EEL 4712 Name:

Midterm 1 — Spring 2017
VERSION 1
UFID:

Sign here to give permission to return your test in class, where other students might see your score:

IMPORTANT:

* Please be neat and write (or draw) carefully. If we cannot read it with a
reasonable effort, it is assumed wrong.

* As always, the best answer gets the most points.

COVER SHEET:

Problemtit: Points

1 (15 points)

2 (4 points) Total:

3 (5 points)

4 (5 points)

5 (5 points) Regrade Info:

6 (4 points)

7 (4 points)

8 (4 points)

9 (5 points)

10 (12 points)

11 (15 points)

12 (4 points)

13 (13 points)

14 (5 points) 5

ENTITY entity name IS

PORT (__ input name, input name : IN STD LOGIC;
__input vector name : IN STD LOGIC VECTOR(_ high downto low);
__bidir name, bidir name : INOUT STD LOGIC;

__output name, output name : OUT STD LOGIC) ;
END entity name;

ARCHITECTURE a OF entity name IS
SIGNAL signal name : STD LOGIC;
BEGIN

—-— Process Statement

-- Concurrent Signal Assignment

-- Conditional Signal Assignment

—-- Selected Signal Assignment

-- Component Instantiation Statement

END a;

__instance name: _ component name

GENERIC MAP(_ component generic => connect generic)
PORT MAP (component port => connect port,
__component port => connect port);

WITH expression SELECT

__signal <= expression WHEN _ constant value,
__expression WHEN _ constant value,
__expression WHEN _ constant value,
~_expression WHEN _ constant value;

__signal <= expression WHEN boolean expression ELSE
__expression WHEN boolean expression ELSE
__expression;

IF expression THEN
___statement;
___statement;

ELSIF expression THEN
___statement;
___statement;

ELSE

___statement;
___statement;

END IF;

CASE expression IS
WHEN constant value =>
___statement;
___statement;
WHEN constant value =>
___statement;
___statement;
WHEN OTHERS =>
___statement;

statement;
END CASE;

<generate label>: FOR <loop id> IN <range> GENERATE
—-—- Concurrent Statement (s)

END GENERATE;

type array type is array(_ upperbound downto _ lowerbound) ;

1) (15 points) Fill in the VHDL to implement the illustrated circuit. Assume that clk and rst connect to
every register in the schematic. All wires/operations are width bits. Ignore adder overflow.

library ieee;
use ieee.std logic_1164.all;
use ieee.numeric std.all;

entity example is

generic (
width : positive := 16);
port (
clk, rst : in std logic;
inl, in2, in3 : in std logic vector(width-1 downto 0);
outl, out2, out3 : out std logic vector (width-1 downto 0));

end example;

architecture BHV of example is

begin
process (clk, rst)

begin
if (rst = '1') then

inl in2 in3
v
Reg
Reg
Reg Reg
outl out2

-- ASSUME ALL REGISTERS RESET HERE. YOU DON’T NEED TO SPECIFY THE CODE

elsif (rising edge(clk)) then

end 1if;
end process;

end BHV;

out3

2) (4 points) When an entity with generics is used as the top-level entity for synthesis, what values
does the synthesis tool use for the generics?

3) (5 points) Briefly explain why you should not initialize signals in synthesizable code.

4) (5 points) Complete the following waveform. Pay close attention to the sensitivity list of the process.

entity alu is

generic (
width : positive := 8);
port (
inl, in2 : in std logic vector(width-1 downto 0);
sel : in std logic;
output : out std logic vector(width-1 downto 0));
end alu;

architecture BHV of alu is
begin
process (inl, in2)
begin
case sel is
when '0' =>
output <= std logic vector (unsigned(inl)+unsigned(in2)) ;
when '1' =>
output <= std logic vector (unsigned(inl)-unsigned(in2));
when others => null;
end case;
end process;
end BHV;

inputl 5 5 15 15 2
input2 5 5 5 5 4

sel ‘0 1 1 ‘0 ‘0’
output

5) (5 points) For signals assigned using sequential statements inside a process, when does the signal
get updated with the value from the assignment?

6) (4 points) True/false. Testbenches should follow the same synthesis coding as other entities.

7) (4 points) True/false. Sequential statements inside a process can reassign a signal any number of
times.

8) (4 points) True/false. Concurrent statements can reassign a signal any number of times.

9) (5 points) Assuming you use a variable solely to get an immediately updated value, what will type of
hardware resource will be synthesized?

10) (12 points points) a. Identify any violations of the synthesis coding guidelines for combinational logic
and b. specify the effect on the synthesized circuit.

library ieee;
use ieee.std logic 1164.all;

use lieee.numeric_std.all;

entity alu is

generic (
width : positive := 8);

port (
inl, in2 : in std logic vector (width-1 downto 0);
sel : in std logic;
output : out std logic vector(width-1 downto 0);
neg : out std logic);

end alu;

architecture BHV of alu is
begin
process (sel)
variable temp : std logic vector (width-1 downto 0);
begin
case sel is
when '0' =>
output <= std logic vector (signed(inl)+signed(in2));
when '1' =>
temp := std logic vector (signed(inl)-signed(in2));
neg <= temp (width-1);
output <= temp;
when others => null;
end case;
end process;
end BHV;

11) (15 points) Fill in the provided code to create the illustrated structural architecture using the
specified add and mul components.

library ieee;

use ieee.std logic 1164.all;
- - inl in2 in3 in4
entity structure is
generic (width : positive := 16);
port (inl, in2, in3, in4 : in std logic_vector (width-1 downto 0);
output : out std logic vector (2*width-1 downto 0));

end structure;

architecture STR of structure is
component add
generic (width : positive);
port (inl, in2 : in std logic vector(width-1 downto 0);
output : out std logic vector (width-1 downto 0));
end component;

component mul output
generic (width : positive);
port (inl, in2 : in std logic vector(width-1 downto 0);
output : out std logic vector (2*width-1 downto 0));

end component;

begin

end STR;

12) a. (2 points) What information is provided by an sdo file?

b. (2 points) How is a vho file different than a normal vhd file?

13) a. (8 points) Define the logic for the carry out ¢, of a carry look-ahead adder (CLA) in terms of the
propagate signals (p;), generate signals (g;), and carry in (cp).

b. (1 point) True/false. The delay of a ripple-carry adder increases linearly with width.

c. (1 point) True/false. Ignoring fan-in limitations, a CLA has a constant delay for any width.

d. (1 point) True/false. Ignoring fan-in limitations, a two-level CLA has a constant delay for any
width.

e. (1 point) True/false. Ignoring fan-in limitations, a hierachical CLA has a constant delay for any
width.

f. (1 point) True/false. The delay of an adder than uses a ripple-carry connection between CLA
blocks increases linearly with width.

14) 5 free points for having to take a test at 8:30am.

