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Introduction
SoCs are becoming more com-
plex these days. A lot of func-
tionality is being added to chips 
and data is frequently transferred 
from one clock domain to anoth-
er. Hence, clock domain crossing 
verification has become one of 
the major verification challenges 
in deep submicron designs. 

A clock domain crossing 
occurs whenever data is trans-
ferred from a flop driven by one 
clock to a flop driven by another 
clock. 

In Figure 1, signal A is 
launched by the C1 clock do-
main and needs to be captured 
properly by the C2 clock domain. 
Depending on the relationship 
between the two clocks, there 
could be different types of prob-
lems in transferring data from 
the source clock to the destina-
tion clock. Along with that, the 
solutions to those problems can 
also be different. 

Traditional methods like 
simulation and static timing 
analysis alone are not sufficient 
to verify that the data is trans-
ferred consistently and reliably 
across clock domains. Hence, 
new verification methodologies 
are required, but before devising 
a new methodology it is impor-
tant to understand the issues re-
lated to clock domain crossings 
properly. Different types of clock 
domain crossings are discussed 
here along with the possible is-
sues encountered in each one of 
them and their solutions. A new 
verification methodology is then 
proposed which will ensure 
that data is transferred correctly 
across clock domains. 

In all the subsequent sec-

tions, the signal names shown 
in Figure 1 are directly used. For 
example, C1 and C2 imply the 
source and destination clocks re-
spectively. Similarly A and B are 
used as source and destination 
flop outputs respectively. Also, 
the source and destination flops 
are assumed to be positive edge 
triggered. 

Clock Domain Crossing Issues 
This section describes three main 
issues, which can possibly occur 
whenever there is a clock do-
main crossing. The solutions for 
those issues are also described. 

A. Metastability
Problem. If the transition on sig-
nal A happens very close to the 
active edge of clock C2, it could 
lead to setup or hold violation at 
the destination flop “FB”. As a re-
sult, the output signal B may os-
cillate for an indefinite amount of 
time. Thus the output is unstable 
and may or may not settle down 
to some stable value before the 
next clock edge of C2 arrives. This 
phenomenon is known as meta-
stability and the flop “FB” is said to 
have entered a metastable state. 

Metastability in turn can have 
the following consequences 
from a design perspective: 

1. If the unstable data is fed to 
several other places in the 
design, it may lead to a high 
current flow and even chip 
burnout in the worst case. 

2. Different fan-out cones may 
read different values of the 
signal, and may cause the 
design to enter into an un-
known functional state, lead-
ing to functional issues in the 
design. 

3. The destination domain out-
put may settle down to the 
new value or may return to 
the old value. However, the 
propagation delay could be 
high leading to timing is-
sues. 

For example, see Figure 2. 
If the input signal A transitions 
very close to the posedge of 
clock C2, the output of the des-
tination flop can be metastable. 
As a result it can be unstable and 
may finally settle to 1 or 0 as de-
picted by signals B1 and B2. 

Solution. Metastability prob-
lems can be avoided by adding 
special structures known as 
synchronizers in the destination 
domain. The synchronizers allow 
sufficient time for the oscilla-
tions to settle down and ensure 
that a stable output is obtained 

in the destination domain. A 
commonly used synchronizer 
is a multi-flop synchronizer as 
shown in Figure 3. 

This structure is mainly used 
for single and multi-bit control 
signals and single bit data sig-
nals in the design. Other types 
of synchronization schemes are 
required for multi-bit data sig-
nals such as MUX recirculation, 
handshake, and FIFO. 

B. Data Loss
Problem. Whenever a new source 
data is generated, the destination 

Understanding clock domain 
crossing issues 
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domain may not capture it in the 
very first cycle of the destination 
clock because of metastability. 
As long as each transition on the 
source signal is captured in the 
destination domain, data is not 
lost. In order to ensure this, the 
source data should remain stable 
for some minimum time, so that 
the setup and hold time require-
ments are met with respect to at 
least one active edge of destina-
tion clock. 

If the active clock edges of 
C1 and C2 arrive close together, 
the first clock edge of C2, which 
comes after the transition on 
source data A, is not able to 
capture it. The second edge of 
clock C2 finally captures the data 
(Figure 4). 

However, if there is sufficient 
time between the transition on 
data A and the active edge of 
clock C2, the data is captured in 
the destination domain in the 
first cycle of C2. 

Hence, there may not be a 
cycle by cycle correspondence 
between the source and desti-
nation domain data. Whatever 
the case, it is important that 
each transition on the source 
data should get captured in the 
destination domain. 

For example: Assume that 
the source clock C1 is twice as 
fast as the destination clock C2 
and there is no phase differ-
ence between the two clocks. 
Further assume that the input 
data sequence “A” generated on 
the positive edge of clock C1 is 
“00110011”. The data B captured 
on the positive edge of clock C2 
will be “0101”. Here, since all the 
transitions on signal A are cap-
tured by B, the data is not lost. 
This is depicted in Figure 5. 

However, if the input se-
quence is “00101111”, then 
the output in the destination 
domain will be “0011”. Here the 
third data value in the input 
sequence which is “1” is lost as 
shown in Figure 6. 

Solution. In order to prevent 
data loss, the data should be held 
constant in the source domain 
long enough to be properly cap-
tured in the destination domain. 
In other words, after every transi-

tion on source data, at least one 
destination clock edge should 
arrive where there is no setup or 
hold violation so that the source 
data is captured properly in the 
destination domain. There are 
several techniques to ensure 
this. 

For example, a finite state 
machine (FSM) can be used to 
generate source data at a rate, 
such that it is stable for at least 
1 complete cycle of the destina-
tion clock. This can be generally 
useful for synchronous clocks 
when their frequencies are 
known. For asynchronous clock 
domain crossings, techniques 
like handshake and FIFO are 
more suitable. 

C. Data Incoherency
Problem. As seen in the previous 
section whenever new data is 
generated in the source clock do-
main, it may take 1 or more des-
tination clock cycles to capture 
it, depending on the arrival time 
of active clock edges. Consider a 
case where multiple signals are 
being transferred from one clock 
domain to another and each 
signal is synchronized separately 
using a multi-flop synchronizer. 
If all the signals are changing 
simultaneously and the source 
and destination clock edges ar-
rive close together, some of the 
signals may get captured in the 
destination domain in the first 
clock cycle while some others 
may be captured in the second 
clock cycle by virtue of metasta-
bility. This may result in an invalid 
combination of values on the sig-
nals at the destination side. Data 
coherency is said to have been 
lost in such a case. 

If these signals are together 
controlling some function of the 
design, then this invalid state 
may lead to functional errors. 

For example: Assume that 
“00” and “11” are two valid values 
for a signal X[0:1] generated by 
clock C1. As shown in Figure 7, 
initially there is a transition from 
1->0 on both the bits of X. Clock 
C2 captures both the transitions 
in the first cycle itself. Hence the 
signal Y[0:1] becomes “00”. 

Next, there is a transition from 

0->1 on both the bits of signal X. 
Here the rising edge of clock C2 
comes close to the transition on 
signal X. While the transition on 
X[0] is captured in the first clock 
cycle, the transition on X[1] gets 
captured in second clock cycle 
of C2. This results in an inter-
mediate value of “10” on Y[0:1] 
which is an invalid state. Data 
coherency is lost in this case. 

Solution. In the above exam-
ple, the problem results because 
all the bits are not changing to 
a new state in the same cycle of 
destination clock. If all the bits 
either retain their original value 
or change to the new value in 
the same cycle, then the design 
either remains in the original 
state or goes to a correct new 
state. 

Now, if the circuit is designed 
in such a way that while chang-
ing the design from one state 

to another, only one bit change 
is required, then either that bit 
would change to a new value or 
would retain the original value. 
Since all the other bits have the 
same value in both the states, the 
complete bus will either change 
to the new value or retain the 
original value in this case. 

This in turn implies that if the 
bus is Gray-encoded, the prob-
lem would get resolved and an 
invalid state would never be 
obtained. 

However, this is applicable 
only for control busses as it 
may not be possible to Gray-
encode the data busses. In 
such cases, other techniques 
like handshake, FIFO and MUX 
recirculation can be used to 
generate a common control 
logic to transfer data correctly. 
The MUX recirculation technique 
is shown in Figure 8. 

6. Data is lost in this case.

5. No data is lost in this case.

4. Effect of metastability on data capture.
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Here, a control signal EN, 
generated in the source domain 
is synchronized in the destina-
tion domain using a multi-flop 
synchronizer. The synchronized 
control signal EN_Sync drives the 
select pin of the muxes, thereby 
controlling the data transfer for 
all bits of the bus A. In this way, 
individual bits of the bus are not 
synchronized separately, and 
hence there is no data incoher-

ency. However, it is important 
to ensure that when the control 
signal is active, the source do-
main data A[0:1] should be held 
constant. 

Synchronous Clock  
Domain Crossings
This section describes various 
types of synchronous clock do-
main crossings. Clocks, which 
have a known phase and fre-

quency relationship between 
them, are known as synchronous 
clocks. These are essentially the 
clocks originating from the same 
clock-root. A clock crossing be-
tween such clocks is known as a 
synchronous clock domain cross-
ing. It can be divided into several 
categories based on the phase 
and frequency relationship of the 
source and destination clocks as 
follows: 

• Clocks with the same  
frequency and zero phase 
difference 

• Clocks with the same  
frequency and constant 
phase difference 

• Clocks with different  
frequency and variable phase 
difference 

• Integer multiple clocks 
• Rational multiple clocks 

All the above sub categories 
may not be used in real designs 
but are being considered here 
for completeness and better un-
derstanding of the subject. 

While describing all the 
above cases, it is assumed that 
the source clock (C1) and the 
destination clock (C2) have the 
same phase and frequency jitter 
and are balanced with the same 
specifications of clock latency 
and skew. It is also assumed 
that the clocks begin with a zero 
phase difference between them 
and the “clock to Q” delay of the 
flops is 0. 

Clocks with the same frequen-
cy and zero phase difference 
This refers to two identical clocks, 
as the clocks C1 and C2 have the 
same frequency and 0 phase dif-
ference. Note, that as the clocks 
C1 and C2 are identical and gen-
erated from the same root clock, 
the data transfer from C1 to C2 
is essentially not a clock domain 
crossing. For all practical pur-
poses, this is the case of a single 
clock design and is considered 
here for completeness. 

Whenever data is transferred 
from clock C1 to C2, one com-
plete clock cycle of C1 (or C2) 
is available for data capture as 
shown in Figure 9. 

As long as the combinational 

logic delay between the source 
and destination flops is such 
that the setup and hold time of 
the circuit can be met, the data 
will be transferred correctly. The 
only requirement here is that 
the design should be STA (static 
timing analysis) clean. In that 
case, there will be no problem 
of metastability, data loss or data 
incoherency. 

Clocks with the same frequen-
cy and constant phase difference 
These are the clocks having the 
same time period but a constant 
phase difference. A typical ex-
ample is the use of a clock and 
its inverted clock. Another ex-
ample is a clock which is phase 
shifted from its parent clock, for 
example by T/4 where T is the 
time period of the clocks. 

Clocks C1 and C2 have the 
same frequency but are phase 
shifted and C1 is leading C2 by 
3T/4 time units (Figure 10). 

Whenever data is transferred 
from clock C1 to C2, there is 
more restriction on the com-
binational logic delay due to 
smaller setup/hold margins. If 
the logic delay at the crossing 
is such that the setup and hold 
time requirements can be met, 
data will be transferred properly 
and there will be no metastabil-
ity. In all such cases, there is no 
need for a synchronizer. The 
only requirement here is that the 
design should be STA clean. 

Clocks with different frequen-
cy and variable phase difference 
These are clocks that have a dif-
ferent frequency and a variable 
phase difference. There can be 
two sub-categories here, one 
where the time period of one 
clock is an integer multiple of 
the other and a second where 
the time period of one clock is 
a non-integer (rational) multiple 
of the other. In both cases, the 
phase difference between the 
active edges of clocks is variable. 
These two cases are described in 
detail below. 

A. Integer multiple clocks
In this case, the frequency of one 
clock is an integer multiple of the 
other and the phase difference 
between their active edges is vari-

Figure 9. Clocks with the same frequency and phase.

8. MUX recirculation technique.

7. Data coherency is lost in this case.
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able. Here the minimum possible 
phase difference between the 
active edges of 2 clocks would al-
ways be equal to the time period 
of the fast clock. 

In Figure 11 clock C1 is 3 times 
faster than clock C2. Assuming T 
is the time period of clock C1, 
the time available for data cap-
ture by clock C2 could be T, 2T 
or 3T depending on which edge 
of clock C1 the data is launched. 
Hence, the worst case delay of 
any path should meet the setup 
time with respect to the edge 
with a phase difference of T. The 
worst case hold check would be 
made with respect to the edge 
with 0 phase difference. 

In all such cases, one com-
plete cycle of the faster clock is 
always available for data capture, 
hence it should always be pos 8. 
Clocks with the same frequency 
and phase. 8. Clocks with 
the same frequency and phase. 
sible to meet the setup and hold 
requirements. As a result there 
will be no metastability or data 
incoherency and a synchronizer 
is not needed. 

However, there can still be 
a problem of data loss in the 
case of fast to slow clock cross-
ing. (That is, the source clock 
is faster than the destination 
clock.) In order to prevent this, 
the source data should be held 
constant for at least one cycle 
of the destination clock. Using 
some control circuit can ensure 
this, for example, a simple finite 
state machine (FSM) would 
work in this case. In the example 
shown in Figure 11, if the source 
data is generated once in every 
3 cycles of the source clock, 
there would be no data loss.  
For the case of slow to fast cross-
ings, there will anyways be no 
data loss. 

B. Rational multiple clocks
In this case, the frequency of one 
clock is a rational or non-integer 
multiple of the other clock and 
the phase difference between 
the active clock edges is variable. 

Unlike the situation where 
one clock is an integer multiple 
of the other, here the minimum 
phase difference between 

the two clocks can be very 
small- small enough to cause 
metastability. Whether or not a 
metastability problem will oc-
cur depends on the value of the 
rational multiple, and the design 
technology. Three different 
cases are being considered here 
with the help of examples. 

In the first case, there is a suf-
ficient phase difference between 
the active edges of the source 
and destination clocks such that 
there will be no metastability. 

In the second case, the active 
clock edges of the two clocks 
can come very close together, 
close enough to cause metasta-
bility problem. However, in this 
case the frequency multiple is 
such that, once the clock edges 
come close together, there 
would be sufficient margin in 
the next cycle to capture data 
properly without any setup or 
hold violation. 

In the third case, the clock 
edges of the two clocks can be 
close enough for many consecu-
tive cycles. This is similar to the 
behaviour of asynchronous 
clocks except that here the 
clock-root for both the clocks is 
the same and hence the phase 
difference between the clocks 
can be calculated. 

Note that in all the examples 
given below, some delay values 
are used and it is assumed that 
a phase margin of less than or 
equal to 1.5ns between the clock 
edges can cause metastability. 
This is just a placeholder value 
and in real designs, it would be a 
function of many things includ-
ing technology used, flop char-
acteristics, etc. 

Example 1
This is the case when the active 
clock edges of both the clocks will 
never come very close together, 
and in all cases there would be 
a sufficient margin to meet the 
setup and hold requirements of 
the circuit. 

Consider a clock C from which 
2 clocks C1 and C2 are derived 
with a frequency of divide-by-3 
and divide-by-2 respectively 
with respect to clock C. Here 
clock C1 is 1.5 times slower than 

clock C2. As shown in Figure 
12, the time period of clock C1 
is 15ns and of C2 is 10ns. The 
least possible phase difference 
between the two clock edges is 
2.5ns, which should be sufficient 
to meet setup and hold time 
requirements. 

However, additional com-
binational logic should not be 
added at the crossing due to the 
very small setup/hold margins. 
If there is any logic, its delay 
should meet the setup and hold 
time requirements. If this condi-
tion can be met, there will be no 
metastability and no synchro-
nizer would be required. 

Further, if the crossing is a 
slow to fast crossing, there will 
be no data loss. However, in case 
of a fast to slow clock crossing, 
there can be data loss. In order 
to prevent this, the source data 
needs to be held constant for at 
least one cycle of the destination 
clock so that at least one active 

edge of the destination clock ar-
rives between two consecutive 
transitions on the source data. 

Example 2
In this case, the active clock edges 
of both the clocks can come very 
close together intermittently. 
In other words, the clock edges 
come close together once and 
then there would be sufficient 
margin between the edges for 
the next few cycles (to capture 
data properly) before they come 
close again. Here the word “close” 
implies close enough to cause 
metastability. 

In Figure 13, clocks C1 and 
C2 have time periods 10ns and 
7ns respectively. Notice, that 
the minimum phase difference 
between the two clocks is 0.5ns, 
which is very small. So, there are 
chances of metastability and a 
synchronizer would be required. 

Due to metastability, the data 
may not be captured in the des-

Figure  11. Integer multiple clocks.

Figure  9. Same frequency, phase shifted clocks.

Figure  11. Clock edges never come very close together.
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tination domain when the clock 
edges are very close together. 
However, in this case, note that 
once the clock edges come very 
close together, in the next cycle 
there is a sufficient margin so 
that the destination clock can 
capture the data properly. This 
is shown by signal B2 in Figure 
13. While the expected output 
would be B1, the actual wave-
form could look like B2, but still 
there is no data loss in this case. 
However there can be an issue 
of data incoherency as described 
previously. 

For a fast to slow crossing, 
data loss can occur, and in or-
der to prevent this, the source 
data should be held constant 
for a minimum of one destina-
tion clock cycle. Again, this can 
be done by the use of a simple 
FSM. 

Example 3
This is the case when the phase 
difference between the clocks 
can be very small at times and 
can remain like that for several 
cycles. This is very similar to asyn-
chronous clocks except that the 
variable phase differences will be 
known and will repeat periodi-
cally. 

In Figure 14, clocks C1 and C2 
have time periods 10ns and 9ns 
respectively. It can be seen that 
the active clock edges of both 
the clocks come very close to-
gether for 4 consecutive cycles. 
In the first two cycles there is a 
possibility of a setup violation 
(as the source clock is leading 
the destination clock) and in the 
next two cycles there is a pos-
sibility of hold violation (as the 
destination clock is leading the 
source clock). 

In this case, there will be an 
issue of metastability and hence 
synchronization needs to be 
done. Apart from metastability 
there can be an issue of data loss 
also, even though it is a slow to 
fast clock domain crossing. As 
can be seen from Figure 14, B1 
is the expected output if there 
would have been no metastabil-
ity. However, the actual output 
can be B2. Here the data value ‘1’ 
is lost, because in the first cycle 

the value ‘1’ is not captured due 
to setup violation and in the 
second cycle the new value ‘0’ is 
incorrectly captured due to hold 
violation. 

In order to prevent data 
loss, the data needs to be held 
constant for a minimum of two 
cycles of the destination clock. 
This is applicable for both fast to 
slow as well as slow to fast clock 
domain crossings. It can be done 
by controlling the source data 
generation using a simple FSM. 
However, the data incoherency 
issue can still be there. 

In such cases, standard tech-
niques like handshake and FIFO 
are more useful to control data 
transfer as they will also take care 
of the data incoherency issue. 

Asynchronous Clock  
Domain Crossings
Clocks that do not have a known 
phase or frequency relationship 
between them are known as 
asynchronous clocks. Whenever 
there is a clock crossing between 
two asynchronous clocks, their 
active edges can arrive very close 
together leading to metastability. 
Here the phase difference be-
tween the clocks can be variable 
and unlike synchronous clocks it 
is unpredictable. 

Proper synchronization needs 
to be done in the destination 
domain to prevent metastabil-
ity. Apart from that, there can 
be problems of data loss and 
data incoherency (in both fast to 
slow as well as slow to fast clock 
crossings). If the source and des-
tination clock frequencies are 
known, holding the source data 
constant for two cycles of the 
destination clock can prevent 
data loss. However, if the circuit 
is to be designed to be indepen-
dent of clock frequencies, hand-
shake or FIFO techniques should 
be used to prevent metastability, 
data loss and data incoherency. 

Verification Methodology
This section describes a meth-
odology that will ensure that the 
circuit has been designed prop-
erly to handle the clock domain 
crossing issues. 

The validation activity can 

be divided into two categories, 
namely structural and function-
al. Structural validation ensures 
that appropriate synchroniza-
tion logic has been added wher-
ever it is required and functional 
validation ensures that the logic 
that has been added is actually 
performing the intended func-
tion. 

A number of CDC problems 
can be detected just by per-
forming structural validation. 
These checks are simpler and 
much faster than the functional 
validation. Moreover, if there 
are structural issues, most of the 
functional validation would have 
no relevance anyway. Hence, 
verification should begin with 
the structural checks and the 
problems detected there should 
be corrected before moving on 
to functional validation. 

Rule-based checking is 
a very efficient way to per-
form structural validation.  
Assertion-based verification 

techniques can be used to 
perform functional validation. 
Assertions can be inferred au-
tomatically in the design using 
some EDA tools, or they can be 
inserted in the RTL using any of 
the standard assertion languag-
es like OVL, PSL and SVA. Many 
EDA vendors support these lan-
guages. 

These assertions can either 
be simulated in the functional 
simulation environment or can 
be verified using formal verifi-
cation techniques. Both these 
techniques have their own ad-
vantages and disadvantages. 

The simulation results are 
dependent on the quality of test 
vectors used. A problem may go 
undetected if the vectors ap-
plied cannot stimulate it, and it 
is very difficult to determine the 
right set of test vectors that will 
give good coverage. 

As compared to simulation, 
formal techniques give a much 
better coverage and there is 

Figure  12. Clock edges come close together intermittently.

Figure  14. Clock edges are close for consecutive cycles.
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no need to provide any test 
vectors. However, formal tech-
niques have some performance 
issues because of state space 
explosion, which is a well known 
problem in formal analysis (see 
reference 4). So, these checks are 
not suitable for full chip analysis 
but they work reasonably well at 
the block level. 

A step-by-step approach for 
verifying clock domain crossings 
is described here. 

Step 1
Check for the presence 
of valid synchronizers in: 
All asynchronous clock 
domain crossings, and, 
those cases of synchronous clock 
domain crossings where there 
can be metastability as described 
in the section on rational multiple 
clocks. 

A multi-flop synchronizer is 
sufficient to ensure that there will 
be no metastability. However, 
there can still be a problem of 
data incoherency. So, it is advis-
able to check at this stage only, 
that multi-flop synchronizers are 
used only for scalar signals. They 
can also be used for control bus-
ses. They should not be used for 
data busses however. 

A rule-based checker can be 
used to automatically detect all 
clock domain crossings and to 
check for the presence of valid 
synchronizers at all places where 
they are required. 

If there are missing synchro-
nizers, the designer should mod-
ify the design to add appropriate 
synchronization logic. 

Step 2
Check for the presence of sepa-
rately synchronized signals that 
are converging. These are prob-
able candidates for data incoher-
ency. Doing structural analysis 
of the design can identify these 
candidates. 

The candidate signals for data 
incoherence should be verified to 
be Gray-encoded. This validation 
can be done through assertions. 
A structural checking tool could 
even generate the assertion 
itself whenever it sees signals, 
which are candidates for data 

incoherency. Figure 15 shows a 
control bus clock domain cross-
ing, which is synchronized using 
a multi-flop synchronizer but is 
not Gray-encoded. A waveform 
trace is generated for the asser-
tion failure. 

In case the converging sig-
nals cannot be Gray-encoded, 
change the synchronization 
scheme to one which uses a 
common control signal, for ex-
ample, MUX recirculation, FIFO 
or handshake. These schemes 
still need to be validated for 
proper functionality as described 
in Step 4. 

Step 3
Once the proper synchroniza-
tion logic is in place and the 
Gray-encoding checks have been 
done, the next step is to verify 
that there is no data loss while 
transferring data from one clock 
domain to the other. This needs 
to be checked for the following 
two cases: 

• Synchronous clock domain 
crossings 

• All fast to slow crossings 
• Slow to fast crossings where 

the clock edges can be close 
together for continuous 
cycles 

• All asynchronous clock do-
main crossings 

Asserting that each source 
data launch is always captured 
in the destination domain can 
validate these. 

In the case of fast to slow syn-
chronous clock domain cross-
ings, where a synchronizer is not 
required and for the simple cases 
of multi-flop synchronization, 
check that after every transition 
on the source data an active 
edge of the destination clock ar-
rives where there is no setup or 
hold violation. 

For other synchronization 
schemes, some standard func-
tional checks can be done to 
ensure that there is no data loss, 
which are described in Step 4. 

Step 4
In all cases, where some special 
synchronization schemes are 
used, it is necessary to verify that 
they are performing the intended 
function correctly. This is impor-
tant to ensure that there will be 
no metastability, data incoher-
ency or data loss problem. 

The required checks are given 
here for three commonly used 
schemes: 

• Handshake synchronization: 
Check that the request-data 
and request-acknowledge 
protocols are working as per 
the specifications. 

• FIFO synchronization: Check 

that there is no FIFO overflow 
or underflow. 

• Mux recirculation: With refer-
ence to Figure 8, check that 
while the synchronized con-
trol signal EN_Sync is active, 
the following two conditions 
hold: 

o Source data A[0:1] is stable, 
and, 

o at least one active edge of 
destination clock arrives 

The methodology described 
in the above four steps is also 
depicted in Figure 16. 

Summary
Traditional verification methods 
like simulation and static tim-
ing analysis are not sufficient 
to detect all types of problems, 
which can occur in clock domain 
crossings. The problems that can 
occur depend on the types of 
clock domain crossings. Similarly, 
the solutions to those problems 
are also different and hence the 
verification techniques required 
are different as well. Some of the 
basic problems of clock domain 
crossings have been discussed 
here. The solutions to those issues 
are also discussed and a verifica-
tion methodology is proposed 
which will ensure that data is 
correctly transferred across clock 
domains. 

Figure  15. Formal verification helps catch gray-encoding failure.
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16. The flow of the verification methodology. 
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