
EEL 4712 Midterm 1 – Spri	ing 2016	Name:				
VERSION 1		HEID:				
		UFID:				
Sign here to give	permission to retur	rn your test in class, where other students might see your score:				
 IMPORTANT: Please be neat and write (or draw) carefully. If we cannot read it with a reasonable effort, it is assumed wrong. As always, the best answer gets the most points. 						
COVER SH	EET:					
Problem#:	Points	7				
1 (16 points)]				
2 (6 points)		Total:				
3 (16 points)						
4 (16 points)						
5 (5 points)		_				
6 (16 points)						
7 (6 points)						
8 (16 points)						
9 (3 points)	3	_				
Regrade Info:						

```
ENTITY _entity_name IS
PORT(__input_name, __input_name : IN STD_LOGIC;
__input_vector_name : IN STD_LOGIC_VECTOR(__high downto low);
__bidir_name, __bidir_name : INOUT STD_LOGIC;
 output name, output name : OUT STD LOGIC);
END __entity_name;
ARCHITECTURE a OF __entity_name IS
SIGNAL __signal_name : STD_LOGIC;
BEGIN
-- Process Statement
-- Concurrent Signal Assignment
-- Conditional Signal Assignment
-- Selected Signal Assignment
-- Component Instantiation Statement
END a;
__instance_name: __component_name PORT MAP (__component_port => __connect port,
__component_port => __connect_port);
WITH __expression SELECT
__signal <= __expression WHEN __constant_value,
expression WHEN __constant_value,
expression WHEN __constant_value,
expression WHEN __constant_value;
__signal <= __expression WHEN __boolean_expression ELSE __expression WHEN __boolean_expression ELSE
__expression;
IF expression THEN
 statement;
 statement;
ELSIF expression THEN
 statement;
 statement;
ELSE
__statement;
  statement;
END IF;
CASE __expression IS
WHEN __constant_value =>
__statement;
  statement;
WHEN constant value =>
__statement;
 statement;
WHEN OTHERS =>
__statement;
 statement;
END CASE;
<generate label>: FOR <loop id> IN <range> GENERATE
-- Concurrent Statement(s)
END GENERATE;
type array_type is array(__upperbound downto __lowerbound);
```

1) (16 points) Fill in the following VHDL to implement the illustrated circuit. Assume that clk and rst connect to every register. All wires/operations are *width* bits. Ignore adder overflow.


```
end if;
end process;
```

2) (6 points) Given the following entity, specify the widths of each instantiation in parts a-c.

b.

c. When entity test is used as the top-level entity.

3) (16 points) Fill out the outputs of the waveform for the following two architectures. Assume the left column is the start of the simulation.

```
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric std.all;
entity mult is
    generic(
        width : positive := 16);
    port (
        input1, input2 : in std logic vector(width-1 downto 0);
        output : out std_logic_vector(width-1 downto 0);
        overflow
                      : out std_logic);
end mult;
architecture BHV1 of mult is
    signal temp : unsigned(2*width-1 downto 0);
begin
    process(input1, input2)
    begin
        temp <= unsigned(input1) * unsigned(input2);</pre>
        output <= std logic vector(temp(width-1 downto 0));</pre>
        if (temp(2*width-1 downto width) = 0) then
           overflow <= '0';
        else
            overflow <= '1';</pre>
        end if;
    end process;
end BHV1;
```

input1	1	2	3	4
input2	10	5	3	5
output				
overflow				

```
architecture BHV2 of mult is
begin
    process(input1, input2)
        variable temp : unsigned(2*width-1 downto 0);
begin
        temp := unsigned(input1) * unsigned(input2);
        output <= std_logic_vector(temp(width-1 downto 0));

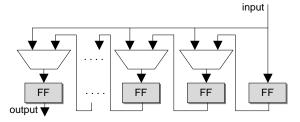
    if (temp(2*width-1 downto width) = 0) then
        overflow <= '0';
    else
        overflow <= '1';
    end if;
    end process;
end BHV2;</pre>
```

input1	1	2	3	4
input2	10	5	3	5
output				
overflow				

4) (16 points points) **a.** Identify any violations of the *synthesis coding guidelines for combinational logic* and **b.** specify the effect on the synthesized circuit.

```
library ieee;
use ieee.std logic 1164.all;
use ieee.numeric std.all;
entity mult is
   generic(
       width : positive := 16);
        input1, input2 : in std_logic_vector(width-1 downto 0);
       output     : out std_logic_vector(width-1 downto 0);
overflow     : out std_logic);
end mult;
architecture BHV4 of mult is
begin
    process(input1, input2)
        variable temp : unsigned(2*width-1 downto 0);
    begin
                := unsigned(input1) * unsigned(input2);
         output <= std_logic_vector(temp(width-1 downto 0));</pre>
         if (temp(2*width-1 downto width) /= 0) then
             overflow <= '1';</pre>
        end if;
    end process;
end BHV4;
```

5) (5 points) The following code is correct and will synthesize to combinational logic, but what suggestion does it not follow?


```
architecture BHV3 of mult is
    signal temp : unsigned(2*width-1 downto 0) := (others => '0');
begin

temp <= unsigned(input1) * unsigned(input2);
    output <= std_logic_vector(temp(width-1 downto 0));

process(temp)
begin
    if (temp(2*width-1 downto width) = 0) then
        overflow <= '0';
    else
        overflow <= '1';
    end if;
    end process;
end BHV3;</pre>
```

(16 points) Fill in the provided code to create the illustrated structural architecture using a series of pre-existing ff and mux2x1 components. Use the component declarations to determine their I/O. Note that there are a total of width registers and width-1 muxes. The shift input acts as the select for all muxes.

```
entity test is
   generic(width : positive := 8);
       clk, rst, shift, input : in std_logic;
                    : out std logic);
end test;
architecture STR of test is
   component ff
       port (
           clk, rst, d : in std logic;
                    : out std logic);
           q
   end component;
   component mux2x1
       port (
           in1, in2, sel : in std logic;
           output : out std_logic);
   end component;
```


begin

```
U FFS : for i in 1 to width-1 generate
   U FF : ff port map (
       clk => clk,
              => rst,
       rst
       d =>
       q =>
       );
    U_MUX : mux2x1 port map (
       in1
              => input,
       in2
              => shift,
       sel
       output =>
       );
end generate U_FFS;
```

7)	a. (2 points) What is the propagation delay of operations during a functional simulation?
	b. (2 points) What file represents the vhdl for a synthesized circuit used in timing simulations?
	c. (2 points) What file specifies propagation delays of signals during timing simulations?
8)	a. (9 points) Define the logic for the first 3 carry outs (c_1 to c_3) of a carry lookahead adder (CLA) in terms of the propagate signals (p_i), generate signals (g_i), and carry in (c_0).
	b. (2 points) Define the propagate signal (p_i) in terms of adder inputs x_i and y_i .
	c. (2 points) Define the generate signal (g_i) in terms of adder inputs x_i and y_i .
	d. (3 points) True/false. Adding extra levels of carry lookahead logic trades off propagation delay for reduced area compared to a single-level carry lookahead adder.
9)	3 free points for having to take a test at 8:30am.