
Final Project: MIPS-like Microprocessor 
Objective: 

The objective of this project is to design, simulate, and implement a simple 32-bit 

microprocessor with an instruction set that is similar to a MIPS. Note: some of the details are 

intentionally omitted. You must use what you have learned throughout the semester to complete 

the project. You are free to implement the MIPS in VHDL any way that you like, as long as it can 

execute the provided test programs.  

 

Logistics:  

As discussed in class, this is essentially a “mini-project”. It will be worth 350 points (3.5x more 

than a normal lab). The grading is based on the completion of a list of deliverables. When 

completed, each deliverable will earn the student some amount of points toward the total score 

of 350. The list of deliverables, their due dates, and their worth in points will be described later.  

 

General architecture for the MIPS Computer: 

 
Figure 1. Overall architecture of the MIPS processor 

 

The MIPS computer consist of the following:   

● A 32-bit processor (CPU) 

● A “memory module” that consists of a RAM and memory-mapped I/O 

● The RAM consists of 256 32-bit words, mapped to address 0, and is initialized with a mif 

file that contains the program that will execute. Use the Altera 1-Port RAM megafunction 

(called altsyncram in earlier versions). The RAM uses word-aligned addresses, so you 

will need to remove the lower two bits of the 32-bit address when connecting to the 

RAM. In other words, for a 256-word RAM, the RAM address input would connect to (9 

downto 2) of the 32-bit address. We aren’t implementing load/store byte instructions, but 

if we did, you would use the lower two bits to select which of the 4 bytes of the 32-bit 

word to use.   

● The I/O ports consist of two 32-bit input ports and one 32-bit output port with the 

following addresses. The output port is connected to the four 7-segment LEDs. 

INPORT0 $0000FFF8  INPORT1 $0000FFFC  

E.g. lw $s1, FFFC($zero)  means   $s1←(INPORT1) 

OUTPORT $0000FFFC  

E.g. sw $s1, FFFC($zero)  means   (OUTPORT) ← $s1 



● Because the DE0 board has only 10 switches, each input port will share the same 10 

switches. To load a value into each port, you will use two buttons as enable signals for 

the input ports. In other words, you would set the switches for the desired value on 

INPORT0, then press the enable button for INPORT0, which should store the switch 

settings to a register (the upper 22 bits should be set to 0). You would then change the 

switches for INPORT1, and then press a second button to enable INPORT1, which 

would store the input into a separate register.  

● A separate reset, controlled by the third button, for the CPU and memory. Note that this 

reset should not reset the input ports. This separate reset is used to restart an 

application after changing the values of the input ports. 

 

General architecture for the MIPS: 

 
Figure 2. General architecture of the MIPS Computer. 

 

The datapath consists of: 

● ALU : performs all the necessary arithmetic/logic/shift operations required to implement 

the MIPS instruction set (see instruction set table at end of this document). The ALU 

also implements the conditions needed for branches and asserts the “Branch Taken” 

output if the condition is true. The ALU should have four inputs: two for the inputs to be 

processed, one for a shift amount (shown as IR[10-6]), and one for the operation select. 



You can use whatever select values you want for the operations, but I would recommend 

looking over the encoding of the r-type instructions first to simplify the logic. 

● Register File: 32 registers with two read ports and one write port. 

● IR: The Instruction Register (IR) holds the instruction once it is fetched from memory  

● PC: The Program Counter (PC) is a 32-bit register that contains the memory address of 

the next instruction to be executed.  

● Some special-purpose registers, including Data Memory Register, RegA, RegB, 

ALUout, HI, and LO. These will be explained in lecture. 

● Controller which controls all the datapath and the memory module. (The controller does 

not control writing to the input ports). Note that the ALU is controlled by a separate 

ALU Control unit that uses signals from both the main controller and the datapath. This 

will be explained in lecture. The design of the controllers is one of the main tasks of this 

project. You are welcome to add more control signals that are not shown in the datapath 

figure. 

● ALU Controller : controls the all the ALU Operations. This logic is up to you to figure 

out, but it will become more clear after discussing the instructions in lecture. 

● Memory: contains the RAM and memory-mapped I/O ports  

● Sign Extended: convert a signed 16-bit input to its 32-bit representation when the signal 

“isSigned” is asserted.  

 

The controller signals: 

● PCWrite: enables the PC register. 

● PCWriteCond: enables the PC register if the “Branch” signal is asserted. 

● IorD: select between the PC or the ALU output as the memory address. 

● MemRead: enables memory read. 

● MemWrite: enables memory write. 

● MemToReg: select between “Memory data register” or “ALU output” as input 

to “write data” signal. 

● IRWrite: enables the instruction register. 

● JumpAndLink: when asserted, $s31 will be selected as the write register. 

● IsSigned: when asserted, “Sign Extended” will output a 32-bit sign extended 

representation of 16-bit input. 

● PCSource: select between the “ALU output”, “ALU OUT Reg”, or a “shifted to left 

PC” as an input to PC. 

● ALUOp: used by the ALU controller to determine the desired operation to be 

executed by the ALU. It is up to you to determine how to use this signal. There 

are many possible ways of implementing the required functionality. 

● ALUSrcA: select between RegA or Pc as the input1 of the ALU. 

● ALUSrcB: select between RegB, “4”, IR15-0, or “shifted IR15-0” as the input2 of 

the ALU. 

● RegWrite : enables the register file  

● RegDst: select between IR20-16 or IR15-11 as the input to the “Write Reg” 

Other signals:  



● IR31-26 (the OPCode): Will be decoded by the controller to determine what 

instruction to execute. 

● IR5-0: If the instruction is as R-type, this signal will be decoded by the ALU 

controller to determine the desired operation to be executed by the ALU. 

● IR10-6: For shift instructions, this set of bits specifies the shift amount. 

● Other IR ranges are instruction specific and will be explained in lecture. 

● OPSelect: will be used by the ALU to execute the desired operation 

● Load_HI: enables the HI register 

● Load_LO: enables the LO register 

● Alu_LO_HI : select between ALU out, LO, or Hi as the write data of register file. 

● Branch: gets  asserted if the branch condition is true. 

 

Opcode fetch, decode, execute cycle for the CPU controller: 

Note:  - This figure is not the complete. It is also for a different version of the datapath 

and a different set of instructions, so you can’t use the exact same logic. It is intended to 

be a basic template for you to follow. You can add more states and signals as necessary. 

Note that the timing or your design may also differ. 

 
Source: Patterson and Hennessy, Computer Organization and Design: The Hardware/Software Interface, 3rd ed 

Figure 3. General algorithm for designing a MIPS CPU 



 

Execution steps  

All instructions : 

 Step 1:  - Fetch instruction, store in IR, PC = PC + 4 

 Step 2: - Decode instruction  

- “Look ahead” steps:  Read in rs and rt registers to A and B, respectively.    

Compute target branch address using lower 16 bits of instruction --> 

ALUOut 

 

Memory access: 

Step 3:  - Compute memory address  

Step 4:  - If lw: Retrieve data from memory at specified address and place in MDR 

    - If sw: Write data (B register) to memory at specified address  

Step 5  - (lw only): Write contents of MDR to specified register 

R-type: 

Step 3:  - Perform specified operation --> ALUOut  

Step 4:  - Write ALUOut contents to specified register 

Branch: 

 Step 3: - Compare two registers   

- Use Zero/Branch output to determine if they are equal  

- Determine if we branch to the address in ALUOut or to PC+4 

 

Deliverables: (prepare to show to your TA)  

 

For each deliverable, do the following: 

● Create a neat drawing of your circuit, or a finite state machine for the controller. 

● Submit your VHDL files on Canvas. 

● Have simulations prepared to demo the correct functionality. These simulations 

should make it easy to see the functionality of each deliverable. Add annotations to 

explain. For larger simulations (e.g., multiply test case), selectively show some key parts 

of the waveform. Turn in these simulations on Canvas along with your code. 

● On Canvas, there will be a submission link for each week’s deliverables. I’d suggest 

creating a separate folder for each deliverable to make it easy to find your code. If you 

work ahead, turn in the deliverables in the specified weeks (not the week you finished it). 

 

Part of the grading of the deliverable is your understanding/explanation of your design. Of 

course, blatant inability to explain your finite state machine and/or your code is evidence of 

cheating and will be dealt with as such. 

 

NOTE: You must attend lab each week unless you have demoed all deliverables. Missing 

a lab will result in -20 points. Unless you are completely finished, you have to stay and 

work on the project with the help of your TA. 

 

Week 1: At a minimum, you are to complete Deliverables 1 and 2 by the end of the lab. 



 

Deliverable 1 (15 points): Design and simulation of the ALU. No demonstration on the 

UF-4712 board is necessary. Show the TA a simulation waveform that shows the correct 

operation of each operation. Show synthesis results verifying no latches. For week 1, 

use whatever select values you want for each ALU operation. Turn in all files and the 

simulation waveform on Canvas. 

 

Extra Credit (10 points): create an exhaustive testbench that tests every possible ALU 

input combination using assert statements and show the TA that no assertions fail. For 

this exhaustive test, reduce the width of the ALU to 8 bits or your simulation will never 

finish. 

 

Deliverable 2 (20 points): Design and simulation of the datapath and memory (RAM 

and ports). You must illustrate and explain to the TA the operation of each control signal 

that you are using for the datapath. At a minimum, you must show each component 

outputting a value using inputs from relevant components (e.g., the ALU should be 

tested with all the possible mux inputs). Your testbench should act similarly to the 

controller, but does not need to execute instructions. Turn in all files and the simulation 

on Canvas. 

 

Week 2: At a minimum, you are to complete Deliverable 3 by the end of the lab. 

 

Deliverable 3 (50 points): Initial design of the controller to support memory-access 
instructions (LW, SW), all R-type instructions, and all I-type instructions. Branch and 
jump instructions will not be tested because they require non-sequential execution. 
Create a MIF file that demonstrates loads and stores by loading from the input ports and 
displaying to the output port. Demoing the R-type and I-type instructions is up to you, but 
you can extend your MIF file to show that these instructions are working. Use multiple 
MIF files if necessary. Implement the fake halt instruction to prevent the MIPS from 
reading past the end of your MIF file. You may demonstrate the functionality in 
simulation or on the FPGA, but make sure to prepare waveforms in either case that 
demonstrate the correct functionality. Turn in all files and the simulation on Canvas. 

 

Week 3: Turn in all files and the simulations on Canvas for each of the deliverables. 

 

Deliverable 4 (100 points, 25 points each): Demonstrate test cases 1,2,4, and 7. 

 

Deliverable 5 (65 points): Convert the GCD assembly code into a MIF file and 

demonstrate the correct functionality on the board. 

 

Deliverable 6 (100 points): Demonstrate the correct functionality of the bubble_sort.mif 

on your board. 

 

 

 



Selected Subset of MIPS Instructions (See Excel sheet for more details) 

 

Instruction 
OpCode 

(Hex) 
Type Example Meaning 

add - unsigned 0x00 R addu $s1, $s2, $s3 $s1 = $s2 + $s3 

add immediate 

unsigned 
0x09 I addiu $s1, $s2, IMM $s1 = $s2 + IMM 

sub unsigned 0x00 R subu $s1, $s2, $s3 $s1 = $s2 - $s3 

sub immediate 

unsigned 

0x10 

(not 

MIPS) 
I subiu $s1, $s2, IMM $s1 = $s2 - IMM 

mult 0x00 R mult $s, $t $LO= $s * $t 

mult unsigned 0x00 R multu $s, $t $LO= $s * $t 

and 0x00 R and $s1, $s2, $s3 $s1 = $s2 and $s3 

andi 0x0C I andi $s1, $s2, IMM $s1 = $s2 and IMM 

or 0x00 R or $s1, $s2, $s3 $s1 = $s2 or $s3 

ori 0x0D I ori $s1, $s2, IMM $s1 = $s2 or IMM 

xor 0x00 R xor $s1, $s2, $s3 $s1 = $s2 xor $s3 

xori 0x0E I xori $s1, $s2, IMM $s1 = $s2 xor IMM 

srl -shift right 

logical 
0x00 R srl $s1, $s2, H 

$s1 = $s2 >> H (H is bits 

10-6 of IR) 

sll -shift left 

logical 
0x00 R sll $s1, $s2, H 

$s1 = $s2 << H (H is bits 

10-6 of IR) 

sra -shift right 

arithmetic 
0x00 R sra $s1, $s2, H See XLS sheet 

slt -set on less 

than signed 
0x00 R slt $s1,$s2, $s3 

$s1=1 if $s2 < $s3 else 

$s1=0 

slti -set on less 

than immediate 

signed 
0x0A I slti $s1,$s2, IMM 

$s1=1 if $s2 < IMM else 

$s1=0 

sltiu- set on less 

than immediate 

unsigned 
0x0B I sltiu $s1,$s2, IMM 

$s1=1 if $s2 < IMM else 

$s1=0 

sltu - set on less 

than unsigned 
0x00 R sltu $s1,$s2, $s3 

$s1=1 if $s2 < $s3 else 

$s1=0 

mfhi -move from Hi 0x00 R mfhi $s1 $s1= HI 

mflo -move from LO 0x00 R mflo $s1 $s1= LO 

load word 0x23 I lw $s1, offset($s2) $s1 = RAM[$s2+offset] 

store word 0x2B I sw $s1, offset($s2) RAM[$s2+offset] = $s1 

branch on equal 0x04 I beq $s1,$s2, TARGET if $s1=$s2, PC += 4+TARGET 

branch not equal 0x05 I bne $s1,$s2, TARGET if $s1/=$s2, PC += 4+TARGET 

Branch on Less Than 

or Equal to Zero 
0x06 I blez $s1, TARGET if $s1 <= 0, PC += 4+TARGET 

Branch on Greater 

Than Zero 
0x07 I bgtz $s1, TARGET if $s1 > 0, PC += 4+TARGET 

Branch on Less Than 

Zero 
0x01 I bltz $s1, TARGET if $s1 < 0, PC += 4+TARGET 



Branch on Greater 

Than or Equal to 

Zero 
0x01 I bgez $s1, TARGET if $s1 >= 0, PC += 4+TARGET 

jump to address 0x02 J j TARGET PC = TARGET 

jump and link 0x03 J jal TARGET $ra = PC+4 and PC = TARGET 

jump register 0x00 R jr $ra PC = $ra 

Fake instruction 0x3F  Halt 
Useful for week 2 

deliverables 

 

 

 


