
Lab 1: Finite State Machines + Datapaths
EEL 6935 – Reconfigurable Computing 2

Objective:
The objective of this lab is to use a finite state machine integrated with a datapath to calculate the

number of asserted bits in a given input using several different SystemVerilog models.

Required tools and parts:
Quartus2 software package, ModelSim-Altera Starter Edition

Lab requirements:
1. Study the following pseudo-code to make sure you understand the basic algorithm for efficiently

calculating the number of asserted bits in a given input.

// inputs: go, in (WIDTH bits)

// outputs: out (clog2(WIDTH+1) bits), done

// reset values (add any others that you might need)

out = 0;

done = 0;

while(1) {

 // wait for go to start circuit

 while (go == 0);

 done = 0;

 count = 0;

 // store input in register

 n_r = in;

 // main algorithm

 while(n_r != 0) {

 n_r = n_r & (n_r – 1);

 count ++;

}

 // assign output and assert done

 output = count;

 done = 1;

}

1-process FSMD
2. Using the provided file asserted_bit_count.sv, fill in the asserted_bit_count_fsmd_1p module with a

design that uses the 1-process FSMD model. Done should remain asserted until the application
is started again, which is represented by go being asserted while done is asserted signal
followed by a 1. Done should be cleared on the cycle after go is asserted.

Use the provided testbench to test your module. Note that the testbench only tests a single module.
Therefore, make sure the following line:

asserted_bit_count_fsmd_1p #(.WIDTH(WIDTH)) DUT (.*);

is uncommented, and that all other modules are commented out. For the other parts of the lab, you
will specify a different module.

Lab 1: Finite State Machines + Datapaths
EEL 6935 – Reconfigurable Computing 2

2-process FSMD
3. Repeat the same process as the previous step, but using a 2-process FSMD in the

asserted_bit_count_fsmd_2p module.

Use the provided testbench to test your module. Note that the testbench only tests a single module.
Therefore, make sure the following line:

asserted_bit_count_fsmd_2p #(.WIDTH(WIDTH)) DUT (.*);

is uncommented, and that all other modules are commented out.

Datapath
4. In this step, you will create your own datapath to implement the algorithm. Create your own datapath

module in a new file (datapath.sv). Implement it however you like (behaviorally, structurally, with an
number of resources, etc.). Draw a schematic of the datapath and include it in the report described
below.

FSM
5. Create a 2-process finite-state machine in a new file (fsm.sv) that works with your custom datapath to

implement the algorithm.

FSM+D
6. Connect your FSM and datapath together in the asserted_bit_count_fsm_plus_d module of

asserted_bit_count.sv.

Use the provided testbench to test your module. Note that the testbench only tests a single module.
Therefore, make sure the following line:

asserted_bit_count_fsm_plus_d #(.WIDTH(WIDTH)) DUT (.*);

 is uncommented, and that all other modules are commented out.

Report

7. Create a report that illustrates
a. A simulation screenshot of each of the modules with the provided testbench. Make sure

the screenshot shows the number of passed and failed tests.
b. A screenshot of each module synthesized in Quartus proving there are no warnings (you

can modify the module at the bottom of the asserted_bit_count.sv file to easily change
the top level).

c. Your datapath schematic.

Turn in instructions:
To submit your lab please create a folder that is named lab1. Inside that folder include:

 Your modified asserted_bit_count.sv file.

 Your datapath and fsm files (datapath.sv and fsm.sv).

 Your report (report.pdf)

 README.txt with your group member names. If any problems occurred that I should be aware of
for grading, include them here.

