

8) (18 points) Fill in the code to implement the following Moore finite state machine (FSM), using
the 2-process FSM model. Assume that input tired always takes priority over hungry when
there is an option between two state transitions. Assume that STUDY is the initial state. Use
the next page if extra room is needed.

library ieee;

use ieee.std_logic_1164.all;

entity fsm is

 port (

 clk, rst : in std_logic;

 hungry, tired : in std_logic;

 studying, sleeping, eating : out std_logic);

end fsm;

architecture PROC2 of fsm is

 type STATE_TYPE is (STUDY, EAT, SLEEP);

 signal state, next_state : STATE_TYPE;

begin

 process(clk, rst)

 begin

 if (rst = '1') then

 state <= STUDY;

 elsif (clk'event and clk = '1') then

 state <= next_state;

 end if;

 end process;

 process(hungry, tired, state)

 begin

 studying <= '0';

 eating <= '0';

 sleeping <= '0';

 next_state <= state;

 case state is

 when STUDY =>

 studying <= '1';

 if (tired = '1') then

 next_state <= SLEEP;

 elsif (hungry = '1') then

 next_state <= EAT;

 end if;

 when EAT =>

 eating <= '1';

 if (tired = '1') then

 next_state <= SLEEP;

 elsif (hungry = '0') then

 next_state <= STUDY;

 end if;

 when SLEEP =>

 sleeping <= '1';

 if (tired = '0') then

 next_state <= STUDY;

STUDY

studying = ‘1’

sleeping = ‘0’

eating = ‘0’

EAT

studying = ‘0’

sleeping = ‘0’

eating = ‘1’

SLEEP

studying = ‘0’

sleeping = ‘1’

eating = ‘0’

hungry = ‘0’

and tired = ‘0’

hungry = ‘1’

tired = ‘1’

tired = ‘0’

hungry = ‘1’ tired = ‘1’
hungry = ‘0’

tired = ‘1’

 end if;

 when others =>

 null;

 end case;

 end process;

end PROC2;

