
Intermediate Fabrics: Virtual Architectures for Circuit
Portability and Fast Placement and Routing

James Coole, Dr. Greg Stitt
University of Florida

Department of Electrical & Computer Engineering
Gainesville, FL, USA

jcoole@ufl.edu, gstitt@ece.ufl.edu

ABSTRACT
Although hardware/software partitioning of embedded
applications onto FPGAs is widely known to have performance
and power advantages, FPGA usage has been typically limited to
hardware experts, due largely to several problems: 1) difficulty of
integrating hardware design tools into well-established software
tool flows, 2) increasingly lengthy FPGA design iterations due to
placement and routing, and 3) a lack of portability and
interoperability resulting from device/platform-specific tools and
bitfiles. In this paper, we directly address the last two problems
by introducing intermediate fabrics, which are virtual
reconfigurable architectures specialized for different application
domains, implemented on top of commercial-off-the-shelf
devices. Such specialization enables near-instantaneous
placement and routing by hiding the complexity of fine-grained
physical devices, while also enabling circuit portability across all
devices that implement the intermediate fabric. When combined
with existing work on runtime synthesis from software binaries,
intermediate fabrics reduce the effects of all three problems by
enabling transparent usage of COTS FPGAs by software
designers. In this paper, we explore intermediate fabric
architectures using specialization techniques to minimize area and
performance overhead of the virtual fabric while maximizing
routability and speedup of placement and routing. We present
results showing an average placement and routing speedup of
554x, with an average area overhead of 10% and clock overhead
of 18%, which corresponds to an average frequency of 195 MHz.

Categories and Subject Descriptors
J.6 [Computer-Aided Enginering]: Computer-aided Design

General Terms
Performance, Design

Keywords
intermediate fabrics, placement and routing, virtualization, FPGA,
speedup

1. INTRODUCTION
Partitioning embedded applications onto field-programmable gate
arrays (FPGAs) has been widely shown to have significant
performance [9] and power [33] advantages over software-only
execution. Despite these advantages, FPGA usage has been
limited due to increased application design complexity largely
resulting from three main problems: increasingly long placement
and routing times, a lack of circuit portability, and difficulty of
integrating circuit design tools into software tool flows.

Increasingly long execution times for placement and routing
(PAR) is an emerging problem that can require hours, days [4],
and even more than a week [29] for very large circuits. FPGA
PAR execution times thus represent a significant design
bottleneck, which consequently complicates debugging and
verification, reduces productivity, increases nonrecurring
engineering costs, and increases time to market. Furthermore,
long PAR times are a barrier to more mainstream FPGA usage
[25][28][29], where well-established methodologies rely on rapid
compilation times.

Widespread FPGA usage has also been limited by the lack of
circuit portability, even across devices in the same family.
Despite portability being an important factor in the acceptance of
popular microprocessors, few studies have focused on
establishing portability for FPGAs. As a result, redesigning
circuits for different devices is often time consuming and costly,
especially when those circuits use device-specific cores. Lack of
portability further complicates design productivity by preventing
third-party design tools from supporting specific devices and
platforms [17][26].

An additional problem preventing more mainstream FPGA usage
is the difficulty of integrating circuit-design tools into software
tool flows. Although high-level synthesis tools have been
introduced to provide C-like syntax, software designers have been
very reluctant to change languages or to change well-established
compilers, debuggers, and development environments [35].
Previous work has focused on hiding the FPGA by dynamically

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

CODES+ISSS’10, October 24–29, 2010, Scottsdale, AZ, USA.
Copyright 2010 ACM 1-58113-000-0/00/0010…$10.00.

Figure 1: Intermediate fabrics (IFs) are virtual fabrics
implemented on FPGAs that enable portability of netlists across

devices and fast placement and routing of netlists.

synthesizing circuits from software binaries [2][35], but those
approaches require specialized FPGAs instead of commercial-off-
the-shelf (COTS) devices.

To address these problems, we introduce intermediate fabrics
(IFs). As shown in Figure 1, intermediate fabrics are virtual
reconfigurable fabrics specialized for different application
domains, implemented between user designs and the underlying
physical FPGA (i.e., an intermediate translation layer). From the
point of view of the application designer, an IF looks like any
other reconfigurable device that is programmed using a
configuration bitstream.

However, unlike a physical device, whose architecture must
support a wide range of applications, IFs can be specialized for
particular application domains or even individual applications.
Such specialization hides much of the complexity of fine-grained
COTS devices, thus enabling fast placement and routing.
Although it is widely known that coarse-grained fabrics have
reduced PAR times, intermediate fabric enable such speedups on
fine-grained COTS devices. In addition, because intermediate
fabrics are virtual devices, they enable portability across any
physical device that can implement the fabric.

When combined with existing high-level synthesis or runtime
synthesis techniques [2][35], IFs enable more transparent usage of
COTS FPGAs by mainstream designers. In addition, IFs
potentially enable mainstream designers to view FPGAs largely in
the same way as other accelerator technologies with rapid
compilation times, such as graphics processing units (GPUs), by
using languages such as OpenCL. Other advantages include
partial reconfiguration on devices that lack architectural support,
abstraction of multiple devices (e.g., one large IF spanning
multiple FPGAs), and physical device transparency for long life-
cycle applications, where a virtual fabric can hide changes in
underlying devices that may occur due to changes in supply
chains over time.

The main limitation of IFs is area overhead incurred by a virtual
fabric. Although the current area overhead prevents IFs from
being used for very large circuits used in state-of-the-art FPGAs,
we show that IFs can efficiently implement common accelerator
kernels, while achieving near-instantaneous placement and
routing times and circuit portability across devices. We evaluate
intermediate fabrics with sizes up to 96 DSP units (which is the
amount of DSP48 units available on Virtex 4 LX devices) and
show that IFs implemented on a Virtex 4 LX200 can support up to
225 DSP units, which enables circuits larger than those used by
previous studies involving ASIPs [18], coarse-grained
architectures [32], high-level synthesis tools [15], and dynamic
synthesis tools [35], therefore making IFs a complementary
technology to those studies. Note that IFs are not intended to
replace physical design tools for FPGAs and are instead intended
to support FPGA usage models where scalability and overhead
are not critical issues. For example, IFs could be used by ASIPs to
define custom instructions, or as the target of high-level synthesis
tools that create co-processors for software acceleration. On
average, the IFs evaluated in this paper achieved a PAR speedup
of 554x, with an average area overhead of 10%, clock overhead of
18%, and frequency of 195 MHz.

In this paper, we make the following contributions:

 Establishment of the feasibility of using virtual coarse-
grained reconfigurable fabrics on COTS FPGAs, while

achieving near-instant placement and routing and portability
across devices.

 Introduction of a family of intermediate fabrics for data-
parallel circuits that achieve enough scalablity to enable
realistic usage scenarios (e.g., up to 225 DSP units).

 Exploration of specialization techniques and architectural
tradeoffs for data-parallel circuits to minimize IF overhead
while maximizing PAR speedup.

 Determination of Pareto optimal IFs in terms of overhead
and routability for both application-specialized fabrics and
IFs intended for general purpose usage.

2. PREVIOUS WORK
Numerous specialized reconfigurable architectures have been
proposed for individual domains [3][11][23]. These architectures
are motivating examples for intermediate fabrics, which
potentially enable similar improvements on COTS devices and
avoid the high cost of custom devices.

Totem [7] investigated automatically generating custom coarse-
grained reconfigurable architectures for specific domains (e.g,
RaPiD for DSP [11]). Hammerquist presents a similar approach
for application-specific FPGAs [16]. Both these studies have
similar goals as IFs, but focus on integrating custom fabrics into
ASIC devices. IFs aim to virtualize custom reconfigurable
architectures to enable usage on COTS devices. Exploration and
customization techniques from both approaches are
complementary and could be used to create custom IF structures.
In addition, architecture-adaptive PAR techniques [31] are also
complementary and could be used to enable more effective use of
novel IF fabrics.

Previous studies have also focused on custom placement
techniques for coarse-grained datapaths [6][20] to avoid added
complexity resulting from conversion to fine-grained FPGA
components. Although such approaches are good technical
solutions, they are limited to datapath synthesis and achieve PAR
speedup ranging from 3.2x to 4.5x [6]. IFs achieve an average
PAR speedup of 554x, and are therefore an effective
complementary alternative for situations where area overhead is
not critical. An additional practical advantage of IFs is that by
hiding the physical device, the PAR tools do not require
knowledge of proprietary low-level architecture details, and can
be thus be used on potentially any COTS device.

Previous work has also investigated FPGA overlay networks [19]
to provide specialized virtual networks (e.g., time-multiplexed) to
more efficiently support highly-interconnected circuits where
each connection has low bandwidth requirements. IFs are
complementary and could potentially integrate overlay networks
into the virtual fabric architecture.

Warp processors [35] originally addressed lengthy PAR times by
using a PAR-specialized fabric with on-chip CAD tools to enable
runtime synthesis and PAR. Similarly, Beck [2] introduced a
processor that dynamically translated Java bytecode onto a
coarse-grained reconfigurable fabric. Although those approaches
achieved order of magnitude PAR speedup, all CAD was limited
to a specialized device. IFs remove this limitation by enabling fast
PAR for COTS devices. In fact, IFs are complementary,

potentially enabling warp processing or similar techniques on
COTS devices.

Although PAR is a widely studied problem, most approaches have
focused on improving routability or timing [5][13][24], leaving
PAR execution time as a secondary consideration. Lysecky
introduced dynamic FPGA routing [22] and JIT FPGA
compilation [21] to perform fast placement and routing, but that
work also assumed a specialized FPGA fabric. Mulpuri and
Hauck [27] studied tradeoffs between routing quality and
execution time, showing that a 3x PAR speedup can be achieved
with a 27% degradation of circuit performance. Although a 3x
speedup is significant, increasingly long PAR times require a
larger reduction to increase designer productivity. Wires on
Demand [1] introduced a fast PAR technique used for partial
reconfiguration of communication between pre-placed and routed
modules. IFs are complementary and could potentially be
combined with Wires on Demand, using IFs for module PAR and
Wires on Demand for communication between modules.

Previous work has also focused on virtual reconfigurable
architectures [30][36] that enable dynamic partial reconfiguration
and evolvable hardware. Quku [32] is a coarse-grained array of
ALUs, implemented on top of an FPGA, which can be rapidly
reprogrammed using a soft core microprocessor. Although
conceptually similar, IFs also address problems of PAR execution
time, circuit portability, and long-life cycle applications. Quku is
essentially one instance of an IF.

3. INTERMEDIATE FABRICS
This section describes the architecture for an IF family targeting
data-parallel applications (Section 3.1), the IF tool flow (Section
3.2), and usage models and scenarios (Section 3.3).

3.1 Architecture
IFs can potentially implement any fabric architecture. Therefore,
it is outside the scope of this paper to discuss the near-infinite
possibilities. In this paper, we limit our exploration of IFs to a
family of IFs intended for data-parallel applications, which are
commonly implemented as pipelined circuits on FPGAs. Note
that we present the fabric abstractly to avoid suggesting a specific
fixed architecture, as the fabric can be specialized in numerous
ways. The experiments in Section 5 present specific examples.

As opposed to COTS FPGAs, which generally have a somewhat
uniform fabric, IFs may be decomposed into different ‘planes’
that are specific to different aspects of a circuit (e.g., control,
data), although implementations of multiple planes need not be
mutually exclusive. As shown in Figure 2 for the data-parallel IF

family discussed in this paper, the architecture consists of three
types of planes: data, control, and stream.

Note that the presented architecture is not intended to be general
purpose, and may not provide good support for implementing
arbitrary netlists. In Section 5.3, we evaluate the possibility of
using these IFs as general purpose fabrics, however, we expect
that a user or design tool would instead select an appropriate
specialized fabric when implementing a particular netlist. Usage
scenarios are discussed in more detail in Section 3.3.

3.1.1 Data Plane Architecture
The data plane of IFs used in this paper consists of a traditional,
island-style topology, with computational units (CUs) distributed
across the fabric in a grid, with routing resources (e.g., tracks,
connection boxes, switch boxes) filling the space in between, as
illustrated in Figure 3. The basic structure of the data plane is
identical to traditional island-style FPGA fabrics, except that the
plane is virtual and has each component (CUs, tracks, connection
boxes, and switch boxes) specialized for different applications or
domains. IFs may replicate this island-style structure an arbitrary
number of times to form any size with any aspect ratio.

Computational units (CUs) provide resources for the
mathematical or logical operations in design netlists, and are
analogous to the CLBs or DSP units in FPGAs. The function
performed by the CUs varies between fabrics with different
specializations, and a fabric might contain multiple types of CUs.
DSP-specialized IFs, for example, might contain a mix of
multipliers and adders, whereas an IF specialized for scientific
computation might contain ALUs capable of performing a variety
of arithmetic and logical operations, depending on their
configuration. As a concrete example, the majority of CUs used in
this paper are mapped directly onto Xilinx DSP48 units, with
some additional shift registers to handle realignment for pipelined
routing, as discussed in Section 3.2. Specific fabric architectures
are discussed in Section 5, where we also evaluate floating-point
CUs.

Tracks are the fundamental IF routing resources. However, unlike
single-wire tracks in FPGAs, IF tracks can be multiple wires
wide. For example, 16-bit tracks can be provided to connect to
CUs with 16-bit outputs. Connection boxes connect CU inputs
and outputs to routing tracks in adjacent channels. IFs can
specialize both the number and flexibility of connection boxes
depending on the routing requirements of a particular domain or
application. Similarly, switch boxes connect tracks to other tracks
in intersecting channels or to distant tracks in the same channel.
Although IFs can potentially specialize the topology of switch
boxes, in this paper all switch boxes use a planar topology.

Unlike physical devices, IF I/O can be placed anywhere in the
fabric, which could potentially reduce routing requirements for
certain applications. However, all fabrics evaluated in this paper
contain I/O on the periphery of the fabric.

Figure 2: An example of a data-parallel IF that is decomposed into
separate coordinating planes, each with an architecture customized

to its specific function.

Figure 3: Data plane architectural components.

Although not shown in the figures, the data plane contains
configuration flip flops that are chained together to form a long
shift register that programs the plane serially.

We map the virtual data plane onto a physical FPGA as follows.
The entire fabric is represented as a structural VHDL entity that
instantiates all IF components (CUs, tracks, switch boxes,
connection boxes) and connects them together. Each type of IF
component is defined using a separate VHDL entity. For each
type of CU, we use a VHDL entity that implements the
corresponding behavior. For example, a multiplier CU is
implemented using a multiplier entity, which the FPGA device
tools map onto a DSP unit. For each connection/switch box, we
use MUXs to implement each possible connection.

IF tracks are mapped onto physical resources as shown in Figure
4. Virtualizing bidirectional tracks in the IF requires using MUXs
from all possible sources to a single sink. The IF PAR tools
determine the appropriate source for each track and create a
bitstream that selects the correct MUX output using a
configuration register that is set when the fabric is configured.
Due to the need for MUXs, IF tracks have the potential for a
significant area overhead. For example, an m-bit track with n
possible sources is mapped to n+1 busses and a m:1 n-bit MUX.
As the example in Figure 4 shows, a 16-bit wide track connected
to 3 possible sources requires at least 64 wires (4 16-bit busses +
fanout) and a 3:1 16-bit MUX.

The data plane uses pipelined routing resources to maximize
performance and eliminate the possibility of combinational loops
in the resulting HDL. To avoid computationally-expensive PAR
algorithms for pipelined interconnect [12], the data plane includes
variable shift registers on CU inputs to realign pipeline stages in a
way similar to [34]. While such an architecture is not appropriate
for general netlists, we have observed that the pipelined
interconnect often works well for highly data-parallel circuits.

As future work, we plan to directly map virtual routing tracks
onto physical routing tracks, which has the potential to greatly
reduce the IF overhead. However, the current approach has the
advantage of being device and vendor independent as well as
being easily integrated into existing RTL designs and tool flows.

3.1.1 Control Plane Architecture
The control plane provides basic primitives to implement Moore
state machines and control logic: a state register, next state logic,
state-dependent output logic, and state-independent output logic.
We implemented the control plane architecture on FPGAs using
two LUTs: one with synchronous reads implemented on block
RAM and one with asynchronous reads implemented using
distributed RAM.

The synchronous LUT implements the state register, next state
logic, and state-independent output logic by using an address that
corresponds to the current state and the current inputs. For every
state and input combination, the synchronous LUT stores the next
state and the output values.

The asynchronous LUT implements state-independent output
logic (e.g., pipeline stalls due to full buffers in the stream plane)
by storing output values for every input combination.

One obvious limitation is that this control plane will not scale to
large numbers of control inputs or large state machines, due to an
exponential increase in the LUT sizes. However, this limitation is
irrelevant for the targeted data-parallel circuits, which often
require few control resources. For the applications evaluated in
this paper, the control plane required only 1% of the resources on
a Xilinx Virtex 4 LX100 and had a maximum clock frequency of
360 MHz. Future work will investigate IF architectures for
control-intensive applications.

3.1.2 Stream Plane Architecture
To effectively support data streams, we use a separate plane to
deal with transferring data from external memories into the data
plane, thus saving data plane resources for actual computation. In
the simplest case, the stream plane consists of address generators
that take a base address and a transfer size as input, and then
read/write the appropriate locations from memory. When
implemented on the FPGA, the stream plane consists of a counter,
basic control, and a memory controller.

For certain domains, the stream plane may also use specialized
buffers to improve memory bandwidth. Image processing IFs, for
example, include smart buffers [10][14] in the input stream plane.

Figure 4: Intermediate fabric RTL implements (a) virtual routing
tracks using (b) a MUX to select from each possible track source

and a register to prevent combinational loops.

Figure 5: Designers targeting IFs use the (a) IF tool flow to create a
configuration bitstream for an IF that has been (b) implemented on a
physical FPGA by synthesizing the corresponding IF RTL using the

FPGA device tool flow (e.g. Quartus, ISE).

Smart buffers are specialized cache structures that are capable of
reusing data read from memory to efficiently generate sliding
windows of data that can be passed to the data plane. For
example, a smart buffer for Sobel edge detection would generate a
3x3 window of data every cycle for the data plane. Such buffering
significantly improves memory bandwidth, which in turn enables
more parallelism within the data plane. The image processing IFs
used in this paper use smart buffers in the stream plane that are
capable of generating a sliding window up to a maximum size of
16x16 32-bit pixels. For all the experiments, the stream plane
supports up to 16x16 sliding windows for high-definition images
(1920x1080 pixels).

3.2 IF Tool Flow
As shown in Figure 5, intermediate fabrics involve two sets of
CAD tools: those specific to the IF (i.e., IF tools in Figure 5(a)),
and those specific to the underlying FPGA device (i.e., FPGA
device tools in Figure 5(b)). Note that we use "FPGA tools" and
"device tools" interchangeably. The FPGA device tool flow is
only executed a single time to generate the FPGA bitstream for
each IF, at which point all user design modifications use the IF
tool flow. Determination of IFs is discussed in Section 3.3.

Because IFs are essentially virtual FPGAs, the IF tool flow is
identical to the traditional FPGA CAD tool flow consisting of
synthesis (RT or high-level), technology mapping, placement, and
routing. However, because IFs will often be specialized to a
particular domain, each step of the IF tool flow can also be
specialized. Although IF synthesis and technology mapping
would be done using existing techniques, we currently perform
these two steps manually.

Note that although the fabric uses pipelined interconnect, the IF
tool flow avoids use of pipelined PAR algorithms [12] by using
shift registers to realign pipeline stages after PAR [34].

IF placement is based on the VPR [5] simulated annealing
placement algorithm, but is specialized for the specific IF
architectures described in the previous section, which are
considerably different than fine-grained FPGA fabrics for which
VPR was intended. IF placement modifies the simulated
annealing parameters used by VPR (e.g., moves per step, stopping
temperature, cooling schedule), by using values which we
empirically determined to be a good tradeoff between routability
and PAR execution time.

IF routing uses well-known negotiated congestion routing [24].
We specialized IF routing by adjusting the maximum number of
routing iterations before assuming that a netlist cannot be routed.

3.3 Envisioned Usage Models
Implementing a design using IFs requires the availability of an
appropriate IF. Because systems using IFs will be expected to
handle a variety of circuits, those systems will at various times
need a variety of different IFs. Currently, we envision two usage
models to enable such flexibility. Note that full realization of
these usage models is outside the scope of this paper and will be
the focus of future work.

In the library model, the IF tool flow would select an appropriate
IF for a particular circuit from a library of pre-made IFs. The
library would contain a number of IFs for applications likely to be
encountered by the system. IFs inside the library would include
an architectural description of the fabric as well as pre-made

bitstreams implementing the fabric on a target device. Selection
could be manual, or more likely, automatic, based on the
resources needed by the circuit and a search of IFs available in the
library. Currently, we use a library of several fabrics that contain
different CU components as described in the experiments section,
with stream planes that vary for image processing and basic
streaming. We currently manually select an appropriate IF based
on knowledge of the circuit to be implemented.

The primary advantage of the library model is selected IFs are
immediately available for implementation on the device, which,
when combined with the fast PAR afforded by IFs, results in near
instantaneous FPGA implementations. The model also removes
dependence on the device vendor tool flow after the library’s
initial construction. Such an advantage enables third-party tools to
more easily target different physical devices. The obvious
disadvantages are the space required to store the library, the time
required to build the library, and the requirement of a priori
knowledge to construct a library sufficient for circuits targeted by
the system.

Alternatively, the synthesis model would replace or complement
the library with a synthesis step that creates a custom IF for a
circuit while retaining enough flexibility for similar circuits to
reuse the resulting fabric. This model has the potential to produce
highly optimized IFs for a particular circuit, but requires a single
execution of PAR for the physical device. However, time required
for each FPGA PAR is amortized over the lifetime of the IF.

4. SPECIALIZATION TECHNIQUES
In this section, we discuss optimization techniques for
specializing an IF to a given application domain such that PAR
speedup is maximized and overhead is reduced. For the purpose
of comparison between IFs, we define the IF overhead as
resource utilization that would not be necessary when
implementing a circuit directly on the physical device. For
example, for an IF whose CUs map directly onto DSP units, the
IF overhead would be the number of CLBs used by the fabric, as
those CLBs implement the virtual routing resources and
configuration register chain. If a circuit was mapped directly to
the physical device instead of the IF, the DSP units would still be
used, but the CLBs would not be used, and are therefore
considered as overhead.

Figure 6: Scalability and area overhead of unspecialized IFs for
different square fabric sizes (# of 16-bit CUs) with 4 tracks per

channel. Although not explicitly shown, virtual routing resources
are the main cause of slice and LUT overhead. FF overhead is

caused mainly by the IF configuration registers.

Figure 6 summarizes IF area overhead and scalability for
unspecialized versions of the IF family described in the previous
section, for different sizes of square fabrics with 4 tracks per
channel, when implemented on a Xilinx Virtex 4 LX200. For
these results, the CUs were 16-bit DSP units and all tracks were
16 bits. Connection boxes were placed on rows only and each box
connected only to the inputs of the CU/IO on its south side and
the outputs of the CU/IO on its north side – the minimum number
and flexibility of connection boxes required to provide all CUs
access to the interconnect. These decisions were made to
minimize area overhead, and serve as a baseline for the
specialization techniques.

Due to space constraints, we omit a breakdown of overhead for
each IF component and instead summarize the results. As
expected, the high utilization of slices and LUTs is caused by the
MUXs used by routing resources, which potentially limits
scalability. Motivated by these results, we present a number of
specialization techniques to reduce area overhead of routing
resources, while minimizing the impact on routability. Note that
the techniques aren’t necessarily intended to improve both
routability and overhead compared to the baseline island-style
fabrics. Instead, we implement these techniques to create Pareto
optimal fabrics that may trade off area overhead for routability,
and vice versa. As shown in Section 5, the overhead in Figure 6
can be greatly reduced without sacrificing much routability. We
have implemented IFs that use all 96 DSP48 units on
corresponding Virtex 4 LX FPGAs, and for the LX200, we have
implemented a 15x15 fabric (225 16-bit DSP CUs). Although
scalability does limit IF usage, 225 CUs can support numerous
realistic circuits.

Although some of the following techniques have been evaluated
for FPGA architectures [4], their effectiveness in minimizing the
overhead of a virtual implementation cannot be easily
extrapolated from those results. Likewise, the difference between
coarse-grain fabrics and fine-grained FPGAs suggests tradeoffs
appropriate for IFs need to be evaluated separately. We currently
consider five specialization techniques: track density, long tracks,
jump tracks, wide channels, and connection box flexibility.

Track density (i.e., tracks per channel) reduces IF routing
resources uniformly in each channel. We found that while the
savings in overhead by decreasing the track density is linear, the
effect on routability depends on the size of the fabric and the
fabric’s current routability. The impact on routability is
minimized for fabrics with low or high routability and is
maximized for fabrics with mid-range routability.

Long tracks skip over switch boxes, which uses fewer resources
than a run of single-hop tracks and also reduces propagation
delay. We found that IF resource utilization decreases linearly as
tracks are replaced with long tracks, with routability decreasing at
a faster rate. For a given ratio of long to short tracks, resource
utilization decreases quadratically and routability decreases
exponentially as the length of long tracks is increased, with bases
proportional to the ratio of long tracks. These results suggest that
long tracks must closely match the needs of a netlist to prevent
poor general routability.

Jump tracks are long tracks that are not confined to a single
channel, which provide direct connections between distant
regions of a fabric. Besides greatly reducing the delay over long
routes, jump tracks can also reduce routing congestion over the

regular fabric, possibly reducing the need for other routing
resources.

Wide channels represent a compromise over increasing track
density uniformly across the IF, by increasing track density of
only particular channels. Wide channels potentially enable routing
for netlists with locally high communication requirements,
without the high cost of increasing capacity globally.

Connection box flexibility varies the number of connection boxes
and the number of possible connections. Exploration results argue
strongly in favor of increasing connection box flexibility for IFs.
For example, adding connection boxes on column channels to a
fabric results in a 40% increase in routability with only a 10%
increase in resource utilization. For a fabric with both, forming
connections with both inputs and outputs of CUs, as opposed to
connecting to one or the other, results in an additional 30%
increase in routability, with only a 15% increase in overhead.

5. EXPERIMENTS

5.1 Experimental Setup
To minimize area overhead of IFs, it was necessary to also assess
and minimize the impact on routability. Since IFs are often
application-specialized and coarse-grained, existing sets of
benchmark netlists used in studies of routing on general-purpose,
fine-grained FPGAs [4] are not an ideal method of assessing
routability of IFs. Instead, we used a large number of randomly-
generated netlists (described below), and assigned each fabric a
‘routability score’ equal to the percentage of netlists routed
successfully. For each fabric, up to 1000 netlists were tested so
that the score was reproducible over tests with the same number
of different random netlists. This approach provides sufficiently
high precision to compare similar fabrics and is not biased by the
selection of netlists. Note that this measure is made feasible by
the fast PAR achievable on IFs. On FPGAs, the same measure
could take months.

To test against netlists representative of common circuits, our
random netlist generator created directed acyclic graph structures
common to pipelined datapaths of data-parallel applications. For a
particular fabric, the random netlist generator selects a random
number of technology-mapped cells bounded by the size and CU
composition of the fabric. The netlist generator then creates
different datapath stages, where each stage consists of a random
number of technology-mapped cells, with the requirement that
each stage has enough cells to connect at least one output from
each cell in the previous stage. Connections between stages were
made at random while ensuring that no cell would be left without
at least one path to the next stage. The generator can thus produce
anything from single- to n-stage pipelines, as well as multiple
disjoint pipeline structures.

To enable rapid exploration of IFs, we developed a tool capable
of generating device-independent VHDL for IFs of the type
discussed in Section 3.1. The tool takes a fabric description file as
input, which assigns fabric parameters including the size and CU
composition of the IF, as well as parameters relating to the
specialization techniques discussed in Section 4 including:
number of tracks in each channel, length and offset of each track,
and placement/connectivity of connection boxes.

The IF PAR tools take as input the same fabric description used
by the fabric generator in addition to a technology-mapped netlist.

The output of the IF PAR tools is a bitstream that is loaded by the
IF to implement the netlist.

For the device tools, the IF HDL was synthesized using
Synplicity Synplify Pro C-2009.03. Xilinx ISE 10.1 was used for
placement and routing of the IF HDL and to obtain resource
utilization and timing results. Select IFs were implemented and
tested on a Xilinx Virtex IV LX100 on a Nallatech H101-PCIXM
board.

5.2 Case Studies
This section evaluates PAR speedup and area/routability tradeoffs
for IFs specialized for a target application. Rather than
specializing for an application domain, which corresponds to the
envisioned library IF usage model, we illustrate proof of concept
by specializing IFs for individual netlists by manually performing
the synthesis usage model from Section 3.3. Specifically, we
explore different IF data planes to minimize area overhead while
maximizing general routability. The identification of application
domains and an appropriate measure of routability for circuits
within a domain is left as future work.

To evaluate the potential for specialization of IFs, we manually
performed the following methodology, which could easily be
automated as part of an IF synthesis tool. First, we used the fabric
generator to create a fabric with the minimum number of CUs to
implement the target netlist. When choosing between different
aspect ratios, we avoided extreme situations such as a fabric with
1 row and 50 columns of CUs. Using 4 tracks per channel as a
baseline, we gradually reduced the number of tracks uniformly
across the entire fabric until the target netlist failed to route. At
this point, we randomly explored replacing tracks with long tracks
and jump tracks in addition to reducing the tracks in individual
channels. We stopped the exploration when obtaining the smallest
fabric that could still route the target netlist.

We evaluated specialized IFs for twelve case studies, which we
manually implemented as technology-mapped IF netlists. To
determine overhead, we also created VHDL implementations of
each example that were implemented directly on the FPGA. For
some of the case studies, we evaluated two implementations: one
using 16-bit fixed point arithmetic (shown with a FXD suffix) and
one using 32-bit float arithmetic (shown with a FLT suffix). When
not explicitly stated, the circuit used 16-bit fixed point. Matrix
multiply calculates the inner product of two 8-vectors as the
kernel of a matrix multiplication. The netlist requires 15 adders
and multipliers. FIR is a 12-tap finite impulse response (FIR)
filter in transpose form with symmetric coefficients, requiring 23
adders and multipliers. N-body represents the computational
kernel of an n-body simulation, which calculates the gravitational
force exerted on a particle due to a number of other particles in
two dimensions. The netlist requires 13 arithmetic operators
including adders, multipliers, and a divider. Accum is a small
netlist that monitors an input stream that and counts the number of
times that an input value is less than a specified threshold. The
netlist consists of 4 comparators and 3 adders. Normalize scales
and offsets 8 input values from an input stream every cycle,
requiring 8 multipliers and 8 adders. Bilinear performs bilinear
interpolation on an image, requiring 8 multipliers and 3 adders.
Floyd-Steinberg performs image dithering using 6 adders and 4
multipliers. Thresholding performs automatic image thresholding
using 8 comparators and 14 adders. Sobel performs the Sobel
edge detection on an image using a 3x3 convolution kernel, which

requires 11 adders and 2 multipliers. Gaussian blur performs
Gaussian noise reduction using a 5x5 convolution kernel, which
requires 25 multipliers and 24 adders. Max filter is an image filter
that selects the maximum value in a 3x3 sliding window, whose
netlist consists of 8 comparators. Mean filter similarly filters an
image by averaging the values in a sliding window, for 3 different
window sizes (3x3, 5x5, and 7x7). The 3x3 netlist required 8
adders and 1 multiplier, whereas the 7x7 netlist required 48
adders and 1 multiplier.

For the image processing examples based on sliding windows
(Sobel, Gaussian, max filter, mean filter), we customized the
input stream plane of each IF to use smart buffers capable of
efficiently streaming windows from images with a maximum size
of 1920x1080. These customized stream planes deliver one
window per cycle to the data plane. Smart buffers were also used
for the direct FPGA implementations.

Table 1 illustrates IF PAR speedup, area overhead, and clock
overhead for each case study. The first major column, PAR Time,
compares PAR execution times for the specialized IF, the PAR
execution time when synthesizing VHDL for each example
directly to the FPGA, and the resulting PAR speedup. The results
show an average PAR speedup of 275x when using fixed-point
operators, and 1112x when using floating-point operators, for an
overall average of 554x. The PAR speedup is greater for the
floating point circuits because, for fine-grained physical devices,
each operator is mapped to hundreds of logic elements, increasing
the problem size for FPGA PAR relative to fixed-point operators,
which can be mapped directly to DSP units. Note that IF times are
identical for floating-point and fixed-point version of each
example, which illustrates a key IF advantage: IF PAR times are
not affected by the CU complexity. In addition, these IF PAR
speedups are pessimistic and represent a lower bound due to the
direct FPGA examples ignoring PAR times for other system
components. In practice, we have observed that controllers
(memory, PCIe, etc.) for a particular board can add 10 to 20
minutes of PAR time to a circuit. IFs completely avoid these times
because the controller components are already included in the
fabric. Therefore, in practice, actual PAR speedup is likely to
greater than 1000x.

The second major column in Table 1, IF Area Overhead,
compares the overhead of fabrics specialized for each of the
netlists against individual baseline fabrics not using the
specialization techniques (i.e., fabrics of the minimum required
size with 4 tracks per channel). Base is the overhead of the
baseline fabric, as described in Section 4. Specialized is the
overhead of the specialized fabric. Savings is the reduction in
overhead achieved by specialization. RtBase is the routability
score of the baseline fabric for netlists that utilize every CU in the
fabric (i.e., the maximum sized netlist). RtSpec is the retained
routability after specialization. On average, the baseline fabrics
had an area overhead of 18%, which was reduced to 10% after
specialization – an average savings of 45%. Most importantly, the
average retained routability of the specialized fabrics was 91%,
which suggests that little flexibility was sacrificed to reduce the
area overhead. Even in the worst case of Gaussian blur, the
retained routability was 58%.

The last major column in Table 1, IF Clock Overhead, shows the
clock frequency overhead of IFs compared to a direct FPGA
implementation for the case study netlists. Note that because the

specialized IFs use a pipelined interconnect, all netlists for each
fabric execute at the specified frequency, which is a function of
CU and track propagation delays. To avoid an underestimation of
IF overhead, we maximized the performance of the direct FPGA
implementations by manually pipelining the direct
implementations, using cores configured identically to the fabric’s
CUs. Average clock overhead was similar for both floating-point
and fixed-point examples, with an overall average of 18% that
corresponds to 195 MHz. A few examples were actually faster on
the IF than when implemented directly on the FPGA. Although
this situation should in theory never occur, we have observed
some inherent randomness in PAR tools that can occasionally
cause similar situations.

Although 18% may already be an acceptable overhead for
designers looking for PAR speedup and/or portability, in many
situations such overhead will actually be neglible due to other
system bottlenecks. For example, components external to the
design netlist (e.g., memory/PCIe controllers) often prevent such
high frequencies from being obtained. In these situations, the IF
clock overhead would effectively have no performance overhead.

Due to space constraints, we omit a detailed analysis of each
specialized fabric and instead summarize the results. On average,
the specialized fabrics used 2.14 tracks per row channel and 1.86
tracks per column channel. None of the fabrics required more than
3 tracks in any channel, and all but two of the examples (matrix
and mean5x5) used less than 3 tracks. When considering that
larger examples Gaussian blur and mean7x7 required less tracks,
matrix multiply and mean5x5 could likely use less tracks by
exploring different aspect ratios. All examples except
thresholding and Sobel used a mix of high-flexibility and low-
flexibility connection boxes in different parts of the fabric. Three
examples used long tracks, and four examples used wide channels
to eliminate localized routing bottlenecks.

5.3 General Purpose Analysis
In this section we evaluate the feasibility of IFs as general
purpose fabrics, by exploring tradeoffs between overhead and
routability for different fabric sizes, and by modifying the data
plane to eliminate the pipelined interconnect. Because IFs are not
necessarily intended for general purpose usage and will typically
be specialized, these results represent a worst case scenario.

5.3.1 Overhead/routability tradeoff analysis
Table 2 compares overhead and routability for different fabric
sizes, different track densities, and different connection box
flexilibities. All fabrics use Xilinx DSP48s as CUs. The fabric
sizes range from 3x3 to 9x9, in addition to a 12x8 fabric that
utilizes all 96 of the DSP48 units on the Virtex4 LX200. OH% is
the overhead of the fabric as defined in previous sections. Rt% is
the routability in terms of percentage of random netlists that can
be successfully routed on the fabric. RtFull% is similar, but only
considers maximum-sized netlists that use every CU in the fabric
(e.g., 96 CUs for the 12x8 fabric). In each cell, the left number
represents a low flexilibity connection box that only connects
inputs or outputs to an adjacent channel. The right number
represents a connection box that can connect all CU I/O to an
adjacent routing track.

These results again show the effectiveness of flexible connection
boxes, resulting in scores of 96% vs. 63%, for fabrics with 2
tracks per channel. The results also suggest that for the pipelined
datapath circuits that are the focus of this paper, 4 or 5 tracks per
channel is excessive, resulting in a larger overhead without a
significant improvement in routability. The most reasonable
tradeoffs for general purpose usage are 2 tracks-per-channel with
high-flexible connection boxes, or 3 tracks-per-channel with low-
flexibility connection boxes. For the 2 tracks-per-channel fabric,

Table 1: PAR speedup and overhead of case study specialized IFs.

 PAR Time IF Area Overhead IF Clock Overhead

IF FPGA Speedup Base Specialized Savings RtBase RtSpec IF FPGA Overhead

Matrix multiply FXD 0.6s 1min 08s 112x 16% 6% 63% 100% 100% 237 MHz 283 MHz 16%
Matrix multiply FLT 0.6s 6min 06s 602x 31% 13% 58% 100% 100% 249 MHz 224 MHz -11%

FIR FXD 0.6s 0min 33s 54x 18% 12% 33% 100% 99% 207 MHz 337 MHz 39%

FIR FLT 0.6s 4min 36s 454x 41% 29% 29% 100% 99% 196 MHz 283 MHz 31%

N-body FXD 0.5s 0min 57s 126x 10% 5% 50% 100% 99% 226 MHz 286 MHz 21%

N-body FLT 0.5s 3min 42s 491x 21% 10% 52% 100% 99% 233 MHz 328 MHz 29%

AccumFXD 0.1s 0min 26s 280x 4% 2% 50% 100% 100% 235 MHz 397 MHz 41%

Accum FLT 0.1s 0min 30s 323x 7% 5% 29% 100% 100% 304 MHz 406 MHz 25%

Normalize FXD 0.2s 1min 10s 299x 12% 4% 67% 100% 60% 235 MHz 331 MHz 29%

Normalize FLT 0.2s 6min 44s 1726x 24% 14% 42% 100% 60% 240 MHz 294 MHz 18%

Bilinear FXD 0.3s 1min 08s 230x 10% 6% 40% 100% 97% 221 MHz 162 MHz -36%

Bilinear FLT 0.3s 8min 48s 1784x 21% 14% 33% 100% 97% 217 MHz 296 MHz 27%

Floyd-Steinberg FXD 0.1s 1min 27s 621x 7% 4% 43% 100% 100% 224 MHz 177 MHz -27%

Floyd-Steinberg FLT 0.1s 5min 37s 2407x 14% 10% 29% 100% 100% 215 MHz 249 MHz 14%

Thresholding 1.4s 0min 33s 24x 15% 10% 33% 100% 99% 202 MHz 347 MHz 42%

Sobel 0.3s 2min 28s 500x 12% 6% 50% 100% 99% 115 MHz 151 MHz 24%

Gaussian Blur 3.3s 3min 19s 60x 41% 24% 41% 96% 58% 108 MHz 115 MHz 6%

Max Filter 0.2s 1min 16s 444x 9% 4% 56% 100% 98% 117 MHz 151 MHz 23%

Mean Filter 3x3 0.2s 2min 30s 962x 9% 3% 67% 100% 100% 115 MHz 147 MHz 22%

Mean Filter 5x5 1.9s 3min 25s 110x 21% 13% 38% 100% 95% 100 MHz 135 MHz 26%

Mean Filter 7x7 8.9s 5min 03s 34x 42% 26% 38% 95% 59% 101 MHz 129 MHz 22%

Average FXD 1.3s 1min 49s 275x 16% 9% 48% 99% 90% 175 MHz 225 MHz 18%

Average FLT 0.3s 5min 09s 1112x 23% 14% 39% 100% 94% 236 MHz 297 MHz 19%

Average 1.0s 2min 56s 554x 18% 10% 45% 100% 91% 195 MHz 249 MHz 18%

even at a size of 12x8 (96 DSP units), the overhead is only 37%
of the device. Although there are applications that may require a
larger fabric, there are numerous applications that require less
than 96 DSP operations. In fact, the Virtex IV LX family does not
have a device with more than 96 DSPs. By mapping DSP
operations onto LUTs after using all 96 DSP units, we were able
to implement a 15x15 (225 16-bit CUs) fabric on the Virtex 4 LX
200, which is large enough to enable many embedded usage
scenarios.

5.3.2 IF routing delays
In this section we consider the effects of eliminating the pipelined
interconnect in order to support arbitrary circuits required for
general purpose usage.

Static timing analysis presents one interesting challenge for the IF
tool flow. For a non-pipelined IF, timing is not known until the IF
is placed and routed onto a physical device. Therefore, timing
data must be back annotated after FPGA PAR for IF PAR to make
accurate decisions. For example, FPGA PAR tools could place
two adjacent CUs onto resources located at opposite ends of the
FPGA. To reduce this problem, FPGA placement of different IF
components can be constrained to use specific areas of the FPGA
when possible (e.g., FPGAs often lay out multipliers in columns).
We leave such optimization for future work and instead present
pessimistic results obtained by letting the FPGA PAR tools place
each IF CU.

Table 3 illustrates propagation delays of IF routing resources for
two baseline fabrics, showing modest increases with fabric size.
We report propagation delays instead of clock frequency because
for the general purpose fabrics, clock frequency is dependent on
the number of routing resources required by a particular netlist.
For a given netlist on the general purpose fabric, the clock
frequency is determined by the sum of the delays of IF tracks.
Unlike FPGAs, which have somewhat uniform delays for similar
routing resources, IFs may have significantly different delays due
to variation in the FPGA PAR process. Thus, one IF track may be
able to run at 195 MHz, while all others could potentially run
faster. Exploiting non-symmetric delays for tracks will require

specialized placement algorithms, which we leave as future work.

6. LIMITATIONS AND FUTURE WORK
Even with the specialization techniques presented in the paper,
IFs will often not scale to large circuits that can be implemented
in state-of-the-art FPGAs. However, there are numerous usage
scenarios that do not require circuits of these sizes, such as ASIPs,
accelerators for embedded kernels, and dynamic binary synthesis.
In addition, future work focusing on directly mapping IF routing
resources onto physical routing resources may significantly
decrease overhead and enable new usage models. Furthermore,
for many applications, a design may include numerous smaller
IFs, which reduces area overhead compared to one large IF.

For many of the specialization techniques discussed, routability
could be improved with novel PAR algorithms. Enhancing
routability may reduce the required number of IF routing
resources, enabling further reduction of overhead. New PAR
algorithms will also be required to support more specialized IFs,
such as those not using island-style architectures.

Realization of the usage models discussed in Section 3.3 will
require future work to determine methodologies for populating IF
libraries, algorithms for selecting appropriate IFs from a library,
and algorithms for IF synthesis.

7. CONCLUSIONS
In this paper, we introduced intermediate fabrics, which are
virtual reconfigurable architectures that represent an intermediate
translation layer between a user netlist and a physical device.
Intermediate fabrics enable portability of circuits across different
physical devices, which can reduce design complexity while also
allowing third party design tools to target different devices. In
addition, intermediate fabrics reduce complexity of physical
devices, which greatly reduces placement and routing times
compared to COTS FPGAs, resulting in an average PAR speedup
of 554x for 12 case studies. The main limitation of intermediate
fabrics is area overhead incurred by virtual routing resources.
However, we showed that for reasonably large fabrics with 96
DSP units, the overhead requires approximately 1/3 of a Virtex 4
LX200 while routing 97% of randomly generated pipelined-
datapath netlists. In addition, we presented specialization
techniques to reduce this overhead for specific domains, which on
average reduced overhead by 45% while retaining a routability of
91%. Future work on intermediate fabrics implemented directly
on physical FPGA routing resources may eliminate much of this
overhead, potentially enabling more usage scenarios.

Table 2: Overhead and routability tradeoffs for various sized general-purpose intermediate fabrics with both low-flexibility connection
boxes (numbers on left) and full flexibility (numbers on right).

 2 Tracks per Channel 3 Tracks per Channel 4 Tracks per Channel 5 Tracks per Channel

Size OH% Rt% RtFull% OH% Rt% RtFull% OH% Rt% RtFull% OH% Rt% RtFull%

3x3 2/3 100/100 99/100 4/5 100/100 100/100 5/6 100/100 100/100 6/9 100/100 100/100

4x4 5/6 97/100 84/100 7/10 100/100 99.5/100 9/12 100/100 100/100 12/16 100/100 100/100

5x5 8/10 93/100 83/100 12/15 100/100 99/100 15/18 100/100 100/100 19/25 100/100 100/100

6x6 11/15 91/100 70/99.5 17/22 100/100 96/100 21/27 100/100 100/100 28/36 100/100 100/100

7x7 16/20 87/99 69/97 24/30 98/100 94/100 30/37 100/100 100/100 38/50 100/100 100/100

8x8 21/25 87/99 51/92 31/39 99/100 91/100 39/48 100/100 100/100 50/65 100/100 100/100

9x9 29/32 81/98 37/88 40/49 97/100 88/100 49/59 99.9/100 98/100 64/82 100/100 100/100

12x8 31/37 79/97 12/89 46/57 98/99.9 90/99 57/68 99.6/100 98/100 75/95 100/100 99.8/100

Average 15/19 89/99 63/96 23/28 99/100 94/100 28/34 100/100 99/100 37/47 100/100 100/100

Table 3: Track delays for general-purpose baseline IFs.

 Max
Common
Clock

Mean
Track
Delay

Min Track
Delay

Max Track
Delay

Baseline 5x5 4.9 ns 1.17 ns 0.62 ns 2.89 ns

Baseline 9x9 4.9 ns 1.42 ns 0.70 ns 3.02 ns

8. ACKNOWLEDGMENTS
This work was supported in part by the I/UCRC Program of the
National Science Foundation under Grant No. EEC-0642422. The
authors gratefully acknowledge vendor equipment and/or tools
provided by Altera, Nallatech, and Xilinx.

9. REFERENCES
[1] P. Athanas, J. Bowen, T. Dunham, C. Patterson, J. Rice, M.

Shelburne, J. Suris, M. Bucciero, and J. Graf, “Wires on demand:
Run-time communication synthesis for reconfigurable computing,”
in FPL ’07: International Conference on Field Programmable Logic
and Applications, Aug. 2007, pp. 513–516.

[2] A. C. S. Beck and L. Carro, “A VLIW low power java processor for
embedded applications,” in SBCCI ’04: Proceedings of the 17th
Symposium on Integrated Circuits and System Design. New York,
NY, USA: ACM, 2004, pp. 157–162.

[3] J. Becker, T. Pionteck, C. Habermann, and M. Glesner, “Design and
implementation of a coarse-grained dynamically reconfigurable
hardware architecture,” in VLSI ’01: Proceedings of IEEE Computer
Society Workshop on VLSI, May 2001, pp. 41–46.

[4] V. Betz. The FPGA place and route challenge.
http://www.eecg.toronto.edu/~vaughn/challenge/challenge.html.

[5] V. Betz and J. Rose, “VPR: A new packing, placement and routing
tool for FPGA research,” in FPL ’97: Proceedings of the 7th
International Workshop on Field-Programmable Logic and
Applications. London, UK: Springer-Verlag, 1997, pp. 213–222.

[6] T. J. Callahan, P. Chong, A. DeHon, and J. Wawrzynek, “Fast
module mapping and placement for datapaths in FPGAs,” in FPGA
’98: Proceedings of the 1998 ACM/SIGDA sixth international
symposium on Field programmable gate arrays. New York, NY,
USA: ACM, 1998, pp. 123–132.

[7] K. Compton and S. Hauck, “Totem: Custom reconfigurable array
generation,” in FCCM’01: Proceedings of the the 9th Annual IEEE
Symposium on Field-Programmable Custom Computing Machines
2001, pp. 111–119.

[8] S. Craven and P. Athanas, “Examining the viability of FPGA
supercomputing,” EURASIP J. Embedded Syst., vol. 2007, no. 1, pp.
13–20, 2007.

[9] A. DeHon, “The density advantage of configurable computing,”
Computer, vol. 33, no. 4, pp. 41–49, 2000.

[10] Y. Dong, Y. Dou, and J. Zhou, “Optimized generation of memory
structure in compiling window operations onto reconfigurable
hardware,” in ARC, 2007, pp. 110–121.

[11] C. Ebeling, D. C. Cronquist, and P. Franklin, “Rapid - reconfigurable
pipelined datapath,” in FPL ’96: Proceedings of the 6th
International Workshop on Field-Programmable Logic,Smart
Applications, New Paradigms and Compilers. London, UK:
Springer-Verlag, 1996, pp. 126–135.

[12] K. Eguro and S. Hauck, “Armada: timing-driven pipeline-aware
routing for FPGAs,” in FPGA ’06: Proceedings of the 2006
ACM/SIGDA 14th international symposium on Field programmable
gate arrays, 2006, pp. 169–178.

[13] R. Fung, V. Betz, and W. Chow, “Simultaneous short-path and long-
path timing optimization for FPGAs,” in ICCAD ’04: Proceedings of
the 2004 IEEE/ACM International Conference on Computer-aided
design, 2004, pp. 838–845.

[14] Z. Guo, B. Buyukkurt, andW. Najjar, “Input data reuse in compiling
window operations onto reconfigurable hardware,” in LCTES ’04:
Proceedings of the 2004 ACM SIGPLAN/SIGBED conference on
Languages, compilers, and tools for embedded systems, 2004, pp.
249–256.

[15] S. Gupta, N. Dutt, R. Gupta, and A. Nicolau, “Spark: a high-level
synthesis framework for applying parallelizing compiler
transformations,” in VLSI’03: Proceedings of the 16th International
Conference on VLSI Design, Jan. 2003, pp. 461–466.

[16] M. Hammerquist and R. Lysecky, “Design space exploration for
application specific FPGAs in system-on-a-chip designs,” in SOC
’08: Proceedings of the IEEE International SOC Conference, Sept.
2008, pp. 279–282.

[17] Impulse Accelerated Technologies, Inc. Impulse CoDeveleoper.
2010. http://www.impulseaccelerated.com/products.htm.

[18] A. K. Jones, R. Hoare, D. Kusic, J. Fazekas, and J. Foster, “An fpga-
based vliw processor with custom hardware execution,” in FPGA
’05: Proceedings of the 2005 ACM/SIGDA 13th international
symposium on Field-programmable gate arrays, 2005, pp. 107–117.

[19] N. Kapre, N. Mehta, M. deLorimier, R. Rubin, H. Barnor, M. J.
Wilson, M. Wrighton, and A. DeHon, “Packet-switched vs. time-
multiplexed FPGA overlay networks,” in Proceedings of the IEEE
Symposium on Field-Programmable Custom Computing Machines,
2006.

[20] A. Koch, “Structured design implementation: a strategy for
implementing regular datapaths on FPGAs,” in FPGA ’96:
Proceedings of the 1996 ACM fourth international symposium on
Field-programmable gate arrays, 1996, pp. 151–157.

[21] R. Lysecky, F. Vahid, and S. X.-D. Tan, “Dynamic fpga routing for
just-in-time fpga compilation,” in DAC ’04: Proceedings of the 41st
Annual Conference on Design Automation, 2004, pp. 954–959.

[22] R. Lysecky, F. Vahid, and S. X. D. Tan, “A study of the scalability
of on-chip routing for just-in-time FPGA compilation,” in FCCM
’05: Proceedings of the 13th Annual IEEE Symposium on Field-
Programmable Custom Computing Machines, 2005, pp. 57–62.

[23] A. Marshall, T. Stansfield, I. Kostarnov, J. Vuillemin, and B.
Hutchings, “A reconfigurable arithmetic array for multimedia
applications,” in FPGA ’99: Proceedings of the 1999 ACM/SIGDA
Seventh International Symposium on Field Programmable Gate
Arrays, 1999, pp. 135–143.

[24] L. McMurchie and C. Ebeling, “Pathfinder: a negotiation-based
performance-driven router for FPGAs,” in FPGA ’95: Proceedings
of the 1995 ACM Third International Symposium on Field
Programmable Gate Arrays, 1995, pp. 111–117.

[25] S. Merchant, et al., “Strategic challenges for application
development productivity in reconfigurable computing,” in
NAECON ’08: Proceedings of the IEEE National Aerospace and
Electronics Conference, July 2008.

[26] Mitrionics, Inc. The Mitrion Virtual Processor. 2010.
http://www.mitrionics.com/?page=mitrion-virtual-processor.

[27] C. Mulpuri and S. Hauck, “Runtime and quality tradeoffs in FPGA
placement and routing,” in FPGA ’01: Proceedings of the 2001
ACM/SIGDA Ninth International Symposium on Field
Programmable Gate Arrays, 2001, pp. 29–36.

[28] B. E. Nelson, M. J. Wirthlin, B. L. Hutchings, P. M. Athanas, and S.
Bohner, “Design productivity for configurable computing,” in ERSA
’08: Proceedings of the International Conference on Engineering of
Reconfigurable Systems and Algorithms, 2008, pp. 57–66.

[29] NSF Center for High-Performance Reconfigurable Computing.
FPGA tool-flow studies workshop hosted by CHREC. June 2008.
http://www.chrec.org/ftsw/.

[30] L. Sekanina, Evolvable Systems: From Biology to Hardware.
Springer Berlin / Heidelberg, 2003, ch. Virtual Reconfigurable
Circuits for Real-World Applications of Evolvable Hardware, pp.
116–137.

[31] A. Sharma, S. Hauck, and C. Ebeling, “Architecture-adaptive
routability-driven placement for FPGAs,” International Conference
on Field Programmable Logic and Applications, pp. 427–432, 2005.

[32] S. Shukla, N. W. Bergmann, and J. Becker, “Quku: A two-level
reconfigurable architecture,” in ISVLSI ’06: Proceedings of the IEEE
Computer Society Annual Symposium on Emerging VLSI
Technologies and Architectures, 2006, p. 109.

[33] G. Stitt and F. Vahid, “Energy advantages of microprocessor
platforms with on-chip configurable logic,” IEEE Design & Test,
vol. 19, no. 6, pp. 36–43, 2002.

[34] W. Tsu, K. Macy, A. Joshi, R. Huang, N. Walker, T. Tung, O.
Rowhani, V. George, J. Wawrzynek, and A. DeHon, “HSRA: high-
speed, hierarchical synchronous reconfigurable array,” in FPGA ’99:
Proceedings of the 1999 ACM/SIGDA seventh international
symposium on Field programmable gate arrays, 1999, pp. 125–134.

[35] F. Vahid, G. Stitt, and R. Lysecky, “Warp processing: Dynamic
translation of binaries to FPGA circuits,” Computer, vol. 41, no. 7,
pp. 40–46, July 2008.

[36] J. Wang, Q. Chen, and C. Lee, “Design and implementation of a
virtual reconfigurable architecture for different applications of
intrinsic evolvable hardware,” Computers & Digital Techniques,
IET, vol. 2, no. 5, pp. 386–400, September 2008.

