EEL 4712 Name:

Midterm 1 — Spring 2016
VERSION 1
UFID:

Sign here to give permission to return your test in class, where other students might see your score:

IMPORTANT:

* Please be neat and write (or draw) carefully. If we cannot read it with a
reasonable effort, it is assumed wrong.

* As always, the best answer gets the most points.

COVER SHEET:

Problemtit: Points

1 (16 points)

2 (6 points) Total:

3 (16 points)

4 (16 points)

5 (5 points)

6 (16 points)

7 (6 points)

8 (16 points)

9 (3 points) 3

Regrade Info:

ENTITY entity name IS

PORT (__ input name, input name : IN STD LOGIC;
__input vector name : IN STD LOGIC VECTOR(_ high downto low);
__bidir name, bidir name : INOUT STD LOGIC;

__output name, output name : OUT STD LOGIC) ;
END entity name;

ARCHITECTURE a OF entity name IS
SIGNAL signal name : STD LOGIC;
BEGIN

—-— Process Statement

-- Concurrent Signal Assignment

-- Conditional Signal Assignment

—-- Selected Signal Assignment

-- Component Instantiation Statement

END a;
__instance name: _ component name PORT MAP (_component port =>
__component port => connect port);

WITH expression SELECT

__signal <= expression WHEN _ constant value,
__expression WHEN _ constant value,
__expression WHEN _ constant value,
__expression WHEN constant value;

__signal <= __exprggsion WHEN __boolean expression ELSE
__expression WHEN boolean expression ELSE
__expression;

IF expression THEN
___statement;
___statement;

ELSIF expression THEN
___statement;
___statement;

ELSE

___statement;
___statement;

END IF;

CASE expression IS
WHEN constant value =>
___statement;
___statement;
WHEN constant value =>
___statement;
___statement;
WHEN OTHERS =>
___statement;

statement;
END CASE;

<generate label>: FOR <loop id> IN <range> GENERATE
—-—- Concurrent Statement (s)

END GENERATE;

type array type is array(_ upperbound downto _ lowerbound) ;

___connect port,

1) (16 points) Fill in the following VHDL to implement the illustrated circuit. Assume that clk and rst
connect to every register. All wires/operations are width bits. Ignore adder overflow.

igl in2 i$3 in4
library ieee; h 4 v
use ieee.std logic_1164.all;
use ieee.numeric std.all; Reg Reg Reg Reg
entity example is
generic (
width : positive := 16);
port (
clk, rst : in std logic;
inl, in2, in3, in4 : in std logic vector (width-1 downto 0);
outl, out2 : out std logic vector (width-1 downto 0));
end example; Reg
architecture BHV of example is i
Reg
outl
out2$

begin
process (clk, rst)

begin
if (rst = '1l') then
-- ASSUME ALL REGISTERS RESET HERE. YOU DON’T NEED TO SPECIFY THE CODE
elsif (rising edge(clk)) then

end if;
end process;

end BHV;

2) (6 points) Given the following entity, specify the widths of each instantiation in parts a-c.

entity test is

generic (
width : positive := 32);

port (
inl : in std logic vector (width-1 downto 0);
in2 : in std logic vector (width-1 downto 0)

output : out std logic vector(width-1 downto 0));
end test;

a.

U A : entity work.test
generic map (width => 16)
port map (inl => inl,
in2 => in2,
output => output);

U B : entity work.test
port map (inl => inl,
in2 => in2,
output => output);

c. When entity test is used as the top-level entity.

3) (16 points) Fill out the outputs of the waveform for the following two architectures. Assume the left
column is the start of the simulation.

library ieee;
use ieee.std logic_1164.all;
use ieee.numeric std.all;

entity mult is

generic (
width : positive := 16);
port (
inputl, input2 : in std logic vector(width-1 downto 0);
output : out std logic vector (width-1 downto 0);
overflow : out std logic);
end mult;

architecture BHV1 of mult is

signal temp : unsigned(2*width-1 downto 0);

begin
process (inputl, input2)
begin
temp <= unsigned(inputl) * unsigned(input2);
output <= std logic vector (temp(width-1 downto 0));
if (temp (2*width-1 downto width) = 0) then
overflow <= '0"';
else
overflow <= '1';
end if;
end process;
end BHV1;
inputl 1
input2 10 5 3 5
output
overflow

architecture BHV2 of mult is
begin
process (inputl, input2)
variable temp : unsigned(2*width-1 downto O0);
begin
temp := unsigned (inputl) * unsigned(input2);
output <= std logic vector (temp(width-1 downto 0));

if (temp (2*width-1 downto width) = 0) then
overflow <= '0';
else
overflow <= '1';
end 1if;
end process;
end BHV2;
inputl 1
input2 10 5 3 5
output
overflow

4) (16 points points) a. Identify any violations of the synthesis coding guidelines for combinational logic
and b. specify the effect on the synthesized circuit.

library ieee;
use ieee.std logic 1164.all;
use ieee.numeric std.all;

entity mult is

generic (
width : positive := 16);

port (
inputl, input2 : in std logic vector(width-1 downto 0);
output : out std logic_vector (width-1 downto 0);
overflow : out std logic);

end mult;

architecture BHV4 of mult is
begin
process (inputl, input2)
variable temp : unsigned(2*width-1 downto 0);
begin
temp := unsigned (inputl) * unsigned (input2);
output <= std logic vector (temp(width-1 downto 0));

if (temp (2*width-1 downto width) /= 0) then
overflow <= '1"';
end if;
end process;
end BHV4;

5) (5 points) The following code is correct and will synthesize to combinational logic, but what
suggestion does it not follow?
architecture BHV3 of mult is

signal temp : unsigned(2*width-1 downto 0) := (others => '0'");
begin

temp <= unsigned(inputl) * unsigned(input2);
output <= std logic vector (temp(width-1 downto 0));

process (temp)

begin
if (temp(2*width-1 downto width) = 0) then
overflow <= '0"';
else
overflow <= '1';
end if;

end process;
end BHV3;

6) (16 points) Fill in the provided code to create the illustrated structural architecture using a series of
pre-existing ff and mux2x1 components. Use the component declarations to determine their I/0.
Note that there are a total of width registers and width-1 muxes. The shift input acts as the select

for all muxes.
input

entity test is

generic(width : positive := 8); ¢
port (
clk, rst, shift, input : in std logic;
output : out std logic); *
end test;
|| L) L
architecture STR of test is J

component ff
port (
clk, rst, d : in std logic;
q : out std logic);
end component;

component mux2xl
port (
inl, in2, sel : in std logic;
output : out std logic);
end component;

begin

U FFS : for 1 in 1 to width-1 generate
U FF : ff port map (

clk => clk,
rst => rst,
d =>
q =>

U _MUX : mux2xl port map (

inl => input,
in2 =>
sel => shift,
output =>

)
end generate U_FFS;

end STR;

7)

9)

a. (2 points) What is the propagation delay of operations during a functional simulation?

b. (2 points) What file represents the vhdl for a synthesized circuit used in timing simulations?

c. (2 points) What file specifies propagation delays of signals during timing simulations?

a. (9 points) Define the logic for the first 3 carry outs (c; to ¢;) of a carry lookahead adder (CLA) in
terms of the propagate signals (p;), generate signals (g;), and carry in (cy).

b. (2 points) Define the propagate signal (p;) in terms of adder inputs x; and y..

c. (2 points) Define the generate signal (g;) in terms of adder inputs x; and y;.

d. (3 points) True/false. Adding extra levels of carry lookahead logic trades off propagation delay for
reduced area compared to a single-level carry lookahead adder.

3 free points for having to take a test at 8:30am.

