
EEL 4712 Name:
Midterm 3 – Spring 2018
VERSION 1
 UFID:

Sign here to give permission for your test to be returned in class, where others might see your score:

__

COVER SHEET:
Problem#: Points
1 (3 points)
2 (3 points)
3 (4 points)
4 (3 points)
5 (3 points)
6 (6 points)
7 (3 points)
8 (3 points)
9 (3 points)
10 (3 points)
11 (3 points)
12 (8 points)
13 (12 points)
14 (5 points)
15 (8 points)
16 (24 points)
17 (6 points) 6

IMPORTANT:

• Please be neat and write (or draw) carefully. If we cannot read it with a
reasonable effort, it is assumed wrong.

• As always, the best answer gets the most points.

Total:

Regrade Info:

1) (3 points) True/false. During FPGA synthesis, a bus with 4 sources connected by 4 tristates gets
replaced by an 8x1 mux.

2) (3 points) What causes a flip-flop output to become metastable?

3) (4 points) What are the two situations where metastability is unavoidable?

4) (3 points) You are designing a circuit that feeds data to a pipeline from an external memory
running on a different clock. What type of synchronizer should you use for this signal?

5) (3 points) You are designing a circuit that occasionally transfers a multi-bit control signal across
clock domains. What type of synchronizer should you use for this signal?

6) (6 points) Complete the handshake architecture shown below by adding flip flops to the send

and ack signals. Connect each flip flop to the appropriate clock.

FSM Register

FSM Register

Clk_src

Clk_dest

send

ack

en

7) (3 points) A MIPS Jump and Link instruction stores a return address into what register?

8) (3 points) What value is always stored in MIPS register 0?

9) (3 points) MIPS jump instructions specify a target using an instruction index instead of a byte

address. How does the datapath convert this instruction index into a byte address? (Describe
high-level functionality, not specific control signals)

10) (3 points) What MIPS instructions set the HI and LO registers?

11) (3 points) What range of byte addresses get mapped to the RAM inside of the memory entity?

12) (8 points) Write MIPS assembly code that matches the following behavior. Inport0 corresponds

to byte address 0xFFF8. Outport corresponds to byte address 0xFFFC. Use $r0-$r31 for registers.
Make two columns if necessary.

x = inport0;

if (x > 10) {

y = 10;

else

 y = 15;

}

outport = y;

13) (12 points) Create a memory initialization file for the following assembly code. Add comments as
necessary. Put a small space between different instruction fields to make it easier to read.

lw $r1, 0x000F($r0)

addiu $r2, $r1, 0x7

addiu $r3, $r0, 0xA

xor $r4, $r2, $r3

 sw $r4, 0xFFFC($r0)

DONE:

 j DONE

Depth = 256;

Width = 32;

Address_radix = hex;

Data_radix = bin;

% Program RAM Data %

Content

Begin

End;

14) (5 points) Given a solution space with the following implementations, which of the solutions are
not Pareto optimal? If they are all Pareto optimal, state that.

a. Area: 500 LUTs, Time: 18s
b. Area: 700 LUTs, Time: 20s
c. Area: 2000 LUTs, Time: 12s
d. Area: 2500 LUTs, Time: 17s
e. Area: 3000 LUTs, Time: 8s

15) (4 points) a. For the solution space in problem 14, what tradeoff (a-e) would be best if the
optimization goal was to minimize execution time with a LUT constraint of 2500 LUTs?

(4 points) b. What tradeoff would be best for an optimization goal of minimizing LUTs given a
time constraint of 10s?

16) a. (8 points) For the following code, create a schedule for the provided datapath. Ignore muxes,
registers, and other glue logic. Like the examples in class, assume that address calculations are
done without using the specified resources (i.e., address calculations cost nothing). Do not
change the code. Do not unroll or pipeline the loop. List any assumptions.

for (int i=0; i < 10000; i++) {

 a[i] = b[i]*10 + b[i+1]*20 + b[i+2]*30 + b[i+3]*40;

}

Datapath
4 multipliers
2 adders
1 comparator
1 memory for b[] (can read 4 elements/cycle)
1 memory for a[] (can write 1 element/cycle)

b. (4 points) What is the execution time in total cycles based on your schedule from part a?
Show your work.

c. (4 points) What is the execution time in total cycles after unrolling the loop once (i.e.
replicating the datapath).

d. (4 points) For a pipelined implementation of the datapath in part a with no unrolling, what is
the approximate execution time in total cycles? Show your work.

e. (4 points) For a pipelined implementation of the datapath in part a after unrolling the loop
once, what is the approximate execution time in total cycles? Show your work.

17) (6 points) Free points just because.

Category OpCode (Hex) Function (Hex) Instruction Example Meaning MIPS? Comments IsSigned = false
Arithmetic 0x00 0x21 add - unsigned addu $s1, $s2, $s3 $s1 = $s2 + $s3 yes Adds two registers and stores the result in a register

0x09 add immediate unsigned addiu $s1, $s2, IMM $s1 = $s2 + IMM yes Adds a register and a sign-extended immediate value and stores the result in a register
0x00 0x23 sub unsigned subu $s1, $s2, $s3 $s1 = $s2 - $s3 yes Subtracts two registers and stores the result in a register
0x10 (not MIPS) sub immediate unsigned subiu $s1, $s2, IMM $s1 = $s2 - IMM no Subtracts IMM from a register and stores the result in a register
0x00 0x18 mult mult $s, $t $LO= $s * $t yes Multiplies $s by $t and stores the result in $LO.
0x00 0x19 mult unsigned multu $s, $t $LO= $s * $t yes Multiplies $s by $t and stores the result in $LO.

Logical 0x00 0x24 and and $s1, $s2, $s3 $s1 = $s2 and $s3 yes
The contents of s3 are combined with the contents of s2 in a bitwise logical AND operation.
The result is placed into s1.

0x0C andi andi $s1, $s2, IMM $s1 = $s2 and IMM yes
The 16-bit immediate is zero-extended to the left and combined with the contents of s2 in a
bitwise logical AND operation. The result is placed into s1. yes

0x00 0x25 or or $s1, $s2, $s3 $s1 = $s2 or $s3 yes
The contents of s3 are combined with the contents of s2 in a bitwise logical OR operation.
The result is placed into s1.

0x0D ori ori $s1, $s2, IMM $s1 = $s2 or IMM yes
The 16-bit immediate is zero-extended to the left and combined with the contents of s2 in a
bitwise logical OR operation. The result is placed into s1. yes

0x00 0x26 xor xor $s1, $s2, $s3 $s1 = $s2 xor $s3 yes
Combine the contents of s3 and s2 in a bitwise logical exclusive OR operation and place the
result into s1.

0x0E xori xori $s1, $s2, IMM $s1 = $s2 xor IMM yes
Combine the contents of s2 and the 16-bit zero-extended immediate in a bitwise logical
exclusive OR operation and place the result into s1. yes

0x00 0x02 srl -shift right logical srl $s1, $s2, H $s1 = $s2 >> H yes
These logical shifts append 0s. Where H is the number of shifts desired. H is an 5-bit
immediate value stored in bits 10-6 of the instruction register.

0x00 0x00 sll -shift left logical sll $s1, $s2, H $s1 = $s2 << H yes
These logical shifts append 0s. Where H is the number of shifts desired. H is an 5-bit
immediate value stored in bits 10-6 of the instruction register.

0x00 0x03 sra -shift right arithmetic sra $s1, $s2, H $s1 = $s2 >> H yes
These arithmetic shifts, if signed bit is 1, will append 1s. If signed bit is 0, will append 0s. H
is an 5-bit immediate value stored in bits 10-6 of the instruction register.

0x00 0x2A slt -set on less than signed slt $s1,$s2, $s3 $s1=1 if $s2 < $3 else $s1=0 yes

Compare the contents of s3 and s2 as signed integers and record the Boolean result of the
comparison in s1. If s2 is less than s3 the result is 1 (true), otherwise 0 (false). The
arithmetic comparison does not cause an Integer Overflow exception.

0x0A slti -set on less than immediate signed slti $s1,$s2, IMM $s1=1 if $s2 < IMM else $s1=0 yes

Compare the contents of s2 and the 16-bit signed immediate as signed integers and record
the Boolean result of the comparison in s1. If s2 is less than immediate the result is 1 (true),
otherwise 0 (false). The arithmetic comparison does not cause an Integer Overflow
exception.

0x0B sltiu- set on less than immediate unsigned sltiu $s1,$s2, IMM $s1=1 if $s2 < IMM else $s1=0 yes

Compare the contents of s2 and the sign-extended 16-bit immediate as unsigned integers
and record the Boolean result of the comparison in s1. If s2 is less than immediate the result
is 1 (true), otherwise 0 (false). Because the 16-bit immediate is sign-extended before
comparison, the instruction is able to represent the smallest or largest unsigned numbers.
The representable values are at the minimum [0, 32767] or maximum [max_unsigned-32767,
max_unsigned] end of the unsigned range. The arithmetic comparison does not cause an
Integer Overflow exception

0x00 0x2B sltu - set on less than unsigned sltu $s1,$s2, $s3 $s1=1 if $s2 < $s3 else $s1=0 yes

Compare the contents of s3 and s2 as unsigned integers and record the Boolean result of the
comparison in s1. If s3 is less than s2 the result is 1 (true), otherwise 0 (false). The
arithmetic comparison does not cause an Integer Overflow exception.

0x00 0x10 mfhi -move from Hi mfhi $s1 $s1= HI yes

The two instructions that follow an MFHI instruction must not be instructions that modify the
HI register: DDIV, DDIVU, DIV, DIVU, DMULT, DMULTU, MTHI, MULT, MULTU. If this
restriction is violated, the result of the MFHI is undefined.

0x00 0x12 mflo -move from LO mflo $s1 $s1= LO yes

The two instructions that follow an MFLO instruction must not be instructions that modify the
LO register: DDIV, DDIVU, DIV, DIVU, DMULT, DMULTU, MTLO, MULT, MULTU. If this
restriction is violated, the result of the MFLO is undefined.

Load/Store 0x23 load word lw $s1, offset($s2) $s1 = RAM[$s2+offset] yes

The contents of the 32-bit word at the memory location specified by the aligned effective
address are fetched, sign-extended to the register length if necessary, and placed in s1. The
16-bit signed offset is added to the contents of s2 to form the effective address yes (will be chang

0x2B store word sw $s1, offset($s2) RAM[$s2+offset] = $s1 yes

The least-significant 32-bit word of register s1 is stored in memory at the location specified
by the aligned effective address. The 16-bit signed offset is added to the contents of s2 to
form the effective address. yes (will be chang

Branch 0x04 branch on equal beq $s1,$s2, TARGET if $s1=$s2, PC += 4+TARGET yes
Branches to the specified label when the contents of s1 equal the contents of s2, or it can
branch when the contents of s1 equal the immediate value.

0x05 branch not equal bne $s1,$s2, TARGET if $s1/=$s2, PC += 4+TARGET yes
Branches to the specified label when the contents of s1 do not equal the contents of s2, or it
can branch when the contents of s1 do not equal the immediate value.

0x06 Branch on Less Than or Equal to Zero blez $s1, TARGET if $s1 <= 0, PC += 4+TARGET yes
Branches to the specified label when the contents of s1 are less than or equal to zero. The
program must define the destination.

0x07 Branch on Greater Than Zero bgtz $s1, TARGET if $s1 > 0, PC += 4+TARGET yes Branches to the specified label when the contents of s1 are greater than zero.

0x01 Branch on Less Than Zero bltz $s1, TARGET if $s1 < 0, PC += 4+TARGET yes
Branches to the specified label when the contents of s1 are less than zero. The program
must define the destination.

0x01 Branch on Greater Than or Equal to Zero bgez $s1, TARGET if $s1 >= 0, PC += 4+TARGET yes Branches to the specified label when the contents of s1 are greater than or equal to zero.

Unconditional Jump
0x02 jump to address j TARGET PC = TARGET yes This is a way of always jumping to an address given in the
0x03 jump and link jal TARGET $ra = PC+4 and PC = TARGET yes This is the equivalent of the call instruction. The return address is stored in $ra ($31)

0x00 0x08 jump register jr $ra PC = $ra yes
This can be used to jump to an address held in a register. For example the address held in
$ra($31) after a jal is the return address.

130 MIPS32™ Architecture For Programmers Volume II, Revision 0.95

LW

Format: LW rt, offset(base) MIPS32 (MIPS I)

Purpose:

To load a word from memory as a signed value

Description: rt ← memory[base+offset]

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched,
sign-extended to the GPR register length if necessary, and placed in GPR rt. The 16-bit signed offset is added to the
contents of GPR base to form the effective address.

Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Operation:
vAddr ← sign_extend(offset) + GPR[base]
if vAddr1..0 ≠ 02 then

SignalException(AddressError)
endif
(pAddr, CCA)← AddressTranslation (vAddr, DATA, LOAD)
memword← LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
GPR[rt]← memword

Exceptions:

TLB Refill, TLB Invalid, Bus Error, Address Error

31 26 25 21 20 16 15 0

LW

100011
base rt offset

6 5 5 16

Load Word LW

MIPS32™ Architecture For Programmers Volume II, Revision 0.95 35

ADDIU

Format: ADDIU rt, rs, immediate MIPS32 (MIPS I)

Purpose:

To add a constant to a 32-bit integer

Description: rt ← rs + immediate

The 16-bit signed immediate is added to the 32-bit value in GPR rs and the 32-bit arithmetic result is placed into
GPR rt.

No Integer Overflow exception occurs under any circumstances.

Restrictions:

None

Operation:
temp ← GPR[rs] + sign_extend(immediate)
GPR[rt]← temp

Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. This instruction is appropriate for unsigned arithmetic, such as address arithmetic, or integer arith-
metic environments that ignore overflow, such as C language arithmetic.

31 26 25 21 20 16 15 0

ADDIU

001001
rs rt immediate

6 5 5 16

Add Immediate Unsigned Word ADDIU

MIPS32™ Architecture For Programmers Volume II, Revision 0.95 243

XOR

Format: XOR rd, rs, rt MIPS32 (MIPS I)

Purpose:

To do a bitwise logical Exclusive OR

Description: rd ← rs XOR rt

Combine the contents of GPRrs and GPRrt in a bitwise logical Exclusive OR operation and place the result into
GPRrd.

Restrictions:

None

Operation:

GPR[rd] ← GPR[rs] xor GPR[rt]

Exceptions:

None

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

XOR

100110

6 5 5 5 5 6

Exclusive OR XOR

208 MIPS32™ Architecture For Programmers Volume II, Revision 0.95

SW

Format: SW rt, offset(base) MIPS32 (MIPS I)

Purpose:

To store a word to memory

Description: memory[base+offset] ← rt

The least-significant 32-bit word of registerrt is stored in memory at the location specified by the aligned effective
address. The 16-bit signedoffsetis added to the contents of GPRbaseto form the effective address.

Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr 1..0 ≠ 0 2 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, STORE)
dataword ← GPR[rt]
StoreMemory (CCA, WORD, dataword, pAddr, vAddr, DATA)

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Address Error

31 26 25 21 20 16 15 0

SW

101011
base rt offset

6 5 5 16

Store Word SW

MIPS32™ Architecture For Programmers Volume II, Revision 0.95 115

J

Format: J target MIPS32 (MIPS I)

Purpose:

To branch within the current 256 MB-aligned region

Description:

This is a PC-region branch (not PC-relative); the effective target address is in the “current” 256 MB-aligned region.
The low 28 bits of the target address is the instr_index field shifted left 2 bits. The remaining upper bits are the corre-
sponding bits of the address of the instruction in the delay slot (not the branch itself).

Jump to the effective target address. Execute the instruction that follows the jump, in the branch delay slot, before
executing the jump itself.

Restrictions:

Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:
I:
I+1:PC ← PCGPRLEN..28 || instr_index || 0

2

Exceptions:

None

Programming Notes:

Forming the branch target address by catenating PC and index bits rather than adding a signed offset to the PC is an
advantage if all program code addresses fit into a 256 MB region aligned on a 256 MB boundary. It allows a branch
from anywhere in the region to anywhere in the region, an action not allowed by a signed relative offset.

This definition creates the following boundary case: When the jump instruction is in the last word of a 256 MB
region, it can branch only to the following 256 MB region containing the branch delay slot.

31 26 25 0

J

000010
instr_index

6 26

Jump J

	supplement.pdf
	ins_details.pdf
	sw.pdf
	MIPS32™ Architecture For Programmers Volume�II: The MIPS32™ Instruction Set
	Table of Contents
	List of Figures
	List of Tables
	About This Book
	1.1� Typographical Conventions
	1.1.1� Italic Text
	1.1.2� Bold Text
	1.1.3� Courier Text

	1.2� UNPREDICTABLE and UNDEFINED
	1.2.1� UNPREDICTABLE
	1.2.2� UNDEFINED

	1.3� Special Symbols in Pseudocode Notation
	1.4� For More Information

	Guide to the Instruction Set
	2.1� Understanding the Instruction Fields
	2.1.1� Instruction Fields
	2.1.2� Instruction Descriptive Name and Mnemonic
	2.1.3� Format Field
	2.1.4� Purpose Field
	2.1.5� Description Field
	2.1.6� Restrictions Field
	2.1.7� Operation Field
	2.1.8� Exceptions Field
	2.1.9� Programming Notes and Implementation Notes Fields

	2.2� Operation Section Notation and Functions
	2.2.1� Instruction Execution Ordering
	2.2.2� Pseudocode Functions
	2.2.2.1� Coprocessor General Register Access Functions
	COP_LW
	COP_LD
	COP_SW
	COP_SD

	2.2.2.2� Load Memory and Store Memory Functions
	AddressTranslation
	LoadMemory
	StoreMemory
	Prefetch

	2.2.2.3� Access Functions for Floating Point Registers
	ValueFPR
	StoreFPR

	2.2.2.4� Miscellaneous Functions
	SyncOperation
	SignalException
	NullifyCurrentInstruction
	CoprocessorOperation
	JumpDelaySlot
	FPConditionCode
	SetFPConditionCode

	2.3� Op and Function Subfield Notation
	2.4� FPU Instructions

	The MIPS32™ Instruction Set
	3.1� Compliance and Subsetting
	3.2� Alphabetical List of Instructions
	ABS.fmt
	ADD
	ADD.fmt
	ADDI
	ADDIU
	ADDU
	AND
	ANDI
	B
	BAL
	BC1F
	BC1FL
	BC1T
	BC1TL
	BC2F
	BC2FL
	BC2T
	BC2TL
	BEQ
	BEQL
	BGEZ
	BGEZAL
	BGEZALL
	BGEZL
	BGTZ
	BGTZL
	BLEZ
	BLEZL
	BLTZ
	BLTZAL
	BLTZALL
	BLTZL
	BNE
	BNEL
	BREAK
	C.cond.fmt
	CACHE
	CEIL.W.fmt
	CFC1
	CFC2
	CLO
	CLZ
	COP2
	CTC1
	CTC2
	CVT.D.fmt
	CVT.S.fmt
	CVT.W.fmt
	DERET
	DIV
	DIV.fmt
	DIVU
	ERET
	FLOOR.W.fmt
	J
	JAL
	JALR
	JR
	LB
	LBU
	LDC1
	LDC2
	LH
	LHU
	LL
	LUI
	LW
	LWC1
	LWC2
	LWL
	LWR
	MADD
	MADDU
	MFC0
	MFC1
	MFC2
	MFHI
	MFLO
	MOV.fmt
	MOVF
	MOVF.fmt
	MOVN
	MOVN.fmt
	MOVT
	MOVT.fmt
	MOVZ
	MOVZ.fmt
	MSUB
	MSUBU
	MTC0
	MTC1
	MTC2
	MTHI
	MTLO
	MUL
	MUL.fmt
	MULT
	MULTU
	NEG.fmt
	NOP
	NOR
	OR
	ORI
	PREF
	ROUND.W.fmt
	SB
	SC
	SDBBP
	SDC1
	SDC2
	SH
	SLL
	SLLV
	SLT
	SLTI
	SLTIU
	SLTU
	SQRT.fmt
	SRA
	SRAV
	SRL
	SRLV
	SSNOP
	SUB
	SUB.fmt
	SUBU
	SW
	SWC1
	SWC2
	SWL
	SWR
	SYNC
	SYSCALL
	TEQ
	TEQI
	TGE
	TGEI
	TGEIU
	TGEU
	TLBP
	TLBR
	TLBWI
	TLBWR
	TLT
	TLTI
	TLTIU
	TLTU
	TNE
	TNEI
	TRUNC.W.fmt
	WAIT
	XOR
	XORI

	Revision History

	xor.pdf
	MIPS32™ Architecture For Programmers Volume�II: The MIPS32™ Instruction Set
	Table of Contents
	List of Figures
	List of Tables
	About This Book
	1.1� Typographical Conventions
	1.1.1� Italic Text
	1.1.2� Bold Text
	1.1.3� Courier Text

	1.2� UNPREDICTABLE and UNDEFINED
	1.2.1� UNPREDICTABLE
	1.2.2� UNDEFINED

	1.3� Special Symbols in Pseudocode Notation
	1.4� For More Information

	Guide to the Instruction Set
	2.1� Understanding the Instruction Fields
	2.1.1� Instruction Fields
	2.1.2� Instruction Descriptive Name and Mnemonic
	2.1.3� Format Field
	2.1.4� Purpose Field
	2.1.5� Description Field
	2.1.6� Restrictions Field
	2.1.7� Operation Field
	2.1.8� Exceptions Field
	2.1.9� Programming Notes and Implementation Notes Fields

	2.2� Operation Section Notation and Functions
	2.2.1� Instruction Execution Ordering
	2.2.2� Pseudocode Functions
	2.2.2.1� Coprocessor General Register Access Functions
	COP_LW
	COP_LD
	COP_SW
	COP_SD

	2.2.2.2� Load Memory and Store Memory Functions
	AddressTranslation
	LoadMemory
	StoreMemory
	Prefetch

	2.2.2.3� Access Functions for Floating Point Registers
	ValueFPR
	StoreFPR

	2.2.2.4� Miscellaneous Functions
	SyncOperation
	SignalException
	NullifyCurrentInstruction
	CoprocessorOperation
	JumpDelaySlot
	FPConditionCode
	SetFPConditionCode

	2.3� Op and Function Subfield Notation
	2.4� FPU Instructions

	The MIPS32™ Instruction Set
	3.1� Compliance and Subsetting
	3.2� Alphabetical List of Instructions
	ABS.fmt
	ADD
	ADD.fmt
	ADDI
	ADDIU
	ADDU
	AND
	ANDI
	B
	BAL
	BC1F
	BC1FL
	BC1T
	BC1TL
	BC2F
	BC2FL
	BC2T
	BC2TL
	BEQ
	BEQL
	BGEZ
	BGEZAL
	BGEZALL
	BGEZL
	BGTZ
	BGTZL
	BLEZ
	BLEZL
	BLTZ
	BLTZAL
	BLTZALL
	BLTZL
	BNE
	BNEL
	BREAK
	C.cond.fmt
	CACHE
	CEIL.W.fmt
	CFC1
	CFC2
	CLO
	CLZ
	COP2
	CTC1
	CTC2
	CVT.D.fmt
	CVT.S.fmt
	CVT.W.fmt
	DERET
	DIV
	DIV.fmt
	DIVU
	ERET
	FLOOR.W.fmt
	J
	JAL
	JALR
	JR
	LB
	LBU
	LDC1
	LDC2
	LH
	LHU
	LL
	LUI
	LW
	LWC1
	LWC2
	LWL
	LWR
	MADD
	MADDU
	MFC0
	MFC1
	MFC2
	MFHI
	MFLO
	MOV.fmt
	MOVF
	MOVF.fmt
	MOVN
	MOVN.fmt
	MOVT
	MOVT.fmt
	MOVZ
	MOVZ.fmt
	MSUB
	MSUBU
	MTC0
	MTC1
	MTC2
	MTHI
	MTLO
	MUL
	MUL.fmt
	MULT
	MULTU
	NEG.fmt
	NOP
	NOR
	OR
	ORI
	PREF
	ROUND.W.fmt
	SB
	SC
	SDBBP
	SDC1
	SDC2
	SH
	SLL
	SLLV
	SLT
	SLTI
	SLTIU
	SLTU
	SQRT.fmt
	SRA
	SRAV
	SRL
	SRLV
	SSNOP
	SUB
	SUB.fmt
	SUBU
	SW
	SWC1
	SWC2
	SWL
	SWR
	SYNC
	SYSCALL
	TEQ
	TEQI
	TGE
	TGEI
	TGEIU
	TGEU
	TLBP
	TLBR
	TLBWI
	TLBWR
	TLT
	TLTI
	TLTIU
	TLTU
	TNE
	TNEI
	TRUNC.W.fmt
	WAIT
	XOR
	XORI

	Revision History

