
EEL 4712 Name:
Midterm 2 – Spring 2015
VERSION 1
 UFID:

Sign here to give permission for your test to be returned in class, where others might see your score:

__

COVER SHEET:

Problem#: Points
1 (12 points)
2 (6 points)
4 (6 points)
5 (6 points)
6 (6 points)
6 (6 points)
7 (6 points)
8 (18 points)
9a (17 points)
9b (17 points)

IMPORTANT:
• Please be neat and write (or draw) carefully. If we cannot read it with a
reasonable effort, it is assumed wrong.

• As always, the best answer gets the most points.

Total:

Regrade Info:

1) (12 points) Assume you are given an FPGA that consists of the following CLB structures:

Map the following circuit onto these CLBs by drawing rectangles to represent CLBs. Use the minimum
number of CLBs.

FF

2x1

2-to-4 decoder FF FF

2x1

2) (6 points) Given a 10-input, 2-output combinational logic function, how many SRAM bits are
necessary to implement this function in a single lookup table (LUT)? Show your work.

3) (6 points) Briefly describe the purpose of a connection box.

4) (6 points) Briefly describe the purpose of a switch box.

5) (6 points) Long channels in FPGA provide which of the following advantages (select one):
(a) Increased data width
(b) Direct connections between block RAM and DSP units
(c) Shorter propagation delays between distant resources
(d) PCIe controller logic

6) (6 points) In the VGA lab, your implementation drew four pixels on the screen (a 2x2 block) for
every image pixel. Define the row address and column address logic as a function of vCount and
hCount for drawing a 16x16 block for each image pixel. Assume the image should be displayed
at the top-left portion of the screen and that hCount and vCount are in the proper range.

rowAddr =

columnAddr =

7) (6 points) You are designing a new monitor interface that is similar to VGA, where an h_sync
signal is held low for specific amount of time. If the maximum allowable error for this signal is 80
ns, what is the slowest possible clock frequency you can use for this interface? List any
assumptions.

8) (18 points) Fill in the code to implement the following Moore finite state machine (FSM), using
the 2-process FSM model. Assume that input tired always takes priority over hungry when
there is an option between two state transitions. Assume that STUDY is the initial state. Use
the next page if extra room is needed.

library ieee;

use ieee.std_logic_1164.all;

entity fsm is

 port (

 clk, rst : in std_logic;

 hungry, tired : in std_logic;

 studying, sleeping, eating : out std_logic);

end fsm;

architecture PROC2 of fsm is

 type STATE_TYPE is (

);

 signal state, next_state : STATE_TYPE;

begin

 process(clk, rst)

 begin

 end process;

 process()

 begin

STUDY

studying = ‘1’

sleeping = ‘0’

eating = ‘0’

EAT

studying = ‘0’

sleeping = ‘0’

eating = ‘1’

SLEEP

studying = ‘0’

sleeping = ‘1’

eating = ‘0’

hungry = ‘0’

and tired = ‘0’

hungry = ‘1’

tired = ‘1’

tired = ‘0’

hungry = ‘1’ tired = ‘1’
hungry = ‘0’

tired = ‘1’

 end process;

end PROC2;

9) a. (17 points) Create an FSMD that implements the following pseudo-code. Do not write VHDL

and instead leave the FSMD in graphical form (i.e., state machine with corresponding
operations in each state). Make sure to specify all operations and state transitions. Note that
output, go, input, and done are I/O. Assume that input and inReg both use the following array
type in vhdl: type input_array is array (0 to N-1) of unsigned(31 downto 0)

const int N = 8; // In VHDL: generic(N : positive)

Inputs: go (std_logic), input (input_array)

Outputs: output (std_logic), done (std_logic)

int i, max;

int inReg[N]; // In VHDL: signal inReg : input_array;

// reset values for outputs

done = 0; output = 0;

while (1) {

while (go == 0);

done = 0;

// Store N inputs from “input” into N registers “inReg”

// NOTE: this can be done in one cycle, so your FSMD doesn’t need a loop here.

for (i=0; i < N; i++)

inReg[i] = input[i];

 // calculate max value across all N inputs

 max = 0;

 for (i=0; i < N; i++) {

 if (max < inReg[i]) then

 max = inReg[i];

}

output = max;

done = 1;

while (go == 1);

}

b. (17 points) Draw an FSM capable of controlling the illustrated datapath to perform the pseudo-code
in part a, by assigning or reading from the underlined control signals. Assume that go is an input to the
controller and that left mux inputs have a select value of 1. Note that this datapath assumes that N=4.
Do not write any VHDL code, just show the FSM and control signals. Be sure to mention default signal
values to save space.

inReg(0)

4x1 Mux (32 bits)

input(0) input(1) input(2) input(3)

max_lt_input

inReg(1) inReg(2) inReg(3)

max

i

+

<

<

2x1

0

4

2x1

0

1

i_lt_4

i_sel

max_sel

max_en

inRegEn(3 downto 0)

*one enable for each register,

e.g. inRegEn(0) enables

inReg(0)

i_en

done

2x1

01

done_sel

done_en

outputoutput_en

Problem 9 Reference

const int N = 8; // In VHDL: generic(N : positive)

Inputs: go (std_logic), input (input_array)

Outputs: output (std_logic), done (std_logic)

int i, max;

int inReg[N]; // In VHDL: signal inReg : input_array;

// reset values for outputs

done = 0; output = 0;

while (1) {

while (go == 0);

done = 0;

// Store N inputs from “input” into N registers “inReg”

// NOTE: this can be done in one cycle, so your FSMD doesn’t need a loop here.

for (i=0; i < N; i++)

inReg[i] = input[i];

 // calculate max value across all N inputs

 max = 0;

 for (i=0; i < N; i++) {

 if (max < inReg[i]) then

 max = inReg[i];

}

output = max;

done = 1;

while (go == 1);

}

inReg(0)

4x1 Mux (32 bits)

input(0) input(1) input(2) input(3)

max_lt_input

inReg(1) inReg(2) inReg(3)

max

i

+

<

<

2x1

0

4

2x1

0

1

i_lt_4

i_sel

max_sel

max_en

inRegEn(3 downto 0)

*one enable for each register,

e.g. inRegEn(0) enables

inReg(0)

i_en

done

2x1

01

done_sel

done_en

outputoutput_en

