
Lab 4: Sequential Logic, Counters, and Finite State Machines
EEL 4712 – Spring 2022

Objective:
The objective of this lab is to use finite state machines to implement several counters, with the clock

being generated from a debounced button press after a specific amount of time. It is up to you to
determine how the counters get mapped onto the board by analyzing the provided top_level entity.

Required tools and parts:
Quartus2 software package, ModelSim-Altera Starter Edition, Altera DE10 board.

Pre-requisite:
You must be “up-to-speed” with Quartus, ModelSim, and the board before coming to lab.

Pre-lab requirements:

Clock Generator
1. To be able to see the output of the counters in real time, you will need to control the counters using a

button press to generate a clock. To do this, you will create a clock generator that generates a single
clock pulse (i.e. low-high-low transition) when the button has been pressed for 1000ms (1 sec). If the
button is continually held down, it should generate a pulse every second until the button is released.

This step requires several entities. First, design a clock divider (clk_div.vhd) that converts the 50 MHz
clock on the board to a 1000 Hz (1ms) clock with any duty cycle you want. Next, design the clock
generator (clk_gen.vhd), which will count 1000 Hz clock pulses (each is 1 millisecond) while the
button is pressed down until 1000ms have elapsed, at which point it will output (i.e. generate) a single
clock pulse based on the 1000 Hz clock (i.e., the output clock will be high for one 1000 Hz clock
period). You are free to implement the clock generator architecture however you like, as long as the
entity doesn’t change from the provided file and as long as it uses the clock divider. Feel free to add
additional entities that you may require.

It is not possible to guarantee that a generated clock pulse occurs after exactly 1s because the button
may be pressed in the middle of the 1ms clock. Therefore, the actual time for the generated clock
after the first button press will be between [1000ms, 1001ms). In other words, the first generated
clock will occur anytime being 1000ms and 1001ms after the button was pressed. However, for
repeated generations of the clock, it is possible to produce a clock after exactly 1000ms because you
know that the button was already pressed at the beginning of the cycle. The provided testbench tests
these times, so be aware that being off by a single cycle will cause assertion errors.

Both the clk_div and clk_gen entity use generics. Clk_div must work using generics that specify the
input and output clock frequencies. Clk_gen works by specifying how many milliseconds the button
must be pressed to generate a clock pulse.

A test bench will be provided to help you test clk_div and clk_gen, although you should also test each
entity using your own test benches.

Turn in all vhdl files. For clk_div, include in your pre-lab report example waveforms for clock ratios of 2
and 4. See the test bench for details on how to change the ratio. For clk_gen, your code will be tested
using a test bench similar to the one provided, so make sure there are no error messages during your
simulations. Also, make sure to test different ms times for the button press.

Lab 4: Sequential Logic, Counters, and Finite State Machines
EEL 4712 – Spring 2022

4-bit Gray code counter
2. Design a Gray code counter using a finite state machine. Gray code is a numerical system where two

successive values differ by only a single bit. Therefore, the binary sequence for the counter should
be:

0000 (0) 1100 (C)

0001 (1) 1101 (D)

0011 (3) 1111 (F)

0010 (2) 1110 (E)

0110 (6) 1010 (A)

0111 (7) 1011 (B)

0101 (5) 1001 (9)

0100 (4) 1000 (8)

Note that this table is read top-to-bottom in the left column and then the right column. Also, after
“1000” the counter should go back to the beginning and output “0000”. Create an entity for the Gray
code counter called gray1 (gray1.vhd). Use the 1-process FSM model (i.e., a single process with
nothing except clock and reset in the sensitivity list). Use the provided entity.

3. Create another entity (gray2 in gray2.vhd) for the Gray code counter, using the 2-process FSM model
(i.e., one process for sequential logic and one process for combinational logic). Use the provided
entity.

4-bit Up/Down Counter with Load
4. Create a 4-bit up/down counter (counter.vhd) that counts upwards when the active-low input “up_n” is

asserted (i.e., =’0’) and down otherwise. The counter should count from 0 to 15 and overlap to 0 when
counting up, and the opposite when counting down, although the counter should start at 0 when
reset. In addition, the counter should be able to load a count from the switches when load_n = ‘0’.
Load_n should take priority over up_n. Both load_n and up_n are synchronous.
You are free to implement the counter however you want (it does not have to be an FSM), as long as
you conform to the provided entity. Be aware that this counter can be implemented with very little
code, so if your architecture description is getting long, consider a different way of implementing it.
However, do not violate any synthesis coding guidelines.

Top Level
5. Read the code for the provided top_level entity (top_level.vhd) and describe what it does. Be specific.

Create your own test bench and use it to generate a waveform that illustrates the correct functionality.
Include the waveform in your pre-lab report. Turn in all vhdl files.

Create your own test bench and use it to generate a waveform that illustrates the correct functionality.
Include the waveform in your pre-lab report. Turn in all vhdl files.

Create your own test bench and use it to generate a waveform that illustrates the correct functionality.
Add annotations to illustrate all input operations (up, down, load). Include the waveform in your pre-lab
report. Turn in all vhdl files.

Include the description in your pre-lab report.

Lab 4: Sequential Logic, Counters, and Finite State Machines
EEL 4712 – Spring 2022

Pre-lab turn in instructions:

To submit your pre lab please create a folder that is named your UFID. Inside create another folder
P1,P2,P3... for each part that contains the VHDL files for that part. If a report is needed then please
include it in the UFID folder. Then zip and upload the folder which is named your UFID.

In-lab procedure (do as much as possible ahead of time):

1. Using Quartus, assign pins to each of the top_level.vhd inputs/outputs such that the signals are
connected to the appropriate locations on the board. Note that the exact connections are purposely
omitted so that you have to understand the top_level.vhd file. Make sure to add the 7-segment
decoder code to your project.

2. Download your design to the board, and test it for different inputs and outputs. Demonstrate the
correct functionality for the TA.

3. Be prepared to answer simple questions or to make simple extensions that your TA may
request. There is no need to memorize the different packages. If you have done the pre-lab
exercises, these questions should not be difficult.

Lab report: (In-lab part only)
If you had any problems with portions of the lab that could not be resolved during lab, please discuss
them along with possible justifications and solutions. If you had no problems, this report is not necessary.

Turn the lab report in on e-learning, if explanation is needed for partial credit. Make sure to turn it
in to the “lab” section and not the “pre-lab” section.

