
Lewis Copyright © 2003 SynthWorks Design Inc. All Rights Reserved. MAPLD 2003

VHDL Math Tricks of
the Trade

by
Jim Lewis

Director of Training, SynthWorks Design Inc
Jim@SynthWorks.com

http://www.SynthWorks.com

SynthWorks

Lewis Copyright © 2003 SynthWorks Design Inc. All Rights Reserved. MAPLD 2003 P2

VHDL Math Tricks of the Trade
VHDL is a strongly typed language. Success in VHDL
depends on understanding the types and overloaded
operators provided by the standard and numeric
packages.

The paper gives a short tutorial on:

• VHDL Types & Packages

• Strong Typing Rules

• Converting between Std_logic_vector, unsigned &
signed

• Ambiguous Expressions

• Arithmetic Coding Considerations

• Math Tricks

http://www.SynthWorks.com

SynthWorks

Lewis Copyright © 2003 SynthWorks Design Inc. All Rights Reserved. MAPLD 2003 P3

TYPE Value Origin
std_ulogic 'U', 'X', '0', '1', 'Z', 'W', 'L', 'H', '-' std_logic_1164
std_ulogic_vector array of std_ulogic std_logic_1164
std_logic resolved std_ulogic std_logic_1164
std_logic_vector array of std_logic std_logic_1164

TYPE Value Origin
std_ulogic 'U', 'X', '0', '1', 'Z', 'W', 'L', 'H', '-' std_logic_1164
std_ulogic_vector array of std_ulogic std_logic_1164
std_logic resolved std_ulogic std_logic_1164
std_logic_vector array of std_logic std_logic_1164

unsigned array of std_logic numeric_std,
std_logic_arith

signed array of std_logic numeric_std,
std_logic_arith

boolean true, false standard
character 191 / 256 characters standard
string array of character standard
integer -(231 -1) to (231 - 1) standard
real -1.0E38 to 1.0E38 standard
time 1 fs to 1 hr standard

Common VHDL Types

SynthWorks

Lewis Copyright © 2003 SynthWorks Design Inc. All Rights Reserved. MAPLD 2003 P4

Packages for Numeric Operations
● numeric_std -- IEEE standard

● Defines types signed, unsigned
● Defines arithmetic, comparison, and logic operators for these types

● std_logic_arith -- Synopsys, a defacto industry standard
● Defines types signed, unsigned
● Defines arithmetic, and comparison operators for these types

● std_logic_unsigned -- Synopsys, a defacto industry standard
● Defines arithmetic and comparison operators for std_logic_vector

Recommendation:
Use numeric_std for new designs
Ok to use std_logic_unsigned with numeric_std*

Recommendation:
Use numeric_std for new designs
Ok to use std_logic_unsigned with numeric_std*

* Currently, IEEE 1076.3 plans to have a numeric package that permits
unsigned math with std_logic_vector

SynthWorks

Lewis Copyright © 2003 SynthWorks Design Inc. All Rights Reserved. MAPLD 2003 P5

Packages for Numeric Operations

Recommendation, if you use Synopsys Packages:
Use std_logic_arith for numeric operations
Use std_logic_unsigned only for counters and testbenches
Don't use the package std_logic_signed.

Recommendation, if you use Synopsys Packages:
Use std_logic_arith for numeric operations
Use std_logic_unsigned only for counters and testbenches
Don't use the package std_logic_signed.

library ieee ;
 use ieee.std_logic_1164.all ;

 use ieee.numeric_std.all ;

library ieee ;
 use ieee.std_logic_1164.all ;

 use ieee.numeric_std.all ;

● Using IEEE Numeric_Std

library ieee ;
 use ieee.std_logic_1164.all ;

 use ieee.std_logic_arith.all ;

 use ieee.std_logic_unsigned.all ;

library ieee ;
 use ieee.std_logic_1164.all ;

 use ieee.std_logic_arith.all ;

 use ieee.std_logic_unsigned.all ;

● Using Synopsys Std_Logic_Arith

numeric_std

std_logic_arith

Use numeric_std or
std_logic_arith, but
never both

Use numeric_std or
std_logic_arith, but
never both

Recommendation:
Use numeric_std for new designs

Recommendation:
Use numeric_std for new designs

SynthWorks

Lewis Copyright © 2003 SynthWorks Design Inc. All Rights Reserved. MAPLD 2003 P6

Unsigned and Signed Types

TYPE Value Notes
unsigned 0 to 2N - 1
signed - 2(N-1) to 2(N-1) - 1 2's Complement number

TYPE Value Notes
unsigned 0 to 2N - 1
signed - 2(N-1) to 2(N-1) - 1 2's Complement number

● Usage similar to std_logic_vector:
signal A_unsigned : unsigned(3 downto 0) ;
signal B_signed : signed (3 downto 0) ;
signal C_slv : std_logic_vector (3 downto 0) ;
. . .

A_unsigned <= "1111" ;

B_signed <= "1111" ;

C_slv <= "1111" ;

signal A_unsigned : unsigned(3 downto 0) ;
signal B_signed : signed (3 downto 0) ;
signal C_slv : std_logic_vector (3 downto 0) ;
. . .

A_unsigned <= "1111" ;

B_signed <= "1111" ;

C_slv <= "1111" ;

= 15 decimal= 15 decimal

= -1 decimal= -1 decimal

= 15 decimal only if using
std_logic_unsigned
= 15 decimal only if using
std_logic_unsigned

● Used to represent numeric values:

SynthWorks

Lewis Copyright © 2003 SynthWorks Design Inc. All Rights Reserved. MAPLD 2003 P7

Unsigned and Signed Types

● This feature is called Operator Overloading:
● An operator symbol or subprogram name can be used

more than once as long as calls are differentiable.

function "+" (L, R: signed) return signed;

function "+" (L, R: unsigned) return unsigned ;

function "+" (L, R: signed) return signed;

function "+" (L, R: unsigned) return unsigned ;

● For each operator, a unique function is called

type UNSIGNED is array (natural range <>) of std_logic;
type SIGNED is array (natural range <>) of std_logic;
type UNSIGNED is array (natural range <>) of std_logic;
type SIGNED is array (natural range <>) of std_logic;

● How are the types distinguished from each other?

● Type definitions identical to std_logic_vector

● How do these generate unsigned and signed arithmetic?

SynthWorks

Lewis Copyright © 2003 SynthWorks Design Inc. All Rights Reserved. MAPLD 2003 P8

Overloading Basics

Operator Left Right Result
Logic TypeA TypeA TypeA

Notes:
Array = unsigned, signed, std_logic_vector2

TypeA = boolean, std_logic, std_ulogic, bit_vector
 std_logic_vector, std_ulogic_vector,
 signed3, unsigned3

Array and TypeA types used in an expression must be the same.

Operator Left Right Result
Logic TypeA TypeA TypeA

Notes:
Array = unsigned, signed, std_logic_vector2

TypeA = boolean, std_logic, std_ulogic, bit_vector
 std_logic_vector, std_ulogic_vector,
 signed3, unsigned3

Array and TypeA types used in an expression must be the same.

Numeric Array Array Array1

Array Integer Array1

Integer Array Array1

1) for comparison operators the result is boolean
2) only for std_logic_unsigned.
3) only for numeric_std and not std_logic_arith

● Simplified view of overloading provided by VHDL packages

● For a detailed view of VHDL's overloading, get the VHDL Types and
Operators Quick Reference card at: http://www.SynthWorks.com/papers

http://www.SynthWorks.com/papers

SynthWorks

Lewis Copyright © 2003 SynthWorks Design Inc. All Rights Reserved. MAPLD 2003 P9

Overloading Examples
Signal A_uv, B_uv, C_uv, D_uv, E_uv : unsigned(7 downto 0) ;
Signal R_sv, S_sv, T_sv, U_sv, V_sv : signed(7 downto 0) ;
Signal J_slv, K_slv, L_slv : std_logic_vector(7 downto 0) ;
signal Y_sv : signed(8 downto 0) ;
. . .

-- Permitted
A_uv <= B_uv + C_uv ; -- Unsigned + Unsigned = Unsigned
D_uv <= B_uv + 1 ; -- Unsigned + Integer = Unsigned
E_uv <= 1 + C_uv; -- Integer + Unsigned = Unsigned

R_sv <= S_sv + T_sv ; -- Signed + Signed = Signed
U_sv <= S_sv + 1 ; -- Signed + Integer = Signed
V_sv <= 1 + T_sv; -- Integer + Signed = Signed

J_slv <= K_slv + L_slv ; -- if using std_logic_unsigned

-- Illegal Cannot mix different array types
-- Solution persented later in type conversions
-- Y_sv <= A_uv - B_uv ; -- want signed result

Signal A_uv, B_uv, C_uv, D_uv, E_uv : unsigned(7 downto 0) ;
Signal R_sv, S_sv, T_sv, U_sv, V_sv : signed(7 downto 0) ;
Signal J_slv, K_slv, L_slv : std_logic_vector(7 downto 0) ;
signal Y_sv : signed(8 downto 0) ;
. . .

-- Permitted
A_uv <= B_uv + C_uv ; -- Unsigned + Unsigned = Unsigned
D_uv <= B_uv + 1 ; -- Unsigned + Integer = Unsigned
E_uv <= 1 + C_uv; -- Integer + Unsigned = Unsigned

R_sv <= S_sv + T_sv ; -- Signed + Signed = Signed
U_sv <= S_sv + 1 ; -- Signed + Integer = Signed
V_sv <= 1 + T_sv; -- Integer + Signed = Signed

J_slv <= K_slv + L_slv ; -- if using std_logic_unsigned

-- Illegal Cannot mix different array types
-- Solution persented later in type conversions
-- Y_sv <= A_uv - B_uv ; -- want signed result

SynthWorks

Lewis Copyright © 2003 SynthWorks Design Inc. All Rights Reserved. MAPLD 2003 P10

Strong Typing Implications

Operation Size of Y = Size of Expression

Y <= "10101010" ; number of digits in literal

Y <= X"AA" ; 4 * (number of digits)

Y <= A ; A'Length = Length of array A

Operation Size of Y = Size of Expression

Y <= "10101010" ; number of digits in literal

Y <= X"AA" ; 4 * (number of digits)

Y <= A ; A'Length = Length of array A

●● Size and type of targetSize and type of target (left) = size and type of expression (right)

Y <= A and B ; A'Length = B'Length

W <= A > B ; Boolean

Y <= A + B ; Maximum (A'Length, B'Length)

V <= A * B ; A'Length + B'Length

Y <= A + 10 ; A'Length

● Each operation returns a result that has a specific size based on
rules of the operation. The table below summarizes these rules.

Some think VHDL is difficult because of strong typing

Master the above simple rules and it is easy

Some think VHDL is difficult because of strong typing

Master the above simple rules and it is easy

SynthWorks

Lewis Copyright © 2003 SynthWorks Design Inc. All Rights Reserved. MAPLD 2003 P11

Strong Typing Implications
signal A8, B8, Result8 : unsigned(7 downto 0) ;
signal Result9 : unsigned(8 downto 0) ;
signal Result7 : unsigned(6 downto 0) ;
. . .

-- Simple Addition, no carry out
Result8 <= A8 + B8 ;

signal A8, B8, Result8 : unsigned(7 downto 0) ;
signal Result9 : unsigned(8 downto 0) ;
signal Result7 : unsigned(6 downto 0) ;
. . .

-- Simple Addition, no carry out
Result8 <= A8 + B8 ;

-- Carry Out in result
Result9 <= ('0' & A8) + ('0' & B8) ;

-- For smaller result, slice input arrays
Result7 <= A8(6 downto 0) + B8(6 downto 0) ;

Strong Typing = Strong Error Checking Built into the Compiler

This means less debugging.
Without VHDL, you better have a good testbench and
lots of time to catch your errors.

Strong Typing = Strong Error Checking Built into the Compiler

This means less debugging.
Without VHDL, you better have a good testbench and
lots of time to catch your errors.

SynthWorks

Lewis Copyright © 2003 SynthWorks Design Inc. All Rights Reserved. MAPLD 2003 P12

Type Conversions

● What conversion functions are needed?
● Signed & Unsigned (elements) <=> Std_Logic
● Signed & Unsigned <=> Std_Logic_Vector
● Signed & Unsigned <=> Integer
● Std_Logic_vector <=> Integer

● VHDL Built-In Conversions
● Automatic Type Conversion
● Conversion by Type Casting

● Conversion functions located in Numeric_Std

● VHDL is dependent on overloaded operators and conversions

SynthWorks

Lewis Copyright © 2003 SynthWorks Design Inc. All Rights Reserved. MAPLD 2003 P13

Automatic Type Conversion:
Unsigned, Signed <=> Std_Logic

● Two types convert automatically when both are subtypes of the same type.

● Elements of Signed, Unsigned, and std_logic_vector = std_logic
● Elements of these types convert automatically to std_ulogic or std_logic

A_sl <= J_uv(0) ;A_sl <= J_uv(0) ;Legal
Assignments B_sul <= K_sv(7) ;

L_uv(0) <= C_sl ;
M_slv(2) <= N_sv(2) ;

● Converting between std_ulogic and std_logic is automatic

subtype std_logic is resolved std_ulogic ;subtype std_logic is resolved std_ulogic ;

Y_sl <= A_sl and B_sul and
 J_uv(2) and K_sv(7) and M_slv(2);
Y_sl <= A_sl and B_sul and
 J_uv(2) and K_sv(7) and M_slv(2);

Implication:

SynthWorks

Lewis Copyright © 2003 SynthWorks Design Inc. All Rights Reserved. MAPLD 2003 P14

Type Casting:
Unsigned, Signed <=> Std_Logic_Vector

● Use type casting to convert equal sized arrays when:

A_slv <= std_logic_vector(B_uv) ;
C_slv <= std_logic_vector(D_sv) ;
A_slv <= std_logic_vector(B_uv) ;
C_slv <= std_logic_vector(D_sv) ;

● Unsigned, Signed => Std_Logic_Vector

● Elements have a common base type (i.e. std_logic)
● Indices have a common base type (i.e. Integer)

<

G_uv <= unsigned(H_slv) ;
J_sv <= signed(K_slv) ;

● Motivation, Unsigned - Unsigned = Signed?

signal X_uv, Y_uv : unsigned (6 downto 0) ;
signal Z_sv : signed (7 downto 0) ;
. . .
Z_sv <= signed('0' & X_uv) - signed('0' & Y_uv) ;

signal X_uv, Y_uv : unsigned (6 downto 0) ;
signal Z_sv : signed (7 downto 0) ;
. . .
Z_sv <= signed('0' & X_uv) - signed('0' & Y_uv) ;

SynthWorks

Lewis Copyright © 2003 SynthWorks Design Inc. All Rights Reserved. MAPLD 2003 P15

Numeric_Std Conversions:
Unsigned, Signed <=> Integer

signal A_uv, C_uv : unsigned (7 downto 0) ;
signal Unsigned_int : integer range 0 to 255 ;
signal B_sv, D_sv : signed(7 downto 0) ;
signal Signed_int : integer range -128 to 127;

signal A_uv, C_uv : unsigned (7 downto 0) ;
signal Unsigned_int : integer range 0 to 255 ;
signal B_sv, D_sv : signed(7 downto 0) ;
signal Signed_int : integer range -128 to 127;

● Converting to and from integer requires a conversion function.

Unsigned_int <= TO_INTEGER (A_uv) ;
Signed_int <= TO_INTEGER (B_sv) ;
Unsigned_int <= TO_INTEGER (A_uv) ;
Signed_int <= TO_INTEGER (B_sv) ;

● Unsigned, Signed => Integer

C_uv <= TO_UNSIGNED (Unsigned_int, 8) ;
D_sv <= TO_SIGNED (Signed_int, 8) ;
C_uv <= TO_UNSIGNED (Unsigned_int, 8) ;
D_sv <= TO_SIGNED (Signed_int, 8) ;

● Integer => Unsigned, Signed
8

8

Array
width = 8
Array
width = 8

● Motivation (indexing an array of an array):

Data_slv <= ROM(TO_INTEGER(Addr_uv)) ;Data_slv <= ROM(TO_INTEGER(Addr_uv)) ;

SynthWorks

Lewis Copyright © 2003 SynthWorks Design Inc. All Rights Reserved. MAPLD 2003 P16

Std_Logic_Arith Conversions:
Unsigned, Signed <=> Integer

signal A_uv, C_uv : unsigned (7 downto 0) ;
signal Unsigned_int : integer range 0 to 255 ;
signal B_sv, D_sv : signed(7 downto 0) ;
signal Signed_int : integer range -128 to 127;

signal A_uv, C_uv : unsigned (7 downto 0) ;
signal Unsigned_int : integer range 0 to 255 ;
signal B_sv, D_sv : signed(7 downto 0) ;
signal Signed_int : integer range -128 to 127;

● Converting to and from integer requires a conversion function.

Unsigned_int <= Conv_INTEGER (A_uv) ;
Signed_int <= Conv_INTEGER (B_sv) ;
Unsigned_int <= Conv_INTEGER (A_uv) ;
Signed_int <= Conv_INTEGER (B_sv) ;

● Unsigned, Signed => Integer

C_uv <= Conv_UNSIGNED (Unsigned_int, 8) ;
D_sv <= Conv_SIGNED (Signed_int, 8) ;
C_uv <= Conv_UNSIGNED (Unsigned_int, 8) ;
D_sv <= Conv_SIGNED (Signed_int, 8) ;

● Integer => Unsigned, Signed
8

8

Array
width = 8
Array
width = 8

● Motivation (indexing an array of an array):

Data_slv <= ROM(Conv_INTEGER(Addr_uv)) ;Data_slv <= ROM(Conv_INTEGER(Addr_uv)) ;

SynthWorks

Lewis Copyright © 2003 SynthWorks Design Inc. All Rights Reserved. MAPLD 2003 P17

Std_Logic_Vector <=> Integer

Unsigned_int <= to_integer(unsigned(A_slv));

Signed_int <= to_integer(signed(B_slv));

Unsigned_int <= to_integer(unsigned(A_slv));

Signed_int <= to_integer(signed(B_slv));

● Numeric_Std: Std_Logic_Vector => Integer

C_slv <= std_logic_vector(to_unsigned(Unsigned_int, 8));

D_slv <= std_logic_vector(to_signed(Signed_int, 8));

C_slv <= std_logic_vector(to_unsigned(Unsigned_int, 8));

D_slv <= std_logic_vector(to_signed(Signed_int, 8));

● Numeric_Std: Integer => Std_Logic_Vector

● Converting between std_logic_vector and integer is a two step process:

signal A_slv, C_slv : std_logic_vector (7 downto 0) ;
signal Unsigned_int : integer range 0 to 255 ;
signal B_slv, D_slv : std_logic_vector(7 downto 0) ;
signal Signed_int : integer range -128 to 127;

signal A_slv, C_slv : std_logic_vector (7 downto 0) ;
signal Unsigned_int : integer range 0 to 255 ;
signal B_slv, D_slv : std_logic_vector(7 downto 0) ;
signal Signed_int : integer range -128 to 127;

SynthWorks

Lewis Copyright © 2003 SynthWorks Design Inc. All Rights Reserved. MAPLD 2003 P18

Ambiguous Expressions

Z_sv <= A_sv + "1010" ;Z_sv <= A_sv + "1010" ;

● The following expression is ambiguous and an error:

● How do we solve this problem?

● An expression / statement is ambiguous if more than one operator
symbol or subprogram can match its arguments.

● Issues typically only arise when using literals.

● Std_Logic_Arith defines the following two functions:

function "+" (L, R: SIGNED) return SIGNED;
function "+" (L: SIGNED; R: UNSIGNED) return SIGNED;
function "+" (L, R: SIGNED) return SIGNED;
function "+" (L: SIGNED; R: UNSIGNED) return SIGNED;

Is "1010" Signed or UnsignedIs "1010" Signed or Unsigned
"1010" = -6 or 10

SynthWorks

Lewis Copyright © 2003 SynthWorks Design Inc. All Rights Reserved. MAPLD 2003 P19

Std_Logic_Arith:
Ambiguous Expressions

Z_sv <= A_sv + signed'("1010") ;Z_sv <= A_sv + signed'("1010") ;

● VHDL type qualifier (type_name') is a mechanism that specifies the type
of an operand or return value of a subprogram (or operator).

-- Z_sv <= A_sv + signed("1010") ;-- Z_sv <= A_sv + signed("1010") ;

● Leaving out the ' is an error:

Z_sv <= A_sv + signed(B_slv) ;Z_sv <= A_sv + signed(B_slv) ;

● Without ', it is type casting. Use type casting for:

Z_sv <= A_sv - 6 ;Z_sv <= A_sv - 6 ;

● Recommended solution, use integer:

Effects all numeric
operators in
std_logic_arith

Effects all numeric
operators in
std_logic_arith

SynthWorks

Lewis Copyright © 2003 SynthWorks Design Inc. All Rights Reserved. MAPLD 2003 P20

Addition Operators
Addition Operators: + -Addition Operators: + -

Add_uv <= A_uv + B_uv ;
Sub_uv <= C_uv - D_uv ;
Add_uv <= A_uv + B_uv ;
Sub_uv <= C_uv - D_uv ;

● Arrays with Arrays:

Inc_uv <= Base_uv + 1 ;
Y_uv <= A_uv + 45 ;
Inc_uv <= Base_uv + 1 ;
Y_uv <= A_uv + 45 ;

● Arrays with Integers:

• Size of result =
• Size of largest array operand
• Size of Add = maximum(A, B)
• Shorter array gets extended.

• Size of result =
• Size of largest array operand
• Size of Add = maximum(A, B)
• Shorter array gets extended.

• Caution: Integers must fit into an
array the same size as the result.

• Extra MSB digits are lost
• A must be at least 6 bits

• Caution: Integers must fit into an
array the same size as the result.

• Extra MSB digits are lost
• A must be at least 6 bits

By convention the left most bit is the MSBBy convention the left most bit is the MSB

SynthWorks

Lewis Copyright © 2003 SynthWorks Design Inc. All Rights Reserved. MAPLD 2003 P21

Use Integers with Care
● Synthesis tools create a 32-bit wide resources for unconstrained integers

signal Y_int, A_int, B_int : integer ;
. . .
Y_int <= A_int + B_int ;

signal Y_int, A_int, B_int : integer ;
. . .
Y_int <= A_int + B_int ;

● Do not use unconstrained integers for synthesis

signal A_int, B_int: integer range -8 to 7;
signal Y_int : integer range -16 to 15 ;
. . .
Y_int <= A_int + B_int ;

signal A_int, B_int: integer range -8 to 7;
signal Y_int : integer range -16 to 15 ;
. . .
Y_int <= A_int + B_int ;

● Specify a range with integers:

Y_uv <= A_uv + 17 ;Y_uv <= A_uv + 17 ;

● Recommendation: Use integers only as constants or literals

SynthWorks

Lewis Copyright © 2003 SynthWorks Design Inc. All Rights Reserved. MAPLD 2003 P22

Comparison Operators

● Comparison operators return type boolean

AGeB <= '1' when (A_uv >= B_uv) else '0';
AEq15 <= '1' when (A_uv = "1111") else '0';
AGeB <= '1' when (A_uv >= B_uv) else '0';
AEq15 <= '1' when (A_uv = "1111") else '0';

● Arrays with Arrays:

DEq15 <= '1' when (D_uv = 15) else '0';DEq15 <= '1' when (D_uv = 15) else '0';

● Arrays with Integers (special part of arithmetic packages):

Comparison Operators: = /= > >= < <=Comparison Operators: = /= > >= < <=

Input arrays are extended to be the same lengthInput arrays are extended to be the same lengthResult = BooleanResult = Boolean

● Std_Logic is our basic type for design.
● How do we convert from boolean to std_logic?

SynthWorks

Lewis Copyright © 2003 SynthWorks Design Inc. All Rights Reserved. MAPLD 2003 P23

Multiplication and Division

signal A_uv, B_uv : unsigned(7 downto 0) ;
signal Z_uv : unsigned(15 downto 0) ;
. . .
Z_uv <= A_uv * B_uv;

signal A_uv, B_uv : unsigned(7 downto 0) ;
signal Z_uv : unsigned(15 downto 0) ;
. . .
Z_uv <= A_uv * B_uv;

Multiplication Operators: * / mod remMultiplication Operators: * / mod rem

● Array Multiplication

Z_uv <= A_uv * 2 ;Z_uv <= A_uv * 2 ;

● Array with Integer (only numeric_std)

Note: "/ mod rem" not well supported by synthesis tools.Note: "/ mod rem" not well supported by synthesis tools.

• Size of result =
• Sum of the two input arrays

• Size of result =
• Sum of the two input arrays

• Size of result =
• 2 * size of array input

• Size of result =
• 2 * size of array input

SynthWorks

Lewis Copyright © 2003 SynthWorks Design Inc. All Rights Reserved. MAPLD 2003 P24

Adder with Carry Out

 '0', A(3:0)
+ '0', B(3:0)

 CarryOut, Result(3:0)

 '0', A(3:0)
+ '0', B(3:0)

 CarryOut, Result(3:0)

Unsigned Algorithm:

Y5 <=
 ('0' & A) + ('0' & B);

Y <= Y5(3 downto 0) ;
Co <= Y5(4) ;

Y5 <=
 ('0' & A) + ('0' & B);

Y <= Y5(3 downto 0) ;
Co <= Y5(4) ;

Unsigned Code:

signal A, B, Y : unsigned(3 downto 0);

signal Y5 : unsigned(4 downto 0) ;

signal Co : std_logic ;

signal A, B, Y : unsigned(3 downto 0);

signal Y5 : unsigned(4 downto 0) ;

signal Co : std_logic ;

SynthWorks

Lewis Copyright © 2003 SynthWorks Design Inc. All Rights Reserved. MAPLD 2003 P25

Adder with Carry In

A(3:0) + B(3:0) + CarryInA(3:0) + B(3:0) + CarryIn

Desired Result:

 A(3:0), '1'
+ B(3:0), CarryIn

 Result(4:1), Unused

 A(3:0), '1'
+ B(3:0), CarryIn

 Result(4:1), Unused

Algorithm

 0010, 1
 0001, 0

 0011, 1

 0010, 1
 0001, 0

 0011, 1

Example: Carry = 0

 0010, 1
 0001, 1

 0100, 0

 0010, 1
 0001, 1

 0100, 0

Carry = 1

Y5 <= (A & '1') + (B & CarryIn);
Y <= Y5(4 downto 1) ;
Y5 <= (A & '1') + (B & CarryIn);
Y <= Y5(4 downto 1) ;

Code:

ResultResult

signal A, B, Y : unsigned(3 downto 0);

signal Y5 : unsigned(4 downto 0) ;
signal CarryIn : std_logic ;

signal A, B, Y : unsigned(3 downto 0);

signal Y5 : unsigned(4 downto 0) ;
signal CarryIn : std_logic ;

SynthWorks

Lewis Copyright © 2003 SynthWorks Design Inc. All Rights Reserved. MAPLD 2003 P26

ALU Functions

OpSel Function
00 A + B
01 C + D
10 E + F
11 G + H

OpSel Function
00 A + B
01 C + D
10 E + F
11 G + H

● Three implementations
● Tool Driven Resource Sharing
● Code Driven Resource Sharing
● Defeating Resource Sharing

● ALU1:

● Since OpSel can select only one
addition at a time, the operators
are mutually exclusive.

SynthWorks

Lewis Copyright © 2003 SynthWorks Design Inc. All Rights Reserved. MAPLD 2003 P27

Possible Solutions to ALU 1
As Specified:

i0
i1 O

sel

i2
i3

A

B

C

D

E

F
G

H OpSel

Z

Optimal results:

A

B

C

D

E

F

G

H

OpSel Z

i0
i1

o

sel

i2
i3

i0
i1

o

sel

i2
i3

OpSel

● This transformation of operators is called Resource Sharing

SynthWorks

Lewis Copyright © 2003 SynthWorks Design Inc. All Rights Reserved. MAPLD 2003 P28

ALU 1: Tool Driven
ToolDrvnProc : process (OpSel,A,B,C,D,E,F,G,H)
 begin
 case OpSel is
 when "00" => Z <= A + B ;
 when "01" => Z <= C + D ;
 when "10" => Z <= E + F ;
 when "11" => Z <= G + H ;
 when others => Z <= (others => 'X') ;
 end case ;
 end process ; -- ToolDrvnProc

ToolDrvnProc : process (OpSel,A,B,C,D,E,F,G,H)
 begin
 case OpSel is
 when "00" => Z <= A + B ;
 when "01" => Z <= C + D ;
 when "10" => Z <= E + F ;
 when "11" => Z <= G + H ;
 when others => Z <= (others => 'X') ;
 end case ;
 end process ; -- ToolDrvnProc

● Important: to ensure resource sharing, operators must be coded in the
same process, and same code (case or if) structure.

● Any potential issues with this?

SynthWorks

Lewis Copyright © 2003 SynthWorks Design Inc. All Rights Reserved. MAPLD 2003 P29

ALU 1: Code Driven
X <= Mux4(OpSel, A, C, E, G) ;

Y <= Mux4(OpSel, B, D, F, H) ;

Z <= X + Y ;

X <= Mux4(OpSel, A, C, E, G) ;

Y <= Mux4(OpSel, B, D, F, H) ;

Z <= X + Y ;

● Best Synthesis, use for:
● Sharing arithmetic operators
● Sharing comparison operators
● Sharing complex function calls

● Resource sharing often is not possible when using third party
arithmetic logic.

SynthWorks

Lewis Copyright © 2003 SynthWorks Design Inc. All Rights Reserved. MAPLD 2003 P30

ALU 1:
Defeating Resource Sharing *

BadAluProc: process (OpSel, A, B, C, D, E, F, G, H)
begin

 if (OpSel = "00") then Z <= A + B; end if;

 if (OpSel = "01") then Z <= C + D; end if;

 if (OpSel = "10") then Z <= E + F; end if;

 if (OpSel = "11") then Z <= G + H; end if;
end process ;

BadAluProc: process (OpSel, A, B, C, D, E, F, G, H)
begin

 if (OpSel = "00") then Z <= A + B; end if;

 if (OpSel = "01") then Z <= C + D; end if;

 if (OpSel = "10") then Z <= E + F; end if;

 if (OpSel = "11") then Z <= G + H; end if;
end process ;

Uses "end if", rather than "elsif"Uses "end if", rather than "elsif"

● Bad Code will defeat Resource Sharing.

● * Not Recommended,
synthesis tool may create a separate resource for each adder.

SynthWorks

Lewis Copyright © 2003 SynthWorks Design Inc. All Rights Reserved. MAPLD 2003 P31

case StateReg is
when S1 =>
 if (in1 = '1') then
 Z <= A + B ;
 . . .
 end if ;
when S2 =>
 if (in2 = '1') then
 Z <= C + D ;
 . . .
 end if ;
. . .
when Sn =>
. . .
when others =>

case StateReg is
when S1 =>
 if (in1 = '1') then
 Z <= A + B ;
 . . .
 end if ;
when S2 =>
 if (in2 = '1') then
 Z <= C + D ;
 . . .
 end if ;
. . .
when Sn =>
. . .
when others =>

Defeating Resource Sharing
● When does this happen?

Statemach : process(...)
begin
 -- generate function
 -- select logic (OpSel)
end process ;

Statemach : process(...)
begin
 -- generate function
 -- select logic (OpSel)
end process ;

Resources : process(...)
begin
 -- code:
 -- arithmetic operators
 -- comparison operators
end process ;

Resources : process(...)
begin
 -- code:
 -- arithmetic operators
 -- comparison operators
end process ;

● Separate statemachines and
resources

SynthWorks

Lewis Copyright © 2003 SynthWorks Design Inc. All Rights Reserved. MAPLD 2003 P32

More Information
There is work in progress to extend VHDL's math capability.
For more information see the following IEEE working groups
websites:

Group Website
IEEE 1164 http://www.eda.org/vhdl-std-logic
IEEE 1076.3/numeric std http://www.eda.org/vhdlsynth
IEEE 1076.3/floating point http://www.eda.org/fphdl

Also see the DVCon 2003 paper, "Enhancements to VHDL's
Packages" which is available at:

http://www.synthworks.com/papers

http://www.eda.org/vhdl-std-logic
http://www.eda.org/vhdlsynth
http://www.eda.org/fphdl
http://www.synthworks.com/papers

SynthWorks

Lewis Copyright © 2003 SynthWorks Design Inc. All Rights Reserved. MAPLD 2003 P33

Author Biography
Jim Lewis, Director of Training, SynthWorks Design Inc.

Jim Lewis, the founder of SynthWorks, has seventeen years of
design, teaching, and problem solving experience. In addition
to working as a Principal Trainer for SynthWorks, Mr. Lewis
does ASIC and FPGA design, custom model development,
and consulting. Mr. Lewis is an active member of IEEE
Standards groups including, VHDL (IEEE 1076), RTL
Synthesis (IEEE 1076.6), Std_Logic (IEEE 1164), and
Numeric_Std (IEEE 1076.3). Mr. Lewis can be reached at
jim@SynthWorks.com, (503) 590-4787, or
http://www.SynthWorks.com

SynthWorks

Lewis Copyright © 2003 SynthWorks Design Inc. All Rights Reserved. MAPLD 2003 P34

SynthWorks VHDL Training
Comprehensive VHDL Introduction 4 Days
http://www.synthworks.com/comprehensive_vhdl_introduction.htm

A design and verification engineers introduction to VHDL syntax,
RTL coding, and testbenches.
Our designer focus ensures that your engineers will be productive
in a VHDL design environment.

VHDL Coding Styles for Synthesis 4 Days
http://www.synthworks.com/vhdl_rtl_synthesis.htm

 Engineers learn RTL (hardware) coding styles that
 produce better, faster, and smaller logic.

VHDL Testbenches and Verification 3 days
http://www.synthworks.com/vhdl_testbench_verification.htm

 Engineers learn how create a transaction-based
 verification environment based on bus functional models.

For additional courses see: http://www.synthworks.com

http://www.SynthWorks.com
http://www.synthworks.com/comprehensive_vhdl_introduction.htm
http://www.synthworks.com/vhdl_rtl_synthesis.htm
http://www.synthworks.com/vhdl_testbench_verification.htm
http://www.synthworks.com

