EEL 4712 Name:

Midterm 1 — Spring 2018
VERSION 1
UFID:

Sign here to give permission to return your test in class, where other students might see your score:

IMPORTANT:

* Please be neat and write (or draw) carefully. If we cannot read it with a
reasonable effort, it is assumed wrong.

* As always, the best answer gets the most points.

COVER SHEET:

Problemtit: Points

1 (25 points)

2 (6 points) Total:

3 (6 points)

4 (25 points)

5 (15 points) Regrade Info:

6 (8 points)

7 (10 points)

8 (5 points) 5

ENTITY entity name IS

PORT (__ input name, input name : IN STD LOGIC;
__input vector name : IN STD LOGIC VECTOR(_ high downto low);
__bidir name, bidir name : INOUT STD LOGIC;

__output name, output name : OUT STD LOGIC) ;
END entity name;

ARCHITECTURE a OF entity name IS
SIGNAL signal name : STD LOGIC;
BEGIN

—-— Process Statement

-- Concurrent Signal Assignment

-- Conditional Signal Assignment

—-- Selected Signal Assignment

-- Component Instantiation Statement

END a;

__instance name: _ component name

GENERIC MAP(_ component generic => connect generic)
PORT MAP (component port => connect port,
__component port => connect port);

WITH expression SELECT

__signal <= expression WHEN _ constant value,
__expression WHEN _ constant value,
__expression WHEN _ constant value,
~_expression WHEN _ constant value;

__signal <= expression WHEN boolean expression ELSE
__expression WHEN boolean expression ELSE
__expression;

IF expression THEN
___statement;
___statement;

ELSIF expression THEN
___statement;
___statement;

ELSE

___statement;
___statement;

END IF;

CASE expression IS
WHEN constant value =>
___statement;
___statement;
WHEN constant value =>
___statement;
___statement;
WHEN OTHERS =>
___statement;

statement;
END CASE;

<generate label>: FOR <loop id> IN <range> GENERATE
—-—- Concurrent Statement (s)

END GENERATE;

type array type is array(_ upperbound downto _ lowerbound) ;

1) (25 points) Fill in the VHDL to implement the illustrated circuit. Assume that clk and rst connect to
every register in the schematic. All wires/operations are width bits except for in4, which is a single
bit. Ignore adder overflow. Assume the mux selects the left input when in4 = ‘1’. Use the next page if

necessary.
library ieee;
use ieee.std logic_1164.all;

use ieee.numeric std.all;

entity example is

generic (width : positive := 8);
port (
clk, rst : in std logic;
inl, in2, in3 : in std logic vector (width-1 downto 0);
in4 : in std logic;
outl, out?2 : out std logic vector (width-1 downto 0));

end example;

architecture BHV of example is

signal reg _add2 out, reg in3, reg in3 2 : std logic vector (width-1 downto

signal addl out, add2 out

begin
process (clk, rst)
begin
if (rst = 'l') then
reg add2 out <= (others => '0');
reg in3 <= (others => '0");
reg in3 2 <= (others => '0");

elsif (rising edge(clk)) then
reg add2 out <= add2 out;

reg in3 <= in3;
reg in3 2 <= reg in3;
end if;

end process;

out2 <= reg in3;

addl_out <= std_logic_vector (unsigned(inl)+unsigned(in2)) ;
add2 out <= std _logic_vector (unsigned(addl_out)+unsigned(in3));

process (reg add2 out, reg in3 2, in4)

begin
if (in4 = '1') then
outl <= reg add2 out;
else
outl <= reg in3 2;
end if;

end process;

end BHV;

inl in2
in3
A
’ Reg
Reg ’ Reg
v v
2x1
. \
07 outl

std logic vector (width-1 downto 0);

out2

in4

2) (6 points) Fill in the VHDL to implement a simple testbench for the specified add component. The
testbench should test 5+10 and 15+20, waiting 10 ns in between tests. The testbench does not need
to verify the correct output.

library ieee;

use ieee.std logic 1164.all;

use ieee.numeric std.all;

entity add tb is
end add_ tb;

architecture TB of add tb is

component add

port (inputl, input2 : in std logic vector (7 downto O0);
output : out std logic vector (7 downto O0);
carry : out std logic);

end component;

signal inputl, input2, output : std logic vector(7 downto 0) := (others => '0');
signal carry : std logic;
begin -- TB

UUT : entity work.add
port map (
inputl => inputl,
input2 => input2,
output => output,
carry => carry);

process
begin
inputl <= std logic vector (to unsigned(5, 8));
input2 <= std logic vector(to unsigned (10, 8));
wait for 10 ns;

inputl <= std logic_vector(to unsigned(1l5, 8));
input2 <= std logic vector(to unsigned (20, 8));

wait for 10 ns;

wait;
end process;

end TB;

3) (6 points) Given the two following entities alu and alu_top:
a. (3 points) What is the width of the alu instance when alu_top is the top-level entity?

b. (3 points) What is the width of the alu instance when alu is the top-level entity?

entity alu is

generic (
width : positive := 4);

port (
inl : in std logic_vector(
in2 : in std logic vector(
sel : in std logic vector (1l downto
output : out std logic vector(

end alu;

width-1 downto 0);
width-1 downto 0);

0);

width-1 downto 0));

library ieee;
use ieee.std logic 1l64.all;

entity alu top is

port (
inl : in std logic_vector (6 downto
in2 : in std logic vector (6 downto
sel : in std logic_vector (1l downto
output : out std logic vector (6 downto

end alu top;

architecture STR of alu top is
begin
U ALU : entity work.alu
generic map (width => 7)

port map (
inl => inl,
in2 => in2,
sel => sel,

output => output) ;
end STR;

4) (25 points) For the following code that is intended to implement the illustrated circuit, point out
every mistake and every violation of synthesis coding guidelines. For violations that have an effect
that was explained in class, specify that effect. All signals are width bits except for the mux and less-
than output. Note: there are no syntax, casting, or width-mismatch errors.

library ieee; 'q; IQ?
use ieee.std logic 1164.all;
use ieee.numeric std.all; Reg Reg

entity bad vhdl is

generic (width : positive := 8);

port (clk : in std logic;
rst : in std logic;
inl : in std logic vector (width-1 downto 0);
in2 : in std logic vector (width-1 downto 0);
output : out std logic vector (width-1 downto 0);
neg : out std logic);

end bad vhdl;

architecture BVH of bad vhdl is output

-- PROBLEM 1: SHOULD NOT INITIALIZE SIGNALS

signal reg inl : std logic vector (width-1 downto 0) := (others => '0'");
signal reg in2 : std logic vector (width-1 downto 0) := (others => '0'");
signal temp : std logic vector(width-1 downto 0) := (others => '0'");
begin
process (clk) -— PROBLEM 2: CLOCK AND RESET IN SENSITIVITY LIST
begin
if (rst = '1l') then

reg inl <= (others => '0');
reg in2 <= (others => '0"');
elsif (Elk = '1"'") then —- PROBLEM 3: SHOULD CHECK FOR RISING EDGE
reg inl <= inl;
reg in2 <= in2;
end if;
end process;

-- PROBLEM 4: SENSIVITY LIST SHOULD HAVE REG_IN1 AND REG_IN2
process (inl, in2)
begin
-- PROBLEM 5: TEMP MUST BE A VARIABLE FOR THIS TO WORK
temp <= std logic vector(signed(reg inl)+signed(reg in2));
output <= temp;

if (signed(temp) < 0) then
neg <= '1"';
end if;
-- PROBLEM 6: NEG NOT SPECIFIED ON ALL PATHS, SYNTHESIS INFERS A LATCH
end process;

end BVH;

5) (15 points) Fill in the provided code to create the illustrated structural architecture using the
specified components. Use the next page if necessary. N1 in2

library ieee;

use ieee.std logic 1164.all;

entity structure is

generic (width : positive := 16);

port (inl, in2 : in std logic vector (width-1 downto 0);
output : out std logic_vector (width-1 downto 0);
neg : out std logic);

end structure;

architecture STR of structure is
component add OUtpUt neg
generic (width : positive);
port (inl, in2 : in std logic vector (width-1 downto 0);
output : out std logic vector (width-1 downto 0));
end component;

component less_than
generic (width : positive);
port (inl, in2 : in std logic vector(width-1 downto 0);
output : out std logic);
end component;

component mux 2x1

port (inl, in2 : in std logic;
sel : in std logic;
output : out std logic);

end component;

constant CO WIDTH : std logic vector (width-1 downto 0) := (others => '0');
constant CO : std logic := '0';
constant Cl : std logic := '1l';

signal add out : std logic vector (width-1 downto 0);
signal 1t out : std logic;
begin
U ADD : entity work.add
generic map (width => width)
port map (inl => inl,
in2 => in2,
output => add out);

output <= add out;

U LT : entity work.less than
generic map (width => width)
port map (inl => add_out,

in2 => C0_WIDTH,
output => 1t out);

U MUX : entity work.mux 2x1

port map (inl => C1,
in2 => CO0,
sel => 1t out,

output => neq);

end STR;

6) (8 points) Complete the following schematic to implement a 12-bit hierarchical CLA using an 8-bit
CLA and a 4-bit CLA. You do not need to show the add inputs and sum output, just connect the carry
logic that is shown.

CLA12
cout CLAS cin cout CLA4 Cin |g—
BP BG BP BG
cout +—¢— N cin
Pi+1 Gi+l Pi Gi
Cirt CGENZ2 Ci [——
i+2 BP BG

C
BP BG

7) (10 points)
a. (2 points) What type of relationship exists between delay and width for a ripple-carry
adder?

linear
b. (2 points) What type of relationship exists between delay and width for a carry-lookahead
adder, ignoring practical fan-in limitations?

constant

c. (2 points) What type of relationship exists between delay and width for a two-level carry-
lookahead adder, ignoring practical fan-in limitations?

constant

d. (2 points) What type of relationship exists between delay and width for a hierarchical carry-
lookahead adder, ignoring practical fan-in limitations?

logarithmic

e. (2 points) True/false. The area of a carry-lookahead adder increases linearly with width.

false

8) 5 free points for having to take a test at 8:30am.

