
www.edn.com February 20, 2003 | edn 65

A SIMPLE CIRCUIT ADDRESSES THE ERRORS AND

LIMITATIONS OF ASYNCHRONOUS DESIGN.

With the increasing integration of multi-
ple systems on single SOCs (systems on chip)
or boards, multiple clock frequencies in sin-

gle digital designs have become common. Because
of the asynchronous nature of these designs, passing
data or control signals between logic operating on
different clock frequencies presents a special set of
problems. Because asynchronous design is unfamil-
iar to most experienced digital designers, errors are
common. Many of these errors find their way into
the silicon and even into production because they
are nearly impossible to detect in simulation and
easily missed in postsilicon validation. Problems of
performance degradation, back-end EDA-tool in-
compatibility, and dependency on the frequency re-
lationship of the clocks involved often plague even
functionally correct implementations. Frequency
dependency is problematic for production tests that
run the parts at different speeds, and it limits
reusability in future designs with different system
frequencies. You can address all of these errors and
limitations with a fairly simple circuit that works for
both data and control logic.

The circuit requires both signal synchronization
and a handshake protocol (Figure 1). The synchro-
nizer guarantees the amount of time required for the
signal level to settle following a metastability viola-
tion, thereby preventing undetermined signal levels
from propagating to the destination module. The
handshake protocol maintains signals levels long
enough to ensure that the system does not miss sig-
nal events or wrongly interpret them as multiple
events. Normally, the circuit synchronizes only

handshake signals, which signify the validity of data
being transferred to the destination clock domain.
Once the handshake signals transfer to the destina-
tion-clock domain, the system clocks the data set di-
rectly to the destination module. The most common
mistakes in this situation involve the handshake sys-
tem and its usage.

SYNCHRONIZATION

A signal that a system sends from one clock do-
main arrives as an asynchronous signal in the desti-
nation-clock domain, possibly violating the desti-
nation flip-flop setup or hold time, causing it to
enter a metastable condition. This condition, in turn,
causes propagation of nonbinary signals to other
parts of the system. The time required for the
metastable flip-flop to settle out to a binary voltage
level varies. A double-stage synchronizer (Figure 2)
is the most widely used method of stabilizing a sig-
nal in the destination-clock domain. If the first flip-
flop stage enters the metastable condition, it has a
full clock period to stabilize before the second flip-
flop stage samples it. Only the second-stage value is
propagated to other parts of the system. To ensure
that interconnect delay does not reduce the one-
clock-period settling time that the double-stage syn-
chronizer supplies, you must minimize interconnect
delay between the two stages. To do so, you place the
flop-flops directly next to each other on the die or
board. Note that you can add synchronization stages
in series to reduce the probability of the metastable
condition’s propagating to the last stage, but you pay
a price in system performance. However, the dou-

Practical design for transferring
signals between clock domains

SOURCE
MODULE

SOURCE-
CLOCK

HANDSHAKE
MODULE

DESTINATION-
CLOCK

HANDSHAKE
MODULE

SYNCHRONIZER
DESTINATION

MODULE

DATA_VALID

DATA_SCR

CLK_SCR

GOT_IT_PL

TAKE_IT_PL

CLK_DST

INTERFACE MODULE

A simple circuit employing a synchronizer and handshake protocol can help overcome limitations and errors inherent in asynchronous design.

designfeature By Michael Crews and Yong Yuenyongsgool, Philips Semiconductors

F igure 1

designfeature Asynchronous design

66 edn | February 20, 2003 www.edn.com

ble-stage synchronizer is generally suffi-
cient, even for high-speed systems, be-
cause metastable settling time scales
down with the technology that enables
high-speed designs.

HANDSHAKE PROTOCOL

A double-stage synchronizer stabilizes
a signal in the destination-clock domain,
but it does not ensure that the signal re-
mains stable long enough for the desti-
nation circuit to sample it once and only
once. Consider a case in which a system
asserts a signal in a fast source-clock do-
main and then sends it to a very slow des-
tination-clock domain. The source must
hold the signal for multiple clocks, or the
logic of the slower destination-clock do-
main may never detect it. On the other
hand, if the system asserts a signal in a
slow source-clock domain and then
sends it to a very fast destination-clock
domain, the logic may detect the signal
multiple times, mistaking it for multiple
events. A handshake protocol can solve
this problem.

Figure 1 shows an interface between
two modules operating in different clock
domains. The interface module contains
the synchronizers and the handshake-
protocol logic. The handshake protocol
must ensure that the data holds stable
long enough for circuitry to sample it in
the destination-clock domain. It must
also ensure that the handshake-protocol
logic does not signal a new data-valid sig-
nal until the destination has acknowl-
edged the first data valid signal was re-
ceived. Failing to recognize the need for
this data-valid deassertion ac-
knowledgment is a common fail-
ure of asynchronous designs.

One of the most efficient pro-
tocol implementations is the “tog-
gle” implementation. By using the
change in the handshake’s signal
level and not the level itself to
communicate through the syn-
chronizer, the system immediate-
ly readies itself for another trans-
action. The deassertion acknowl-
edgment occurs without the need
for a second round trip to restore
all control signals to their proper
logical states, as a four-phase
round trip requires. Figure 3 il-
lustrates this protocol. The fig-
ure shows no clocks, because
the protocol works with any clock-

frequency relationship between source
and destination.

When the source module initiates a
write transaction to the destination mod-
ule, the interface module responds by as-
serting the START_PL signal. This signal
begins the transfer process. Sampling the
acknowledgment signal GOT_IT_PL de-
asserted, the source module continues
driving the DATA_SRC and DATA_
VALID signals, therefore allowing the
time for the destination logic to capture
the DATA_SRC in the destination-clock
domain. The TAKE_IT_TG signal, de-
rived from the START_PL signal, is the
toggle-handshake signal. Once clocked
through the synchronizer, its pulse de-
rivative, TAKE_IT_PL, is generated in the
destination-clock domain. The TAKE_
IT_PL signal guarantees the stability of
the DATA_SRC data signal and acts as a
strobe to capture the DATA_SRC signal
in the destination-clock domain.

By the time the toggle handshake sig-
nal has been clocked through the syn-
chronizer and appears in the destination-
clock domain, the associated set of data,

which the source model has been con-
tinuously driving, is stable with respect
to the destination-clock domain. There-
fore, it is safe to clock the data into the
destination-clock domain without syn-
chronizing the data signal. The TAKE_
IT_PL signal generates the toggle-hand-
shake counterpart, whereupon it is
clocked through the other synchronizer
back to the source-module clock do-
main. As a result, the GOT_IT_PL signal
is generated in the source-module clock
domain and signifies the completion of
the current transaction, allowing the
source module to resume its normal op-
eration. Notice that the system does not
restore the logical levels of the toggle-
handshake signals, TAKE_IT_TG and
GOT_IT_TG, to their original states.
Again, the transitional—not the logi-
cal—level acts as a means of communi-
cation across clock domains. Figure 4 il-
lustrates this situation. Note that, because
the handshake protocol ensures stable
data, the data signals need not be syn-
chronized themselves.

You can also adapt this method to sup-

A double-stage synchronizer is the most widely used method of stabilizing a signal in the destina-
tion-clock domain.

SIGNAL_SCR

CLK_DST

SYNCHRONIZER

RANDOM
COMBINATORIAL

LOGIC

NEXT-STAGE FLIP-FLOP IN
DESTINATION-CLOCK DOMAIN

F igure 2

The toggle-handshake protocol uses the change of the handshake’s signal level—not the
level itself—to communicate through the synchronizer, and the system immediately

readies itself for another transaction.

DATA_VALID

DATA_SRC

START_PL

TAKE_IT_TG

TAKE_IT_PL

GOT_IT_TG

GOT_IT_PL

DATA_DST

F igure 3

designfeature Asynchronous design

68 edn | February 20, 2003 www.edn.com

port self-clearing bits, such as
those common in interrupt-
set and -clear registers. In such cases, the
CPU’s service routine must clear the in-
terrupt by writing a self-clearing bit in
the destination module’s register. It
achieves this feat through the use of
pulse-to-toggle and toggle-to-pulse con-
verters (Figure 5). Note that a self-clear-
ing bit is logically equivalent to a pulse.

Due to the difference in clock speeds
between modules, a latency-absorbing
FIFO often acts as a data buffer destined
for a different clock domain. In this case,
the FIFO empty and full conditions per-
form the handshake (Figure 6). This sit-
uation requires the FIFO to pass the in-
put and output pointers between clock
domains. Because the pointers contain
multiple bits, they can introduce a race
condition through the synchronizer. To
avoid this problem, you must implement
the input and output pointers as Gray
Code counters to ensure that only one bit
changes at a time.

AVOID THE PITFALLS

One of the most common pitfalls of
asynchronous design involves the use of
level-handshake protocols. Similar to the
toggle method, a strobe from the source
clock domain generates a level handshake
signal, which gets clocked through a syn-
chronizer in the destination-clock do-
main. The signal’s level, as opposed to its
transition, is a means of communication.
The level-handshake signal in the desti-
nation-clock domain is then clocked

through another synchronizer to ac-
knowledge that the source-clock domain
has completed the transfer. This transac-
tion may seem complete; however, it does
not restore the handshake signals to their
original values in preparation for the
next handshake.

To resolve this situation, you must ini-
tiate another level round trip to restore
the logical level of the handshake signal
to its original state—doubling the proto-
col latency. Employing asynchronous
flip-flops as a means of restoring the
handshake signal level to its original state
in the one round-trip level protocol
seems a natural way to cope with this is-
sue. Though you can work out the
method to yield the correct logical func-
tions, using asynchronous flip-flops sig-
nificantly complicates static-timing
analysis and manufacturing test.

Another common pitfall includes
clocking of the data, as well as the strobe
signal, through the synchronizers, thus
causing a race condition. The race con-
dition in this situation occurs when the
data and strobe signals enter a metastable

state at slightly different times, environ-
mental conditions, or both. In this situ-
ation, it is impossible to guarantee the re-
solved logical states of both strobe signal
and data.

Sensible solutions must neither as-
sume nor require any fixed relationship
between the source- and destination-
clock frequencies. An implementation
with a fixed-frequency relationship sig-
nificantly limits the reusability of the de-
sign and imposes significant limitation
for manufacturing test. With any design
implementation, verification is critical.
However, simulation cannot hope to du-
plicate the infinite number of clock and
signal-edge relationships that are possi-
ble in a clock-domain-crossing design.
Therefore, the only complete form of
verification is inspection. When inspect-
ing a clock-domain-crossing design, you
must fully analyze two cases. First, as-
sume one extreme clock-frequency rela-
tionship (10 to one, for example) and
manually analyze the behavior of the im-
plementation on a timing diagram for at
least two consecutive transactions. Then,

In the basic double-stage synchronization-and-toggle protocol, the transitional—not the logical—level acts as a means of communication across clock
domains.

START_PL

GOT_IT_PL

CLK_SRC

GOT_IT_TG

TAKE_IT_PL

CLK_DST

TAKE_IT_TG

PULSE2TOGGLE

SYNCHRONIZER TOGGLE2PULSE

edn030206ms9004
Heather

F igure 4

Modifying the system in Figure 4 allows it to support a self-clearing register bit.

CLR_SRC_PL

CLK_SRC TAKE_IT_PL

CLK_DST

CLK_DST_PL

F igure 5

February 20, 2003 | edn 71

designfeature Asynchronous design

repeat the analysis, assuming the oppo-
site of the clock-frequency relationship.
Of course, the best way to avoid errors is
to stick with a standard implementation,
such as the toggle technique.�

Authors’ biographies
Michael Crews is a design-engineering
manager at Philips Semiconductors,
where he has worked for seven years. He
leads a hardware-design group that de-
velops multimillion-gate SOCs for media-
processing markets. He holds a BSEE from
Arizona State University (Tempe) and en-
joys piloting planes, scuba diving, and
traveling.

Yong Yuenyongsgool is a design engineer
at Philips Semiconductors, where he has
worked for seven years. He is re-
sponsible for the digital design and
verification of embedded multimedia
processor chips. He holds a BSEE and an
MSEE from Arizona State University
(Tempe) and enjoys jogging, hiking, and
community service.

GRAY-CODE
INPUT POINTER
(DESTINATION

CLOCK)

GRAY-CODE
OUTPUT
POINTER

(DESTINATION
CLOCK)

GRAY-CODE
INPUT POINTER

(SOURCE
CLOCK)

GRAY-CODE
OUTPUT
POINTER
(SOURCE
CLOCK)

SYNCHRONIZER

SYNCHRONIZER

COMPARATOR

COMPARATOR

FIFO
MEMORY

CLK_SRC

GOT_IT_PL

CLK_DST

CLK_SRC

DATA_DST TAKE_IT_PL

CLK_DAT

DATA_SCR

F igure 6

Due to the difference in clock speeds between modules, a latency-absorbing FIFO often acts as a
buffer data destined for a different clock domain.

www.edn.com

