EEL 4712
Midterm 3 - Spring 2015
VERSION 1

Name: \qquad

UFID: \qquad
Sign here to give permission for your test to be returned in class, where others might see your score:

IMPORTANT:

- Please be neat and write (or draw) carefully. If we cannot read it with a reasonable effort, it is assumed wrong.
- As always, the best answer gets the most points.

COVER SHEET:

Problem\#:	Points
1 (10 points)	
2 (5 points)	
3 (5 points)	
4 (5 points)	
5 (5 points)	
6 (5 points)	
7 (5 points)	
8 (15 points)	
9 (10 points)	
10 (5 points)	
11 (10 points)	
12 (20 points)	

Total:

Regrade Info:

1) (10 points) Draw a schematic of the FPGA mux-based circuit that would be synthesized for the following bus structure. Assume there are tri-states at every location that writes to the bus. Show how the A-F components connect to the inputs and outputs of the mux. You can omit control signals.

2) (5 points) Why does a dual-flop synchronizer work for synchronizing single bits, but not for multiple bits?
3) (5 points) In what situation can a dual-flop synchronizer be used for multiple bits? Describe the situation, don't just give an example of a synchronizer that does this.
4) (5 points) In many of the labs, you used a circuit similar to the following one. Extend this circuit to prevent metastability from propagating into the finite state machine

5) (5 points) Name two synchronizers that can correctly handle multiple bits.
6) (5 points) Explain why the SBCR (subtract with borrow) instruction mathematically requires the SETC (set carry) instruction to be executed first.
7) (5 points) In what situation would a program not use a SETC carry instruction before the SBCR instruction?
8) (15 points) Create a memory initialization file for the following assembly code. Add a comment to show the beginning of each instruction and each variable in memory. Break your answer up into two columns and/or use the following page.
```
OUTPORT0 EQU $FFFE
BEGIN:
    LDAI $03
    STAA COUNT
    LDXI BUFF
    LDAI $00
    STAR D
AGAIN:
    LDAA 0,X
    ADCR D
    STAR D
    LDAA COUNT
    DECA
    STAA COUNT
    INCX 
    BNEA AGAIN
    LDAD
    STAA OUTPORTO
INFINITE_LOOP:
    CLRC
    BCCA INFINITE_LOOP
* Data Area
BUFF: dc.b $01
    dc.b $02
    dc.b $03
COUNT: ds.b 1
Depth = 256;
Width = 8;
Address_radix = hex;
Data_radix = hex;
% Program RAM Data %
Content
    Begin
```

[..00FF] : 00;
End;
9) (10 points) Describe what would happen during a simulation of the following 2-process FSMD when the state reaches S_COUNT. Hint: this is the exact same code used in class.

```
architecture bhv of fsmd is
    type STATE TYPE is (S_START, S_COUNT, S_DONE);
    signal state, next_state : STATE_TYPE;
    signal count : unsigned(3 downto 0);
    constant MAX_COUNT_VAL : natural := 10;
begin
    process (clk, rst)
    begin
        if (rst = '1') then
            state <= S START;
        elsif (clk =''1' and clk'event) then
            state <= next_state;
        end if;
    end process;
    process(go, state, count)
    begin
        case state is
            when S_START =>
            done <= '0';
            count <= to_unsigned(1, count'length);
            if (go = '0') then
                next_state <= S_START;
            else
                    next_state <= S_COUNT;
                end if;
            when S_COUNT =>
            done <= '0';
            count <= count + 1;
            if (count = MAX_COUNT_VAL) then
                next_state <= S_DONE;
            else
                    next_state <= S_COUNT;
                    end if;
            when S_DONE =>
            count <= to_unsigned(MAX_COUNT_VAL, count'length);
            done <= '1'`
            next_state <= S_DONE;
            when others => null;
        end case;
    end process;
end bhv;
```

10) (5 points) Assuming that the stack pointer is initially set to address 0×0206, show the state of the stack and stack pointer immediately after the CALL FUNCTION3 instruction. Assume that none of the instructions executed between function calls are returns.

11) a. (5 points) Given a solution space with the following implementations, which of the solutions are not Pareto optimal? If they are all Pareto optimal, state that.
a. Area: 5000 LUTs, Time: 3s
b. Area: 4000 LUTs, Time: 2 s
c. Area: 3000 LUTs, Time 5 s
d. Area: 2000 LUTs, Time 6s
e. Area: 1000 LUTs, Time 8 s
b. (5 points) Given a solution space with the following implementations, which of the solutions are not Pareto optimal? If they are all Pareto optimal, state that.
a. Area: 5000 LUTs, Time: 3 s , Energy $=10 \mathrm{~mJ}$
b. Area: 4000 LUTs, Time: 2 s , Energy $=15 \mathrm{~mJ}$
c. Area: 3000 LUTs, Time 5s, Energy $=20 \mathrm{~mJ}$
d. Area: 2000 LUTs, Time 6s, Energy=25mJ
e. Area: 1000 LUTs, Time 8s, Energy=30mJ
12) a. (5 points) For the following code, create a schedule for the provided datapath. Ignore muxes and other glue logic. Like the examples in class, assume that address calculations are done without using the specified resources (i.e., address calculations cost nothing). Do not change the code. List any assumptions.
```
for (int i=0; i < 1000000; i++) { Datapath
    a[i] = b[i]*22 + b[i+1]*28 + b[i+2]*54 + b[i+3]*97; 2 multipliers
}
```

Datapath
2 multipliers
1 adder
1 comparator
1 memory for b[] (can read 2 elements/cycle)
1 memory for a[] (can write 1 element/cycle)
b. (5 points) What is the execution time in total cycles based on your schedule from part a? Show your work.
c. (5 points) Create a new schedule for the same code and datapath, except this time using 4 multipliers and 2 adders.
d. (5 points) Given a solution space consisting of only the solutions from a and c, is c a Pareto optimal solution? Explain your answer.

