location 256). Note that the Input RAM plays the same role as the
Input ROM in Lab 6.
e The controller will wait until it receives a RDY = ‘1’ from the Lab 6 FIR filter, then it will
proceed to fill the Input RAM.
o It will check to see if the FIFO is empty
e If empty =1, it will wait.
e |fempty =0,
o |t will request a 32-bit value from the FIFO (set rdreq = ‘1’). The next value in the
FIFO will be outputed from the FIFO q[31..0] at the next active clock transition.
e This value should be written into the next location in the Input RAM.
e This will be done until the Input RAM is full (256 locations), each time making sure the
FIFO is not empty.
e When finished, it will signal the Lab 6 FIR filter by setting Start = ‘1" and return to the Wait
state.

Note:
Function of the FIFO:

o rdreq:
e 0: The output q[31..0] will hold the last value outputted from the FIFO.
¢ 1: The next value in the FIFO will be outputed from the FIFO g[31..0] at the next active
clock transition.
s empty:
¢ 0: The FIFO is not empty (there are some values in it).
o 1: The FIFO is empty.

EEL 4712 - Digital Design
Test 2 — Spring Semester 2009 Name

5. continued
(a) Complete the block diagram of the Controller, specifying all the Controller inputs and

Controller outputs. __W ; ,;' fc’:

— D St —
/{Zm@%w /7/2’/&"7?;‘:1
: 7%” Me&cfk’w%»

- ct EXf—>

(b) Put the ASM chart Fa—r'the Controller here.

EEL 4712 - Digital Design
est 2 — Spring Semester 2009 Name

” 6. FIR filter Datapath component, using GENERATE statement

(a) Shown on the next page is the example code that we discussed in class. Modify the code to make it
into a set of 32 multipliers. You can make the changes right on the code on the next page.

* You can assume that coeff(32 DOWNTO 1) have been defined and assigned for you to use.

b) Assume that we want to complete the 32-bit Datapath component, give me the code required to
implement the required 32-bit shift registers to produce reg(32 DOWNTO 1). y

é e Restriction: You cannot use PORT MAP statements for this part. (7 W ! gTeas Y7 j’j@«,{j
(Put your answer here, including any new TYPE or SIGNAL definitions)

fRopESS (2Lh)
e/ L
TEL LGN ALD S E) TRy
7?74;79 IR TN J 7O Bf LY
/,u)< /@Zﬁ (A +1)

AP L0 ’9/’ M
[22)<= //7/0

= //&7

ENVD fror ces

) Continuing with the 32-bit Datapath component, give me the code required to implement the NEXT
level of adders (i.e., you don't have to implement the other levels of adders).
L ey e)

e Restriction: This time, you have tc;iPORT MAP statements for this part.
(Put your answer here, including any new TYPE or SIGNAL definitions)

TWE ,@Wé ik /5 A //5p/m/"a/ 7. /
ﬁwxa MJZ/Z% Wdy/é%% ’ %
e FORL TN [Ko /b GEAEEAZZ
M@wj addon FNT AP

Sl => bk

2z = W’?M/Z*Z*/)/

At b => 4%%7‘/2*/)

gl = Ao |

P SERATE 2dds

EEL 4712 - Digital Design
Test 2 — Spring Semester 2009 Name

-- shippet of code to demonstrate Multi-dimensional arrays and GENERATE statement
ARCHITECTURE struct OF datapath IS
-- Definition of other components

COMPONENT multiplier IS
PORT (clock : IN STD_LOGIC:
dataa : IN STD_LOGIC_VECTOR(31 DOWNTO 0);
datab : IN STD_LOGIC_VECTOR(31 DOWNTO 0);
result: OUT STD_LOGIC_VECTOR(31 DOWNTO 0));
END COMPONENT;

COMPONENT adder IS

PORT (clock . IN STD_LOGIC :
dataa - IN STD_LOGIC_VECTOR (31 DOWNTO 0);
datab . IN STD_LOGIC_VECTOR (31 DOWNTO 0);
result - OUT STD_LOGIC_VECTOR (31 DOWNTO 0));

END COMPONENT;

SUBTYPE signalVectors IS STD_LOGIC_VECTOR(31 DOWNTO 0);
TYPE array4OfSignals IS ARRAY (4 DOWNTO 1) OF signalVectors;
TYPE array50f8|gnals IS ARRAY(5 DOWNTO 1) OF signalVectors;

7;/@" WZ%W /5 MAA /ﬁzmmz) Q&FA%/%@ " ,

SIGNAL coeff: array320fSi§naIs; -- You can assume that coeff(32 DOWNTO 1) have
o -- been defined and assigned for you to use.
72

SIGNAL reg: arra;ﬁOfSugnals -- reg(4 DOWNTO 1) are outputs of the 4 registers
- reg(5) is the input to the left-most registers

SIGNAL mout; arraWOf&gnals

2
BEGIN z

-- shift register code

Z 2
mults: FOR i IN 1 to # GENERATE
multArray : multiplier PORT MAP (clock=>clk, dataa=>coeff(i),
datab=>reg(i), result—>mout(|))
END GENERATE mults;

-- code for adders

END struct;

10

