
EEL 4712 Name:
Midterm 2 – Spring 2016
VERSION 1
 UFID:

Sign here to give permission for your test to be returned in class, where others might see your score:

__

COVER SHEET:

Problem#: Points
1 (15 points)
2 (7 points)
3 (7 points)
4 (8 points)
5 (20 points)
6 (20 points)
7 (20 points)
Free 3

IMPORTANT:
• Please be neat and write (or draw) carefully. If we cannot read it with a
reasonable effort, it is assumed wrong.

• As always, the best answer gets the most points.

Total:

Regrade Info:

1. (15 points) Assume you are given an FPGA that consists of the following CLB structures with one 4-
input, 2-output LUT and optional flip flops on each output.

Map the following circuit onto these CLBs by drawing boxes to

represent CLBs. Assume that the rectangle components are flip flops
and that everything else is combinational logic. Use the minimum
number of CLBs for full credit.

2. (7 points) List the different interconnect resources that an FPGA uses to route between two

components in an FPGA.

3. (7 points) The Cyclone III EP3C16 has 56 M9k block RAMs, which provide 8192 bits to be used for
memory. Assuming an image consisting of 24-bit pixels, calculate the maximum number of pixels
that you could store in the FPGA.

4. a. (4 points) You are given a 75 MHz clock and must divide it to create a 23 kHz clock. How many 75

MHz cycles does the divider have to wait for a full period of the 23 kHz clock? i.e. The divider can
produce a frequency that is slight slower than 23 kHz, but no faster.

b. (4 points) Calculate the actual frequency of the divided clock. Show at least two fractional digits.

5. (20 points) Fill in the code to implement the following Moore finite state machine (FSM) using the
2-process FSM model. Assume that INIT is the initial state. Assume that d takes priority over n.
Assume there are implicit edges back to the current state for any condition not explicitly shown.
Transitions without conditions are always taken. Use the next page if extra room is needed.

library ieee;

use ieee.std_logic_1164.all;

entity fsm is

 port (

 clk, rst : in std_logic;

 n, d : in std_logic;

 a : out std_logic_vector(3 downto 0);

 valid : out std_logic;

);

end fsm;

architecture PROC2 of fsm is

 type STATE_TYPE is (

);

 signal state, next_state : STATE_TYPE;

begin

 process(clk, rst)

 begin

 end process;

 process()

 begin

INIT

a = “0000”

valid = ‘0’

FIVE

a = “0101”

valid = ‘0’

TEN

a = “1010”

valid = ‘0’

n = ‘1’ n = ‘1’

d = ‘1’

 end process;

end PROC2;

6. (20 points) Create an FSMD that implements the following pseudo-code. Do not write VHDL and
instead leave the FSMD in graphical form (i.e., state machine with corresponding operations in
each state). Make sure to specify all operations and state transitions. Note that result, go, input, and
done are I/O. For the array a[i], assume that your circuit has a ROM that stores the entire array, and
that all values are already stored in the ROM. Assume the ROM has a one-cycle read latency. Show
the read operation in your FSMD as “load a[i]”. Make sure to not use data from the ROM until one
cycle after this load.

const int N = 32; // In VHDL: generic(N : positive)

Inputs: go (std_logic), input (std_logic_vector)

Outputs: result (std_logic_vector), done (std_logic)

int i, result, input_reg;

int a[N]; // Stored as a ROM in the circuit, assume already filled with appropriate data

// reset values for outputs

done = 0; result = 0;

while (1) {

while (go == 0);

done = 0;

// Store input into register

input_reg = input;

 result = 0;

 for (i=0; i < N; i++) {

 result = result + a[i] * input_reg;

}

done = 1;

while (go == 1);

}

7. (20 points) Draw an FSM capable of controlling the illustrated datapath to perform the pseudo-code
in question 6, by assigning or reading from the underlined control signals. Assume that go is an input
to the controller and that left mux inputs have a select value of 1. Also assume that ROM contents
store the a[] array and that these values have already been stored. Note that this datapath assumes
that N=32. Do not write any VHDL code, just show the FSM and control signals. Be sure to mention
default signal values to save space.

i

+

<

2x1

0

32

1

i_lt_32

i_sel

i_en

input_reg

*

result

+

ROM

result_en

input_reg_en

done

2x1

01

done_sel

done_en

addr (i)

data (a[i])

input

done

2x1

0

result_sel

Problem 6 Reference

const int N = 32; // In VHDL: generic(N : positive)

Inputs: go (std_logic), input (std_logic_vector)

Outputs: result (std_logic_vector), done (std_logic)

int i, result, input_reg;

int a[N]; // Stored as a ROM in the circuit, assume already filled with appropriate data

// reset values for outputs

done = 0; result = 0;

while (1) {

while (go == 0);

done = 0;

// Store input into register

input_reg = input;

 result = 0;

 for (i=0; i < N; i++) {

 result = result + a[i] * input_reg;

}

done = 1;

while (go == 1);

}

i

+

<

2x1

0

32

1

i_lt_32

i_sel

i_en

input_reg

*

result

+

ROM

result_en

input_reg_en

done

2x1

01

done_sel

done_en

addr (i)

data (a[i])

input

done

2x1

0

result_sel

