Synchronous Resets? Asynchronous Resets?
| am so confused!
How will | ever know which to use?

Clifford E. Cummings Don Mills
Sunburst Design, Inc. LCDM Engineering
ABSTRACT

This paper will investigate the pros and cons of synchronous and asynchronous resets. It will then look at usage of
each type of reset followed by recommendations for proper usage of each type.

This paper will also detail an interesting synchronization technique using digital calibration to synchronize reset
removal on amulti-ASIC design.

1.0 resets, Resets, RESETS, and then there sSRESETS

One cannot begin to consider a discussion of reset usage and styles without first saluting the most common reset
usage of all. Thisundesired reset occurs almost daily in systems that have been tested, verified, manufactured, and
integrated into the consumer, education, government, and military environments. This reset follows what is often
called “The Blue Screen of Death” resulting from software incompatibilities between the OS from a certain software
company, the software programs the OS is servicing, and the hardware on which the OS software is executing.

Why be concerned with these annoying little resets anyway? Why devote a whole paper to such atrivia subject?
Anyone who has used a PC with a certain OS loaded knows that the hardware reset comes in quite handy. It will put
the computer back to a known working stete (at least temporarily) by applying a system reset to each of the chipsin
the system that have or require areset.

For individual ASICs, the primary purpose of areset isto force the ASIC design (either behavioral, RTL, or
structural) into a known state for simulation. Once the ASIC is built, the need for the ASIC to have reset applied is
determined by the system, the application of the ASIC, and the design of the ASIC. For instance, many data path
communication ASICs are designed to synchronize to an input data stream, process the data, and then output it. If
sync is ever lost, the ASIC goes through aroutine to re-acquire sync. If thistype of ASIC isdesigned correctly, such
that all unused states point to the “start acquiring sync” state, it can function properly in a system without ever being
reset. A system reset would be required on power up for such an ASIC if the state machinesin the ASIC took
advantage of “don’t care” logic reduction during the synthesis phase.

It is the opinion of the authors that in general, every flip-flop in an ASIC should be resetable whether or not it is
required by the system. Further more, the authors prefer to use asynchronous resets following the guidelines detailed
inthis paper. There are exceptions to these guidelines. In some cases, when follower flip-flops (shift register flip-
flops) are used in high speed applications, reset might be eliminated from some flip-flops to achieve higher
performance designs. Thistype of environment requires a number of clocks during the reset active period to put the
ASIC into a known state.

Many design issues must be considered before choosing areset strategy for an ASIC design, such as whether to use
synchronous or asynchronous resets, will every flip-flop receive areset, how will the reset tree be laid out and
buffered, how to verify timing of the reset tree, how to functionally test the reset with test scan vectors, and how to
apply the reset among multiple clock zones.

In addition, when applying resets between multiple ASICs that require a specific reset release sequence, specia
techniques must be employed to adjust to variances of chip and board manufacturing. The final sections of this
paper will address this latter issue.

2.0 General flip-flop coding style notes

2.1 Synchronousreset flip-flopswith non reset follower flip-flops

Each Verilog procedural block or VHDL process should model only one type of flip-flop. In other words, a designer
should not mix resetable flip-flops with follower flip-flops (flops with no resets)[12]. Follower flip-flops are flip-
flops that are simple data shift registers.

In the Verilog code of Example 1a and the VHDL code of Example 1b, aflip-flop is used to capture data and then its
output is passed through a follower flip-flop. The first stage of this design is reset with a synchronous reset. The
second stage is afollower flip-flop and is not reset, but because the two flip-flops were inferred in the same
procedural block/process, the reset signal rst_n will be used as a data enable for the second flop. This coding style
will generate extraneous logic as shown in Figure 1.

SNUG San Jose 2002 2 Synchronous Resets? Asynchronous Resets?
Rev 1.1 | am so confused! How will | ever know which to use?

module badFFstyle (g2, d, clk, rst n);
output g2;
input d, clk, rst n;
reg a2, qil;

always @ (posedge clk)
if (!rst n) gl <= 1'bO;
else begin

ql <= d4;
q2 <= ql;
end
endmodule

Example 1a- Bad Verilog coding style to model dissimilar flip-flops

library ieee;
use ieee.std logic 1164.all;
entity badFFstyle is

port (
clk : in std logic;
rst n : in std logic;
d : in std logic;
q2 : out std logic);

end badFFstyle;

architecture rtl of badFFstyle is
signal gl : std logic;

begin
process (clk)
begin
if (clk'event and clk = '1l') then
if (rst n = '0') then
ql <= '0';
else
ql <= d4;
g2 <= ql;
end if;
end if;
end process;
end rtl;
Example 1b - Bad VHDL coding style to model dissimilar flip-flops
d— q1i | q2
rst_n A
Id
clk |7 \
rst_n becomes a
"load-data" signal
Figure 1 - Bad coding style yields a design with an unnecessary loadable flip-flop
SNUG San Jose 2002 3 Synchronous Resets? Asynchronous Resets?

Rev 1.1 | am so confused! How will | ever know which to use?

The correct way to model afollower flip-flop iswith two Verilog procedural blocks as shown in Example 2a or two
VHDL processes as shown in Example 2b. These coding styles will generate the logic shown in Figure 2.

module goodFFstyle (g2, d, clk, rst n);
output g2;
input d, clk, rst n;
reg q2, ql;

always @ (posedge clk)
if (!rst n) gl <= 1'bO;
else ql <= d4d;

always @ (posedge clk)
g2 <= ql;
endmodule

Example 2a - Good Verilog coding style to model dissimilar flip-flops

library ieee;
use ieee.std logic 1164.all;
entity goodFFstyle is

port (
clk : in std logic;
rst n : in std logic;
d : in std logic;

q2 : out std logic);
end goodFFstyle;

architecture rtl of goodFFstyle is
signal gl : std logic;
begin
process (clk)
begin
if (clk'event and clk = '1l') then
if (rst n = '0') then
ql <= '0';
else
ql <= d4d;
end if;
end if;
end process;

process (clk)

begin
if (clk'event and clk = 'l') then
g2 <= ql;
end if;
end process;
end rtl;
Example 2b - Good VHDL coding style to model dissimilar flip-flops
SNUG San Jose 2002 4 Synchronous Resets? Asynchronous Resets?

Rev 1.1 | am so confused! How will | ever know which to use?

d— q1i | g2
L

rst_n —

clk M "

No reset on the
follower flip-flop

Figure 2 - Two different types of flip-flops, one with synchronous reset and one without

It should be noted that the extraneous logic generated by the code in Example 1a and Example 1b isonly aresult of
using a synchronousreset. If an asynchronous reset approach had be used, then both coding styles would synthesize
to the same design without any extra combinational logic. The generation of different flip-flop stylesislargely a
function of the sensitivity listsand i £ -else statements that are used in the HDL code. More details about the
sensitivity list and i £ -else coding styles are detailed in section 3.1.

2.2 Flip-flop inference style

Each inferred flip-flop should not be independently modeled in its own procedural block/process. As a matter of
style, all inferred flip-flops of a given function or even groups of functions should be described using asingle
procedural block/process. Multiple procedural blocks/processes should be used to model macro level functional
divisions within a given module/architecture. The exception to this guideline is that of follower flip-flops as
discussed in the previous section (section 2.1) where multiple procedural blocks/processes are required to efficiently
model the function itself.

2.3 Assignment operator guideline

In Verilog, al assignments made inside the always block modeling an inferred flip-flop (sequential logic) should be
made with nonblocking assignment operatorg[3]. Likewise, for VHDL, inferred flip-flops should be made using
signal assignments.

3.0 Synchronous resets

As research was conducted for this paper, acollection of ESNUG and SOLV-IT articles was gathered and reviewed.
Around 80+% of the gathered articles focused on synchronous reset issues. Many SNUG papers have been
presented in which the presenter would claim something like, “we al know that the best way to do resetsinan ASIC
isto strictly use synchronous resets’, or maybe, “asynchronous resets are bad and should be avoided.” Yet, little
evidence was offered to justify these statements. There are some advantages to using synchronous resets, but there
are also disadvantages. The sameistrue for asynchronous resets. The designer must use the approach that is
appropriate for the design.

Synchronous resets are based on the premise that the reset signal will only affect or reset the state of the flip-flop on
the active edge of aclock. The reset can be applied to the flip-flop as part of the combinational logic generating the
d-input to the flip-flop. If thisisthe case, the coding style to model the reset should be an i £/else priority style
with the reset in the i £ condition and al other combinational logic in the else section. If thisstyleisnot strictly
observed, two possible problems can occur. First, in some simulators, based on the logic equations, the logic can
block the reset from reaching the flip-flop. Thisis only a simulation issue, not a hardware issue, but remember, one
of the prime objectives of areset isto put the ASIC into aknown state for simulation. Second, the reset could be a
“late arriving signal” relative to the clock period, due to the high fanout of the reset tree. Even though the reset will
be buffered from areset buffer tree, it iswise to limit the amount of logic the reset must traverse once it reaches the
local logic. This style of synchronous reset can be used with any logic or library. Example 3 shows an
implementation of this style of synchronous reset as part of aloadable counter with carry out.

SNUG San Jose 2002 5 Synchronous Resets? Asynchronous Resets?
Rev 1.1 | am so confused! How will | ever know which to use?

module ctr8sr (q, co, d, 1d, rst n, clk);
output [7:0] g;

output co;
input [7:0] 4;
input 1ld, rst n, clk;
reg [7:0] q;
reg co;

always @ (posedge clk)

if (trst n) {co,q} <= 9'b0; // sync reset

else if (1d) {co,q} <= d; // sync load

else {co,q} <= q@ + 1'bl; // sync increment
endmodule

Example 3a - Verilog code for aloadable counter with synchronous reset

library ieee;

use ieee.std logic 1164.all;

use ieee.std logic unsigned.all;
entity ctr8sr is

port (
clk : in std logic;
rst n : in std logic;
d : in std logic;
1d : in std logic;
q : out std logic vector (7 downto 0);
co : out std logic);

end ctr8sr;

architecture rtl of ctr8sr is

signal count : std logic vector (8 downto 0);
begin

co <= count(8);

g <= count (7 downto 0);

process (clk)

begin
if (clk'event and clk = '1l') then
if (rst n = '0') then
count <= (others => '0'); -- sync reset
elsif (1d = '1') then
count <= '0' & d; -- sync load
else
count <= count + 1; -- sync increment
end if;
end if;
end process;
end rtl;
Example 3b - VHDL code for aloadable counter with synchronous reset
SNUG San Jose 2002 6 Synchronous Resets? Asynchronous Resets?

Rev 1.1 | am so confused! How will | ever know which to use?

Synchronous rst_n
(added path delay)

_‘ co

d

Figure 3 - Loadable counter with synchronous reset

A second style of synchronous resets is based on the availability of flip-flops with synchronous reset pins and the
ability of the designer and synthesis tool to make use of those pins. Thisis sometimes the case, but more often the
first style discussed above is the implementation used[22][26].

3.1 Cading style and example circuit

The Verilog code of Example 4a and the VHDL code of 4b show the correct way to model synchronous reset flip-
flops. Note that the reset is not part of the sensitivity list. For Verilog omitting the reset from the sensitivity list is
what makes the reset synchronous. For VHDL omitting the reset from the sensitivity list and checking for the reset
aterthe"if clk’event and clk = 1" statement makesthe reset synchronous. Also notethat theresetis
given priority over any other assignment by using the i £-else coding style.

module sync resetFFstyle (q, d, clk, rst n);

output q;
input d, clk, rst n;
reg qi

always @(posedge clk)
if (!rst n) q <= 1'b0;
else q <= d;
endmodule

Example 4a- Correct way to model aflip-flop with synchronous reset using Verilog

library ieee;
use ieee.std logic 1164.all;
entity syncresetFFstyle is

port (
clk : in std logic;
rst n : in std logic;
d : in std logic;
q : out std logic);

end syncresetFFstyle;

architecture rtl of syncresetFFstyle is
begin

process (clk)

begin

SNUG San Jose 2002 7 Synchronous Resets? Asynchronous Resets?
Rev 1.1 | am so confused! How will | ever know which to use?

if (clk'event and clk = '1l') then
if (rst n = '0') then
q<= Iol;
else
q <= d4;
end if;
end if;
end process;
end rtl;

Example 4b - Correct way to model a flip-flop with synchronous reset using VHDL

For flip-flops designed with synchronous reset style #1 (reset is gated with data to the d-input), Synopsys has a
switch that the designer can use to help infer flip-flops with synchronous resets.

Compiler directive: sync_set reset

In general, the authors recommend only using Synopsys switches when they are required and make a difference;
however, our colleague Steve Golson pointed out that the sync_set reset directive does not affect the
functionality of adesign, so its omission would not be recognized until gate-level simulation, when discovery of a
failure would require re-synthesizing the design late in the project schedule. Since this directive is only required once
per module, adding it to each module with synchronous resets is recommended|[19].

A few years back, another ESNUG contributor recommended adding the compile preserve sync resets
= "true" compiler directive[13]. Although this directive might have been useful afew years ago, it was
discontinued starting with Synopsys version 3.4b[22].

3.2 Advantages of synchronousresets

Synchronous reset will synthesize to smaller flip-flops, particularly if the reset is gated with the logic generating the
d-input. But in such a case, the combinational logic gate count grows, so the overall gate count savings may not be
that significant. If adesignistight, the area savings of one or two gates per flip-flop may ensure the ASIC fits into
thedie. However, intoday’stechnology of huge die sizes, the savings of a gate or two per flip-flop is generally
irrelevant and will not be a significant factor of whether a design fitsinto a die.

Synchronous reset can be much easier to work with when using cycle based simulators. For this very reason,
synchronous resets are recommend in section 3.2.4(2™ edition, section 3.2.3 in the 1¥ edition) of the Reuse
Methodology Manual (RMM)[18].

Synchronous resets generally insure that the circuit is 100% synchronous.

Synchronous resets insure that reset can only occur at an active clock edge. The clock works as afilter for small
reset glitches; however, if these glitches occur near the active clock edge, the flip-flop could go metastable.

In some designs, the reset must be generated by a set of internal conditions. A synchronous reset is recommended
for these types of designs because it will filter the logic equation glitches between clocks.

By using synchronous resets and a number of clocks as part of the reset process, flip-flops can be used within the
reset buffer tree to help the timing of the buffer tree keep within a clock period.

3.3 Disadvantages of synchronousresets

Synchronous resets may need a pulse stretcher to guarantee a reset pul se width wide enough to ensure reset is present
during an active edge of the clock[14].

A designer must work with pessimistic vs. optimistic simulators. This can be anissueif the reset is generated by
combinational logic in the ASIC or if the reset must traverse many levels of local combinational logic. During
simulation, based on how the reset is generated or how the reset is applied to afunctional block, the reset can be
masked by X’s. A large number of the ESNUG articles addressed thisissue. Most simulators will not resolve some
X-logic conditions and therefore block out the synchronous reset[5][6][7][8][9][10][11][12][13][20].

SNUG San Jose 2002 8 Synchronous Resets? Asynchronous Resets?
Rev 1.1 | am so confused! How will | ever know which to use?

By it's very nature, a synchronous reset will require a clock in order to reset the circuit. This may not be a
disadvantage to some design styles but to others, it may be an annoyance. The requirement of a clock to cause the
reset condition is significant if the ASIC/FPGA has an internal tristate bus. In order to prevent bus contention on an
internal tristate a tristate bus when a chip is powered up, the chip must have a power on asynchronous reset[17].

4.0 Asynchronousresets

Asynchronous resets are the authors preferred reset approach. However, asynchronous resets alone can be very
dangerous. Many engineers like the idea of being able to apply the reset to their circuit and have the logic go to a
known state. The biggest problem with asynchronous resets is the reset release, also called reset removal. The
subject will be elaborated in detail in section 5.0.

Asynchronous reset flip-flops incorporate areset pin into the flip-flop design. The reset pinistypically active low
(the flip-flop goes into the reset state when the signal attached to the flip-flop reset pin goesto alogic low level.)

4.1 Coding style and example circuit

The Verilog code of Example 5a and the VHDL code of Example 5b show the correct way to model asynchronous
reset flip-flops. Note that the reset is part of the sensitivity list. For Verilog, adding the reset to the sengitivity list is
what makes the reset asynchronous. In order for the Verilog simulation model of an asynchronous flip-flop to
simulate correctly, the sensitivity list should only be active on the leading edge of the asynchronous reset signal.
Hence, in Example 5a, the always procedure block will be entered on the leading edge of the reset, then the i £
condition will check for the correct reset level.

Synopsys requires that if any signal in the sensitivity list is edge-sensitive, then al signalsin the sensitivity list must
be edge-sensitive. In other words, Synopsys forces the correct coding style. Verilog simulation does not have this
requirement, but if the sensitivity list were sensitive to more than just the active clock edge and the reset |eading
edge, the simulation model would be incorrect[4]. Additionally, only the clock and reset signals can bein the
sensitivity list. If other signals are included (legal Verilog, illegal Verilog RTL synthesis coding style) the
simulation model would not be correct for aflip-flop and Synopsys would report an error while reading the model
for synthesis.

For VHDL, including the reset in the sensitivity list and checking for the reset beforethe“if clk’event and
clk = 1" statement makes the reset asynchronous. Also note that the reset is given priority over any other
assignment (including the clock) by using the i £/else coding style. Because of the nature of aVVHDL sensitivity
list and flip-flop coding style, additional signals can be included in the sensitivity list with no ill effects directly for
simulation and synthesis. However, good coding style recommends that only the signals that can directly change the
output of the flip-flop should be in the sensitivity list. These signals are the clock and the asynchronous reset. Al
other signals will slow down simulation and be ignored by synthesis.

module async resetFFstyle (q, d, clk, rst n);

output q;
input d, clk, rst n;
reg qi

// Verilog-2001l: permits comma-separation
// @(posedge clk, negedge rst n)
always @(posedge clk or negedge rst n)
if (!rst_ n) q <= 1'b0;
else q <= d;
endmodule

Example 5a - Correct way to model aflip-flop with asynchronous reset using Verilog

library ieee;

SNUG San Jose 2002 9 Synchronous Resets? Asynchronous Resets?
Rev 1.1 | am so confused! How will | ever know which to use?

use ieee.std logic 1164.all;
entity asyncresetFFstyle is

port (
clk : in std logic;
rst n : in std logic;
d : in std logic;
q : out std logic);

end asyncresetFFstyle;

architecture rtl of asyncresetFFstyle is
begin
process (clk, rst n)
begin
if (rst n = '0') then
q<= IOI;
elsif (clk'event and clk = 'l') then
q <= d;
end if;
end process;
end rtl;

Example 5b - Correct way to model aflip-flop with asynchronous reset using VHDL

The approach to synthesizing asynchronous resets will depend on the designers approach to the reset buffer tree. If
the reset is driven directly from an external pin, then usually doing aset drive 0 onthereset pinand doing a
set dont touch network onthereset net will protect the net from being modified by synthesis. However,
thereis at least one ESNUG article that indicates thisis not always the case[16].

One ESNUG contributor[15] indicates that sometimes set _resistance 0 onthereset net might also be needed.

And our colleague, Steve Golson, has pointed out that you can set _resistance 0 on the net, or create a custom
wireload model with resistance=0 and apply it to the reset input port with the command:

set wire load -port list reset

A recently updated SolvNet article also notes that starting with Synopsys release 2001.08 the definition of ideal nets
has dightly changed[24] and that aset_ideal net command can be used to create ideal netsand “get no timing
updates, get no delay optimization, and get no DRC fixing.”

Another colleague, Chris Kiegle, reported that doing a set_disable_timing on a net for pre-v2001.08 designs hel ped
to clean up timing reports[2], which seemsto be supported by two other SolvNet articles, one related to synthesis
and another related to Physical Synthesis, that recommend usage of bothaset false pathanda

set disable timing command[21][25].

4.2 Modeling Verilog flip-flops with asynchronousreset and asynchronous set

One additional note should be made here with regards to modeling asynchronous resetsin Verilog. The simulation
model of aflip-flop that includes both an asynchronous set and an asynchronous reset in Verilog might not simulate
correctly without alittle help from the designer. In general, most synchronous designs do not have flop-flops that
contain both an asynchronous set and asynchronous reset, but on the occasion such aflip-flop is required. The
coding style of Example 6 can be used to correct the Verilog RTL simulations where both reset and set are asserted
simultaneously and reset is removed first.

First note that the problem is only a simulation problem and not a synthesis problem (synthesis infers the correct flip-
flop with asynchronous set/reset). The simulation problem is due to the always block that is only entered on the
active edge of the set, reset or clock signals. If the reset becomes active, followed then by the set going active, then
if the reset goes inactive, the flip-flop should first go to areset state, followed by going to a set state. With both

SNUG San Jose 2002 10 Synchronous Resets? Asynchronous Resets?
Rev 1.1 | am so confused! How will | ever know which to use?

these inputs being asynchronous, the set should be active as soon as the reset is removed, but that will not be the case
in Verilog since there is no way to trigger the always block until the next rising clock edge.

For those rare designs where reset and set are both permitted to be asserted simultaneously and then reset is removed
firgt, the fix to this simulation problem isto model the flip-flop using self-correcting code enclosed within the

trandate off/trandate_on directives and force the output to the correct value for this one condition. The best
recommendation hereis to avoid, as much as possible, the condition that requires a flip-flop that uses both
asynchronous set and asynchronous reset. The code in Example 6 shows the fix that will simulate correctly and
guarantee a match between pre- and post-synthesis simulations. This code uses the trandate_off/translate_on
directives to force the correct output for the exception condition[4].

// Good DFF with asynchronous set and reset and self-
// correcting set-reset assignment
module dff3 aras (q, d, clk, rst n, set n);

output q;

input d, clk, rst n, set n;

reg g;

always @(posedge clk or negedge rst n or negedge set n)
if (!rst n) g <= 0; // asynchronous reset
else if (!set n) q <= 1; // asynchronous set
else q <= d;

// synopsys translate off
always @(rst n or set n)
if (rst n && !set n) force q=1;

else release q;
// synopsys translate on
endmodule

Example 6 — Verilog Asynchronous SET/RESET simulation and synthesis model

4.3 Advantages of asynchronousresets

The biggest advantage to using asynchronous resets is that, aslong as the vendor library has asynchronously reset-
able flip-flops, the data path is guaranteed to be clean. Designs that are pushing the limit for data path timing, can
not afford to have added gates and additional net delays in the data path due to logic inserted to handle synchronous
resets. Of course this argument does not hold if the vendor library has flip-flops with synchronous reset inputs and
the designer can get Synopsys to actually use those pins. Using an asynchronous reset, the designer is guaranteed not
to have the reset added to the data path. The code in Example 7 infers asynchronous resets that will not be added to
the data path.

module ctr8ar (q, co, d, 1d, rst n, clk);
output [7:0] gq;

output co;
input [7:0] d;
input 1ld, rst n, clk;
reg [7:0] q;
reg CO;
SNUG San Jose 2002 11 Synchronous Resets? Asynchronous Resets?

Rev 1.1 | am so confused! How will | ever know which to use?

always @(posedge clk or negedge rst n)

if (trst n) {co,q} <= 9'b0; // async reset

else if (1d) {co,q} <= 4d; // sync load

else {co,q} <= q@ + 1'bl; // sync increment
endmodule

Example 7a- Verilog code for aloadable counter with asynchronous reset

library ieee;

use ieee.std logic 1164.all;

use ieee.std logic unsigned.all;
entity ctr8ar is

port (
clk : in std logic;
rst n : in std logic;
d : in std logic;
1d : in std logic;
q : out std logic vector (7 downto 0);
co : out std logic);

end ctr8ar;

architecture rtl of ctr8ar is

signal count : std logic vector (8 downto 0);
begin

co <= count(8);

g <= count (7 downto 0);

process (clk)

begin
if (rst n = '0') then
count <= (others => '0'); -- sync reset
elsif (clk'event and clk = 'l') then
if (1d = '1') then
count <= '0' & d; -- sync load
else
count <= count + 1; -- sync increment
end if;
end if;
end process;
end rtl;
Example 7b- VHDL code for aloadable counter with asynchronous reset
SNUG San Jose 2002 12 Synchronous Resets? Asynchronous Resets?

Rev 1.1 | am so confused! How will | ever know which to use?

Asynchronous rst_n
(no extra path delay)

co

i

clk

rst_n &

Figure 4 - Loadable counter with asynchronous reset

Another advantage favoring asynchronous resets is that the circuit can be reset with or without a clock present.

The experience of the authors is that by using the coding style for asynchronous resets described in this section, the
synthesis interface tends to be automatic. That is, there is generally no need to add any synthesis attributes to get the
synthesis tool to map to aflip-flop with an asynchronous reset pin.

4.4 Disadvantages of asynchronous resets
There are many reasons given by engineers as to why asynchronous resets are evil.

The Reuse Methodology Manual (RMM) suggests that asynchronous resets are not to be used because they cannot
be used with cycle based ssimulators. Thisissimply not true. The basis of a cycle based simulator isthat all inputs
change on a clock edge. Sincetiming is not part of cycle based simulation, the asynchronous reset can simply be
applied on the inactive clock edge.

For DFT, if the asynchronous reset is not directly driven from an I/O pin, then the reset net from the reset driver must
be disabled for DFT scanning and testing. Thisisrequired for the synchronizer circuit shown in section 6.

Some designers claim that static timing analysisis very difficult to do with designs using asynchronous resets. The
reset tree must be timed for both synchronous and asynchronous resets to ensure that the release of the reset can
occur within one clock period. Thetiming analysis for areset tree must be performed after layout to ensure this
timing requirement is met.

The biggest problem with asynchronous resets is that they are asynchronous, both at the assertion and at the de-
assertion of thereset. The assertion is anon issue, the de-assertion isthe issue. If the asynchronous reset is released
at or near the active clock edge of aflip-flop, the output of the flip-flop could go metastable and thus the reset state
of the ASIC could belost.

Another problem that an asynchronous reset can have, depending on its source, is spurious resets due to noise or
glitches on the board or system reset. See section 8.0 for apossible solution to reset glitches. If thisisarea
problem in a system, then one might think that using synchronous resetsis the solution. A different but similar
problem exists for synchronous resets if these spurious reset pulses occur near a clock edge, the flip-flops can still go
metastable.

SNUG San Jose 2002 13 Synchronous Resets? Asynchronous Resets?
Rev 1.1 | am so confused! How will | ever know which to use?

5.0 Asynchronousreset problem

In discussing this paper topic with a colleague, the engineer stated first that since all he was working on was FPGAS,
they do not have the same reset problems that ASICs have (a misconception). He went on to say that he always had
an asynchronous system reset that could override everything, to put the chip into a known state. The engineer was
then asked what would happen to the FPGA or ASIC if the release of the reset occurred on or near a clock edge such
that the flip-flops went metastable.

Too many engineers just apply an asynchronous reset thinking that there are no problems. They test the reset in the
controlled simulation environment and everything works fine, but then in the system, the design fails intermittently.
The designers do not consider the idea that the release of the reset in the system (non-controlled environment) could
cause the chip to go into a metastable unknown state, thus voiding the reset all together. Attention must be paid to
the release of the reset so asto prevent the chip from going into a metastable unknown state when reset is rel eased.
When a synchronous reset is being used, then both the leading and trailing edges of the reset must be away from the
active edge of the clock

As shown in Figure 5, an asynchronous reset signal will be de-asserted asynchronousto the clock signal. There are
two potential problems with this scenario: (1) violation of reset recovery time and, (2) reset removal happening in
different clock cyclesfor different sequential elements.

tpd trec

|l 'll'I

rst_nis
asynchronous D
to clk !

clk

rst_n

4>_?

Figure 5 - Asynchronous reset removal recovery time problem

5.1 Reset recovery time

Reset recovery time refers to the time between when reset is de-asserted and the time that the clock signal goes high
again. The Verilog-2001 Standard[17] has three built-in commands to model and test recovery time and signal
removal timing checks: $recovery, $removal and $recrem (the latter is a combination of recovery and removal timing
checks).

Recovery timeis also referred to as atsu setup time of the form, “PRE or CLR inactive setup time before CLK T"[1].
Missing a recovery time can cause signal integrity or metastability problems with the registered data outputs.
5.2 Reset removal traversing different clock cycles

When reset removal is asynchronous to the rising clock edge, slight differences in propagation delaysin either or
both the reset signal and the clock signal can cause some registers or flip-flops to exit the reset state before others.

SNUG San Jose 2002 14 Synchronous Resets? Asynchronous Resets?
Rev 1.1 | am so confused! How will | ever know which to use?

6.0 Reset synchronizer

Guiddline: EVERY ASIC USING AN ASYNCHRONOUS RESET SHOULD INCLUDE A RESET
SYNCHRONIZER CIRCUIT!!

Without a reset synchronizer, the usefulness of the asynchronous reset in the final systemisvoid even if the reset
works during simulation.

The reset synchronizer logic of Figure 6 is designed to take advantage of the best of both asynchronous and
synchronous reset styles.

When reset is de-asserted
asynchronously ...

... masterrst_n is removed //_\
L

synchronously

\ masterrst_n

TTT1

S

Reset distribution
buffer tree

Asynchronous
reset assertion

Figure 6 - Reset Synchronizer block diagram

An externa reset signal asynchronously resets a pair of master reset flip-flops, which in turn drive the master reset
signal asynchronously through the reset buffer tree to the rest of the flip-flopsin the design. The entire design will
be asynchronously reset.

Reset removal is accomplished by de-asserting the reset signal, which then permits the d-input of the first master
reset flip-flop (which istied high) to be clocked through areset synchronizer. It typically takes two rising clock
edges after reset removal to synchronize removal of the master reset.

Two flip-flops are required to synchronize the reset signal to the clock pulse where the second flip-flop is used to
remove any metastability that might be caused by the reset signal being removed asynchronously and too close to the
rising clock edge. Asdiscussed in section 4.4, these synchronization flip-flops must be kept off of the scan chain.

SNUG San Jose 2002 15 Synchronous Resets? Asynchronous Resets?
Rev 1.1 | am so confused! How will | ever know which to use?

clk-g pd rec

[

L masterrst_n [:
clk { Q { Q

rst_n

N

Figure 7 - Predictable reset removal to satisfy reset recovery time

A closer examination of the timing now shows that reset distribution timing is the sum of the a clk-to-q propagation
delay, total delay through the reset distribution tree and meeting the reset recovery time of the destination registers
and flip-flops, as shown in Figure 7.

The code for the reset synchronizer circuit is shown in Example 8.

module async resetFFstyle2 (rst n, clk, asyncrst n);
output rst n;
input clk, asyncrst n;
reg rst n, rffl;

always @(posedge clk or negedge asyncrst n)
if (!asyncrst n) {rst n,rffl} <= 2'b0;
else {rst n,rffl} <= {rffl,1'bl};
endmodule

Example 8a - Properly coded reset synchronizer using Verilog

library ieee;
use ieee.std logic 1164.all;
entity asyncresetFFstyle is
port (
clk in std logic;
asyncrst_n in std logic;
rst_ n : out std logic);
end asyncresetFFstyle;

architecture rtl of asyncresetFFstyle is
signal rffl : std logic;

begin
process (clk, asyncrst n)
begin
if (asyncrst n = '0') then
SNUG San Jose 2002 16 Synchronous Resets? Asynchronous Resets?

Rev 1.1 | am so confused! How will | ever know which to use?

rffl <= '0';
rst n <= '0';

elsif (clk'event and clk = '1l') then
rffl <= '1';
rst n <= rffl;

end if;

end process;
end rtl;

Example 8b - Properly coded reset synchronizer using VHDL

7.0 Reset distribution tree

The reset distribution tree requires almost as much attention as a clock distribution tree, because there are generally
as many reset-input loads as there are clock-input loadsin atypical digital design, as shown in Figure 8. The timing
requirements for reset tree are common for both synchronous and asynchronous reset styles.

Clock distribution tree]

clk [’—D/ // __

.://
H>
%>/

Zg - masterrst_n

% |

The reset distribution tree has
almost as many loads as the
clock distribution tree

e

=

| 9

e
'

rst_n .

L4

Figure 8 - Reset distribution tree

One important difference between a clock distribution tree and a reset distribution tree is the requirement to closely
balance the skew between the distributed resets. Unlike clock signals, skew between reset signalsis not critical as
long as the delay associated with any reset signal is short enough to allow propagation to all reset loads within a
clock period and still meet recovery time of all destination registers and flip-flops.

Care must be taken to analyze the clock tree timing against the clk-g-reset tree timing. The safest way to clock a
reset tree (synchronous or asynchronous reset) isto clock the internal-master-reset flip-flop from aleaf-clock of the
clock tree as shown in Figure 9. If this approach will meet timing, lifeis good. In most cases, there is not enough
time to have a clock pulse traverse the clock tree, clock the reset-driving flip-flop and then have the reset traverse the
reset tree, all within one clock period.

SNUG San Jose 2002 17 Synchronous Resets? Asynchronous Resets?
Rev 1.1 | am so confused! How will | ever know which to use?

Clock distribution —
clk tree instantiation ——

L

o

\\—"““x_/fv’—/

g

Reset- — Masterrst_ n
synchronizer

is driven from
afanned-out | ¢
clock
rst_n e —
- [

Reset distribution tree
(reset must be removed before
the next rising clock edges)

4
Il

L4

Figure 9 - Reset tree driven from a delayed, buffered clock

In order to help speed the reset arrival to all the system flip-flops, the reset-driver flip-flop is clocked with an early
clock as shown in Figure 10. Post layout timing analysis must be made to ensure that the reset rel ease for
asynchronous resets and both the assertion and release for synchronous reset do not beat the clock to the flip-flops;
meaning the reset must not violate setup and hold on the flops. Often detailed timing adjustments like this can not be
made until the layout is done and real timing is available for the two trees.

SNUG San Jose 2002 18 Synchronous Resets? Asynchronous Resets?
Rev 1.1 | am so confused! How will | ever know which to use?

Clock distribution]
tree instantiation —

clk [|

Reset- /“/\
synchronizer - masterrst_n
is driven from
a source L
clock driver
rst_n . /' —
- i)

Reset distribution tree
(reset must not be removed
before the rising clock edges)

e

\\—"“'H__/f‘r/

=

| 9
'

L4

Figure 10 - Reset synchronizer driven in parallel to the clock distribution tree

Ignoring this problem will not make it go away. Gee, and we all thought resets were such a basic topic.

8.0 Reset-glitch filtering

As stated earlier in this paper, one of the biggest issues with asynchronous resetsis that they are asynchronous and
therefore carry with them some characteristics that must be dealt with depending on the source of the reset. With
asynchronous resets, any input wide enough to meet the minimum reset pulse width for a flip-flop will cause the flip-
flop to reset. If thereset lineis subject to glitching, this can be areal problem. Presented hereis one approach that
will work to filter out the glitches, but it isugly! This solution requires that a digital delay (meaning the delay will
vary with temperature, voltage and process) to filter out small glitches. The reset input pad should also be a Schmidt
triggered pad to help with glitch filtering. Figure 11 shows the implementation of this approach.

SNUG San Jose 2002 19 Synchronous Resets? Asynchronous Resets?
Rev 1.1 | am so confused! How will | ever know which to use?

| glitch

reset

_‘ delayed

X

/' .

masterrst_n E

rst_n _/ f \ ‘//%
drst_n _{ \ ‘/ ‘L
frst_n \ \ ¥ 7
filtered J7
clk Q
drst_n j
rst_n l— delay - frst_n

-

Low-asserted Delayed Filtered
asynchronous reset . reset
y De Morgan equivalent
reset -
or''-gate

Figure 11 - Reset glitch filtering

In order to add the delay, some vendors provide a delay hard macro that can be hand instantiated. 1f such adelay
macro is not available, the designer could manually instantiate the delay into the synthesized design after
optimization — remember not to optimize this block after the delay has been inserted or it will be removed. Of
course the elements could have don't touch attributes applied to prevent them from being removed. A second
approach isto instantiated a slow buffer in amodule and then instantiated that module multiple times to get the
desired delay. Many variations could expand on this concept.

Thisglitch filter is not needed in al systems. The designer must research the system requirements to determine
whether or not adelay is needed.

9.0 DFT for asynchronousresets

Applying Design for Test (DFT) functionality to adesign is atwo step process. First, the flips-flopsin the design are
stitched together into a scan chain accessible from external 1/0 pins, thisis called scaninsertion. The scan chainis
typically not part of the functional design. Second, a software program is run to generate a set of scan vectors that,
when applied to the scan chain, will test and verify the design. This software program is called Automatic Test
Program Generation or ATPG. The primary objective of the scan vectorsisto provide foundry vectors for
manufacture tests of the wafers and die as well astests for the final packaged part.

The process of applying the ATPG vectorsto create atest is based on:
1. scanning aknown state into all the flip-flops in the chip,
2. switching the flip-flops from scan shift mode, to functional datainput mode,
3. applying one functional clock,
4, switching the flip-flops back to scan shift mode to scan out the result of the one functional clock while
scanning in the next test vector.

The DFT process usualy requires two control pins. One that puts the design into “test mode.” Thispinisused to
mask off non-testable logic such asinternally generated asynchronous resets, asynchronous combinational feedback
loops, and many other logic conditions that require special attention. This pinisusually held constant during the
entire test. The second control pin is the shift enable pin.

In order for the ATPG vectors to work, the test program must be able to control all the inputs to the flip-flops on the
scan chain in the chip. Thisincludes not only the clock and data, but also the reset pin (synchronous or

SNUG San Jose 2002 20
Rev 1.1

Synchronous Resets? Asynchronous Resets?
| am so confused! How will | ever know which to use?

asynchronous). If the reset is driven directly from an I/O pin, then the reset isheld in anon-reset state. |If thereset is
internally generated, then the master internal reset is held in anon-reset state by the test mode signal. If the
internally generated reset were not masked off during ATPG, then the reset condition might occur during scan
causing the flip-flopsin the chip to be reset, and thus lose the vector data being scanned in.

Even though the asynchronous reset is held to the non-reset state for ATPG, this does not mean that the reset/set
cannot be tested as part of the DFT process. Before locking out the reset with test mode and generating the ATPG
vectors, afew vectors can be manually generated to create reset/set test vectors. The process required to test
asynchronous resets for DFT is very straight forward and may be automatic with some DFT tools. If the scan tool
does not automatic test the asynchronous resets/sets, then they must be setup manually. The basic steps to manually
test the asynchronous resets/sets are as follows:

scan in al ones into the scan chain

issue and rel ease the asynchronous reset

scan out the result and scan in all zeros

issue and release the reset

scan out the result

set the reset input to the non reset state and then apply the ATPG generated vectors.

Thistest approach will scan test for both asynchronous resets and sets. These manually generated vectors will be
added to the ATPG vectors to provide a higher fault coverage for the manufacture test. If the design uses flip-flops
with synchronous reset inputs, then modifying the above manual asynchronous reset test slightly will give asimilar
test for the synchronous reset environment. Add to the steps above a functional clock while the reset is applied. All
other steps would remain the same.

R SEAN

For the reset synchronizer circuit discussed in this paper, the two synchronizer flips-flops should not be included in
the scan chain, but should be tested using the manual process discussed above.

10.0 Multi-clock reset issues

For amulti-clock design, a separate asynchronous reset synchronizer circuit and reset distribution tree should be
used for each clock domain. Thisis done to insure that reset signals can indeed be guaranteed to meet the reset
recovery time for each register in each clock domain.

As discussed earlier, asynchronous reset assertion is not a problem. The problem is graceful removal of reset and
synchronized startup of al logic after reset is removed.

Depending on the constraints of the design, there are two techniques that could be employed: (1) non-coordinated
reset removal, and (2) sequenced coordination of reset removal.

SNUG San Jose 2002 21 Synchronous Resets? Asynchronous Resets?
Rev 1.1 | am so confused! How will | ever know which to use?

= arst_n
All resets
aclk
P removed at nearly

rst_n the same time

— brst_n /
belk
rst_n -

1 crst_n
cclk
rst_n "

Figure 12 - Multi-clock reset removal

10.1 Non-coordinated reset removal

For many multi-clock designs, exactly when reset is removed within one clock domain compared to when it is
removed in another clock domain is not important. Typically in these designs, any control signals crossing clock
boundaries are passed through some type of request-acknowledge handshaking sequence and the delayed
acknowledge from one clock domain to another is not going to cause invalid execution of the hardware. For thistype
of design, creating separate asynchronous reset synchronizers as shown in Figure 12 is sufficient, and the fact that
arst n,brst nandcrst_n could beremoved in any sequence is not important to the design.

10.2 Sequenced coordination of reset removal

For some multi-clock designs, reset removal must be ordered and proper sequence. For this type of design, creating
prioritized asynchronous reset synchronizers as shown in Figure 13 might be required to insure that all ac1k domain
logic is activated after reset is removed before the be1k logic, which must also be activated before the ce1k logic
becomes active.

SNUG San Jose 2002 22 Synchronous Resets? Asynchronous Resets?
Rev 1.1 | am so confused! How will | ever know which to use?

arst_n

[]
1st \
Resets are
aclk .
P removed in an
ordered sequence
2nd /
— / brst_n

belk

® 3rd

crst_n

cclk ’7

rst_n

—a V]«

Figure 13 - Multi-clock ordered reset removal

For this type of design, only the highest priority asynchronous reset synchronizer input istied high. The other
asynchronous reset synchronizer inputs are tied to the master resets from higher priority clock domains.

11.0 Multi-ASIC reset synchronization

There are designs with multiple ASICs that require precise synchronization of reset removal across al of the multiple
ASICs. One approach to satisfy this type of design, described in this section, isto use a different asynchronous reset
synchronization scheme, one that only requires one reset removal flip-flop instead of the two flip-flops described in
section 6.0, plus a digitally calibrated synchronization delay to properly sequence reset removal from the multiple
ASICs.

Consider the actual design of adata acquisition board on a Digital Storage Oscilloscope (DSO). In rudimentary
terms, aDSO is atest instrument that probes an analog signal, continuously does sampling and Analog-to-Digital
(A2D) conversion of the signal, and continuously stores the sampled digital datainto memory asfast asit can. After
the requested trigger condition occurs, the rest of the data associated with the trigger condition is stored to memory
and then DSO control logic (typically acommercial microprocessor) accesses the data and draws a waveform of the
data values onto a screen for visual inspection.

For an actua design of this type, the data acquisition board contained four digital demultiplexer (demux) ASICs,
each of which captured one-fourth of the datain samplesto send to memory, as shown in Figure 14.

SNUG San Jose 2002 23 Synchronous Resets? Asynchronous Resets?
Rev 1.1 | am so confused! How will | ever know which to use?

addrout1
>

dataout1
>

datain addrout3
—

clk‘r clk;
j6>ASIC #1 _:5>ASIC #3 dataout3

addrout4

clk2 L Asic #2 c'ﬁ

ASIC #4 d&taout4

b

Reset sync
net —

reset_n

addrout?
ataout2
>

Figure 14 - Multi-ASIC design with synchronized reset removal problem

For this digital acquisition system, as soon as reset is removed, the ASICs must start capturing data and generating
memory addresses to write the data to memory. Both data acquisition and address generation are continuously
running, capturing data samples and overwriting previous written memory locations until atrigger circuit causes the
address counters to stop and hold the data that has been most recently captured. Frequently, the trigger is set to hold
and show 90% of the waveform as pre-trigger data and 10% of the waveform as post-trigger data. Sinceitis
generally impossible to predict when the trigger will occur, it is necessary to continuously acquire data after reset
removal until atrigger signal stops the data acquisition.

The approach that was used in this design to do high-speed data acquisition was to use four demux ASICs that
capture every fourth point of the digitized waveform. Since the demux ASICstypically ran at very fast clock rates,
and since each demux ASIC aso had to generate accompanying address count values to store the data samplesto
memory, it was important that all four demux ASICs start their respective address counters in the correct sequence to
insure that the data samples stored in memory could be easily read-back to draw waveforms on the DSO display.

The problem with this type of design was to accurately remove the reset signal from the four ASIC devices at the
same time (in the same relative clock period) so that the four ASICs captured the correctly sequenced data samples
that corresponded to address-#0 on al four ASICs, followed by address-#1 on al four ASICs, etc., so that the data
stored to memory could be read back from memory (after triggering the DSO) in the correct sequence to display an
accurate waveform on the DSO screen.

For thistype of design, there are a number of factors that work against correct reset-removal and hence correct
sequencing of the data values being written to memory.

First, for very high-speed designs (DSOs are typically very high-speed designsin order to capture an adequate
number of data samples while probing other high-speed circuits), the relative board trace length of reset signalsto
the four ASICs would have to be held to a very tight tolerance; hence, board layout is an issue.

Second, process variations within or between batches of manufactured ASICs can create delays that exceed the ultra-
short ASIC clock periods. Choosing four ASICsto insert during manufacture can result in selection of four devices

SNUG San Jose 2002 24 Synchronous Resets? Asynchronous Resets?
Rev 1.1 | am so confused! How will | ever know which to use?

with different relative delays being placed on the same data acquisition board. The relative process speeds of the four
ASICs placed on a board cannot be guaranteed (which of the four ASICs will always be the fastest? Who knows!)

Third, temperature swingsin different test environments can also add to differencesin delays. Relative positioning of
the ASICsinside of a DSO enclosure might account for significant differences in temperature for this high-speed
system.

Fourth, removing the covers of the DSO to troubleshoot prototypes could introduce different temperature variations
across the four ASICs than when the covers are closed.

For the actual design, acommon reset signal (reset_n) wasrouted to all four demux ASICs to assert reset, but the
reset signal did not de-assert reset from the demux ASICs. A separate sync signal was used to flag reset removal
permission on each demux ASIC.

addrent
—
p pad_sync_in [\\sync_in Programmable | Sync_dly mstrrst n
{ L~ Delay rst n }— -
\‘h"*—____ >
'"“"-—-______“ clk T
pad_rst_n L[> T _ Externally connect
‘n,‘: sync_out to sync_in
Tl S on the master ASIC
rst_n ;
N sync_out e pad_sync_out -~
pad_master . master / L~ ‘\

\ L

Tied high for Master ASIC

Dangling output
for slave ASICs

Tied low for Slave ASICs

Figure 15 - Reset removal synchronization logic block diagram

The multi-ASIC reset removal synchronization logic is handled using the logic shown in Figure 15. Thislogicis
common to both master and slave ASICs.

Asserting reset (rst_n going low in Figure 15) asynchronoudly resets the master reset signal, mstrrst_n, which
is driven through a reset-tree to the rest of the resetable logic on all ASICs (both master and dlave ASICs); therefore,
reset is asynchronous and immediate.

Each ASIC has three pins dedicated to reset-removal synchronization.

Thefirst pin on each ASIC is a dedicated master/slave selection pin. When this pinistied high, the ASIC is placed
into master mode. When the pinistied low, the ASIC is placed into slave mode.

The second pin on each ASIC isthe sync_out pin. Onthe slave ASICs, the sync_out pinisunused and left
dangling. The master ASIC generatesthe sync_out pulse when reset is removed (when reset_n goes high). The
sync_out signa isdriven out of the master ASIC and istied to the sync_in input on both master and dave
ASICsthrough board-trace connections. The sync_out pinisthe pin that controls reset removal on both the
master ASIC and the dave ASICs.

SNUG San Jose 2002
Rev 1.1

25 Synchronous Resets? Asynchronous Resets?

| am so confused! How will | ever know which to use?

Thethird pin on each ASIC isthe sync_in pin. The sync_in pinistheinput pin that is used to control reset
removal on both master and slave ASICs. The sync_in signal is connected to a programmable delay block and is
then enabled by a high-assertion on the reset input, that is then passed to a synchronous reset removal flip-flop. The
next rising clock edge on the ASIC will cause the reset to be synchronously removed, permitting the address counters
on each ASIC to start counting in a synchronized and orderly manner.

The problem, as explained earlier, isto insure that the sync_in signal removes the reset on the four ASICsin the
correct order.

[) sdly0 S
— |
sdiy1 |
sdly7 . sdly8 “sdiy2 |
[— - li2
sdly9 sdly3 |5
sdly4 a
sdlyd i5
sdly6 5
sdly? | ; sync_dly
sdly8 | g Y
sdlyd |
sdly10 | 4o
sdly11 | 44
Sd|y12 i12
Load the delay Delay sdly13 | 13 /
setting from a » Select LOelaysel[3:0] sdly14 | 14
processor interface Reg " sdly1s | muzsel
3210
2 J JJ

Figure 16 - Programmable digital delay block diagram

The programmable digital delay block, shown in Figure 16, is a set of delay stages connected in series with each
delay-stage output driving both the next delay-stage input and an input on a multiplexer. The delay stages could be
simple buffers or they could be pairs of inverters. The number of delay stages selected was equal to almost three
ASIC clock cycles.

A processor interface is used to program the delay select register, which enables the multiplexer select linesto
choose which delayed sync_in signal (sd1y0 to sd1y15) would be driven to the mux output and used to remove
the reset on the ASIC.

In order to determine the correct delay settings for each ASIC, a software digital calibration technique was
employed.

To help calibrate the demux ASICs, as well as other analog devices on the data acquisition board, the board was
designed to capture a selectable on-board ramp signal through the data acquisition path. The ramp signal was used to
calibrate the delays on the four demux ASICs.

In Figure 17-Figure 19, the software programmable, digital calibration procedure is shown with just two of the four
demux ASICs.

SNUG San Jose 2002 26 Synchronous Resets? Asynchronous Resets?
Rev 1.1 | am so confused! How will | ever know which to use?

ASIC#2 started
sampling too soon

10 S e
ASIC#2samples | | L g ——& o F
ASICH#1 were capturedearly | @ ST
Delay Setting
11 ¢
ASIC#2 8
Delay Setting early | i
0-4
(Early)
¥ ||% | & 9| |8 T & R R %%
4| 4o 4 | 4 | 2 2 Lz
=R =1ar-1 & |5l al (g ol & =181
E||E E|E E||E E||E gl € E|E
ARE: AR | | | | g & AR
0| |0 0| |0 o |0 o |0 0| (v a| |0
55 B8 B B B §E
N 0|0 0| 0 | o |0 0| |0
of | (<L of | <L of| (<L <L| =L | (<X <X =

Figure 17 - Two-ASIC reset-removal calibration - early data sampling on ASIC #2

ASIC #l isgiventheinitial delay setting of 11 (to drivethe sd1y11 signa to the mux output). ASIC #2 is given
another delay setting and aramp signal is captured by the data acquisition board. If the delay setting on ASIC #2 is
too small, such as adelay value of 0-4 as shown in Figure 17, the ramp values captured by ASIC #2 will be sampled
early compared to the data points sampled by ASIC #1. Thisis manifest by the fact that each ramp data point
captured by ASIC #2 is larger than the next data point captured by ASIC #1.

If the delay setting on ASIC #2 isin the correct range, such as adelay value of 5-11 as shown in Figure 18, the ramp
values captured by ASIC #2 will be sampled in the correct order compared to the data points sampled by ASIC #1.
Thisis manifest by the fact that each ramp data point captured by ASIC #2 islarger than the previous data point
captured by ASIC #1 and smaller than the next data point captured by ASIC #1.

If the delay setting on ASIC #2 istoo large, such as adelay value of 12-15 as shown in Figure 19, the ramp values
captured by ASIC #2 will be sampled late compared to the data points sampled by ASIC #1. Thisis manifest by the
fact that each ramp data point captured by ASIC #2 is smaller than the next data point captured by ASIC #1.

Once the correct range is determined for ASIC #2, the center point in the range is chosen to be the ASIC #2
sync_in delay setting. The center point is the safest setting in the range since this setting is approximately a half-
cycle between the previous and next rising clock edges for the reset-removal synchronization flip-flop.

After determining the correct ASIC #2 setting, the correct ASIC #1 range surrounding the initial setting (the setting
of 11 isused in Figure 17) must be determined to find the correct ASIC #1 mid-point setting. After determining the
correct ASIC #1 setting, asimilar process is used to find the correct delay setting for ASIC #3, followed by finding
the correct setting for ASIC #4.

SNUG San Jose 2002 27 Synchronous Resets? Asynchronous Resets?
Rev 1.1 | am so confused! How will | ever know which to use?

10 ASIC#2 samples F

ASIC#1 were captured correctly
Delay Setting
1
ASIC#2
Delay Setting
511
<|[<| M (o] [en] | [« ! w0l el [el
| |4 | |3 | 3 X F | | | |3
Choose 8 L2 L2 2|2 22 22 L e
marway |28 (3g g mE |2y |gf
between 58 11) | || |3 S& alls a3 & |3 3|3
¥ [® ¥ [® ®| 1R ®| R ®| R ®|[®
oo oo oo oo oo oo
al|;a al|;a 10 ol |;a ol |;a a||;a
of | (<L of | (<L of| <L of| (<L of| (<L of | (<L

Figure 18 - Two-ASIC reset-removal calibration - correctly timed data sampling on ASIC #2

ASIC#2 started
sampling too late

10 ASIC#2 samples -
ASIC#1 were captured late
Delay Setting
c
1
ASIC#2 8
Delay Setting correct
12-15
(Late) 4
Iatel
S
= | \—\H__—_ [en] [en] (o] =] 0] 0] o] o
il iy 2R T = 218 g8
2 |2 2 2 2 |2 2 |2 2 |\ 2@
[=1RE =1 [=1E=1 [=IRE =1 j=1g=1 [=1Qg =1 [=1NR=1
E|E E||E E|E E|E gl E El|E
[-ARE AR - IRE S| S | ® - 10N
a0 a0 | (o 0| | 0| |0 0| |
58 BE EE FE @ Ee
0|0 0 R @l |0 o |0 |0
oL (=g oL | oL| (= | (< <L <L oL (<L

Figure 19 - Two-ASIC reset-removal calibration - late data sampling on ASIC #2

After digital calibration, there was no need to use a second reset-removal synchronization flip-flop because a mid-
clock setting was used to insure that the flip-flop recovery time was met and to insure that no metastability problems
would arise.

SNUG San Jose 2002 28 Synchronous Resets? Asynchronous Resets?
Rev 1.1 | am so confused! How will | ever know which to use?

The full block diagram of the four-demux ASIC design with master/dave pin and sync_in/sync_out pinson
each ASIC and how they were connected is shown in Figure 20.

When tied high: When tied low:
Master ASIC Slave ASIC
addrout1
>
dataout1
R 4> master - [< slave
datain > A > addrout3
»[-ASIC #1 \ L[~ ASIC #3 dataout3
»Q a®
Clock sync_inT | sync_out * sync_in
OsSC | ,| Generator
or PLL IC
R7 slave R7 slave
> > addroutd
p-ASIC #2 o ASIC #4 dataout4
Reset sync >Q - O -
net > sync_in sync_in
reset_n
addrout2
ataout?
>

Figure 20 - Multi-ASIC synchronized reset removal solution

In the actual design, after determining avalid set of mid-point delay settings for the four ASICs on one of the data
acquisition prototype boards, these values were programmed into a ROM and used as initial settings for all
manufactured boards and variations from the initial settings were tracked. What was interesting was that the
calibrated delay values for each board rarely strayed more than one or two delay stages up or down from the original
settings of theinitial data acquisition prototype board.

12.0 Conclusions

Using asynchronous resets is the surest way to guarantee reliable reset assertion. Although an asynchronous reset isa
safe way to reliably reset circuitry, removal of an asynchronous reset can cause significant problemsif not done
properly.

The proper way to design with asynchronous resets is to add the reset synchronizer logic to allow asynchronous reset
of the design and to insure synchronous reset removal to permit safe restoration of normal design functionality.

Using DFT with asynchronous resetsis still achievable as long as the asynchronous reset can be controlled during
test.

SNUG San Jose 2002 29 Synchronous Resets? Asynchronous Resets?
Rev 1.1 | am so confused! How will | ever know which to use?

References

(1]
(2]
(3]

(4]

(5]
(6]
(7]
(8]
(9]
(10]
(11]
[12]
[13]
(14]
[15]
[16]
[17]

(18]

[19]
[20]

[21]

[22]

(23]

[24]

[25]

[26]

ALS/AS Logic Data Book, Texas Instruments, 1986, pg. 2-78.
ChrisKiegle, personal communication

Clifford E. Cummings, “Nonblocking Assignmentsin Verilog Synthesis, Coding Styles That Kill!,” SNUG (Synopsys
Users Group) 2000 User Papers, section-MC1 (1% paper), March 2000.
Also available at www.sunburst-design.com/papers

Don Millsand Clifford E. Cummings, “RTL Coding Styles That Yield Simulation and Synthesis Mismatches,” SNUG
(Synopsys Users Group) 1999 Proceedings, section-TA2 (2" paper), March 1999.
Also available at www.lcdm-eng.com/papers.htm and www.sunburst-design.com/papers

ESNUG #60, Item 1- http://www.deepchip.com/posts/0060.html

ESNUG #240, Item 7- http://www.deepchip.com/posts/0240.html
ESNUG #242, Item 6 - http://www.deepchip.com/posts/0242.html
ESNUG #243, Item 4 - http://www.deepchip.com/posts/0243.html
ESNUG #244, Item 5 - http://www.deepchip.com/posts/0244.html
ESNUG #246, Item 5 - http://www.deepchip.com/posts/0246.html
ESNUG #278, Item 7 - http://www.deepchip.com/posts/0278.html
ESNUG #280, Item 4 - http://mww.deepchip.com/posts/0280.html
ESNUG #281, Item 2 - http://www.deepchip.com/posts/0281.html
ESNUG #355, Item 2 - http://mww.deepchip.com/posts/0355.html
ESNUG #356, Item 4 - http://mwww.deepchip.com/posts/0356.html
ESNUG #373, Item 6 - http://mwww.deepchip.com/posts/0373.html

|EEE Standard Verilog Hardware Description Language, | EEE Computer Society, IEEE, New York, NY, |EEE Std 1364-
2001.

Michael Keating, and Pierre Bricaud, Reuse Methodol ogy Manual, Second Edition, Kluwer Academic Publishers, 1999,
pg. 35.

Steve Golson, personal communication

Synopsys SolvNet, Doc Name: METH-933.html, “Methodology and limitations of synthesis for synchronous set and
reset,” Updated 09/07/2001.

Synopsys SolvNet, Doc Name: Physical_Synthesis-231.html, “Handling High Fanout Netsin 2001.08” Updated:
11/01/2001.

Synopsys SolvNet, Doc Name: Star-15.html, “Is the compile_preserve_sync_reset Switch Still Valid?,” Updated:
09/07/2001.

Synopsys SolvNet, Doc Name: Synthesis-452.html, “Why can't | synthesize synchronous reset flip-flops?,” Updated:
08/16/1999.

Synopsys SolvNet, Doc Name: Synthesis-780.html, “How can | use the high_fanout_net_threshold commands to simplify
the net delay calculation?’ Updated: 01/25/2002.

Synopsys SolvNet, Doc Name: Synthesis-482109.html, “How to Eliminate Transition Time Calculation Side Effects From
Arcs That Are Fal” Updated: 08/11/1997

Synopsys SolvNet, Doc Name: Synthesis-799.html, “Data and Synchronous Reset Swapped,” Updated: 05/01/2001.

SNUG San Jose 2002 30 Synchronous Resets? Asynchronous Resets?
Rev 1.1 | am so confused! How will | ever know which to use?

Author & Contact | nformation

Cliff Cummings, President of Sunburst Design, Inc., is an independent EDA consultant and trainer with 19 years of
ASIC, FPGA and system design experience and nine years of Verilog, synthesis and methodol ogy training
experience.

Mr. Cummings, a member of the IEEE 1364 Verilog Standards Group (V SG) since 1994, chaired the VSG
Behavioral Task Force, which was charged with proposing enhancements to the Verilog language. Mr. Cummingsis
also amember of the IEEE Verilog Synthesis Interoperability Working Group.

Mr. Cummings holds a BSEE from Brigham Y oung University and an M SEE from Oregon State University.

E-mail Address: cliffc@sunburst-design.com

Don Millsis an independent EDA consultant, ASIC designer, and Verilog/VHDL trainer with 16 years of
experience.

Don hasinflicted pain on Aart De Geuss for too many years as SNUG Technical Chair. Aart was more than happy to
see him leave! Not really, Don chaired three San Jose SNUG conferences: 1998-2000, the first Boston SNUG 1999,
and is currently chair of the Europe SNUG 2001- present.

Don holds a BSEE from Brigham Y oung University.

E-mail Address: mills@lcdm-eng.com

An updated version of this paper can be downloaded from the web site: www.sunburst-design.com/papers or from
www.|cdm-eng.com

(Data accurate as of April 19", 2002)

SNUG San Jose 2002 31 Synchronous Resets? Asynchronous Resets?
Rev 1.1 | am so confused! How will | ever know which to use?

