
�EE Times-India | December 2007 | eetindia.com

By Saurabh Verma
Engineering Manager
Atrenta
Ashima S. Dabare
Consulting Applications Engineer
Atrenta

Introduction
SoCs are becoming more com-
plex these days. A lot of func-
tionality is being added to chips
and data is frequently transferred
from one clock domain to anoth-
er. Hence, clock domain crossing
verification has become one of
the major verification challenges
in deep submicron designs.

A clock domain crossing
occurs whenever data is trans-
ferred from a flop driven by one
clock to a flop driven by another
clock.

In Figure 1, signal A is
launched by the C1 clock do-
main and needs to be captured
properly by the C2 clock domain.
Depending on the relationship
between the two clocks, there
could be different types of prob-
lems in transferring data from
the source clock to the destina-
tion clock. Along with that, the
solutions to those problems can
also be different.

Traditional methods like
simulation and static timing
analysis alone are not sufficient
to verify that the data is trans-
ferred consistently and reliably
across clock domains. Hence,
new verification methodologies
are required, but before devising
a new methodology it is impor-
tant to understand the issues re-
lated to clock domain crossings
properly. Different types of clock
domain crossings are discussed
here along with the possible is-
sues encountered in each one of
them and their solutions. A new
verification methodology is then
proposed which will ensure
that data is transferred correctly
across clock domains.

In all the subsequent sec-

tions, the signal names shown
in Figure 1 are directly used. For
example, C1 and C2 imply the
source and destination clocks re-
spectively. Similarly A and B are
used as source and destination
flop outputs respectively. Also,
the source and destination flops
are assumed to be positive edge
triggered.

Clock Domain Crossing Issues
This section describes three main
issues, which can possibly occur
whenever there is a clock do-
main crossing. The solutions for
those issues are also described.

A. Metastability
Problem. If the transition on sig-
nal A happens very close to the
active edge of clock C2, it could
lead to setup or hold violation at
the destination flop “FB”. As a re-
sult, the output signal B may os-
cillate for an indefinite amount of
time. Thus the output is unstable
and may or may not settle down
to some stable value before the
next clock edge of C2 arrives. This
phenomenon is known as meta-
stability and the flop “FB” is said to
have entered a metastable state.

Metastability in turn can have
the following consequences
from a design perspective:

1. If the unstable data is fed to
several other places in the
design, it may lead to a high
current flow and even chip
burnout in the worst case.

2. Different fan-out cones may
read different values of the
signal, and may cause the
design to enter into an un-
known functional state, lead-
ing to functional issues in the
design.

3. The destination domain out-
put may settle down to the
new value or may return to
the old value. However, the
propagation delay could be
high leading to timing is-
sues.

For example, see Figure 2.
If the input signal A transitions
very close to the posedge of
clock C2, the output of the des-
tination flop can be metastable.
As a result it can be unstable and
may finally settle to 1 or 0 as de-
picted by signals B1 and B2.

Solution. Metastability prob-
lems can be avoided by adding
special structures known as
synchronizers in the destination
domain. The synchronizers allow
sufficient time for the oscilla-
tions to settle down and ensure
that a stable output is obtained

in the destination domain. A
commonly used synchronizer
is a multi-flop synchronizer as
shown in Figure 3.

This structure is mainly used
for single and multi-bit control
signals and single bit data sig-
nals in the design. Other types
of synchronization schemes are
required for multi-bit data sig-
nals such as MUX recirculation,
handshake, and FIFO.

B. Data Loss
Problem. Whenever a new source
data is generated, the destination

Understanding clock domain
crossing issues

CloCks

1. Clock domain crossing

2. Metastability has consequences.

3. Multi-flop synchronization.

http://www.eetindia.co.in

� eetindia.com | December 2007 | EE Times-India

domain may not capture it in the
very first cycle of the destination
clock because of metastability.
As long as each transition on the
source signal is captured in the
destination domain, data is not
lost. In order to ensure this, the
source data should remain stable
for some minimum time, so that
the setup and hold time require-
ments are met with respect to at
least one active edge of destina-
tion clock.

If the active clock edges of
C1 and C2 arrive close together,
the first clock edge of C2, which
comes after the transition on
source data A, is not able to
capture it. The second edge of
clock C2 finally captures the data
(Figure 4).

However, if there is sufficient
time between the transition on
data A and the active edge of
clock C2, the data is captured in
the destination domain in the
first cycle of C2.

Hence, there may not be a
cycle by cycle correspondence
between the source and desti-
nation domain data. Whatever
the case, it is important that
each transition on the source
data should get captured in the
destination domain.

For example: Assume that
the source clock C1 is twice as
fast as the destination clock C2
and there is no phase differ-
ence between the two clocks.
Further assume that the input
data sequence “A” generated on
the positive edge of clock C1 is
“00110011”. The data B captured
on the positive edge of clock C2
will be “0101”. Here, since all the
transitions on signal A are cap-
tured by B, the data is not lost.
This is depicted in Figure 5.

However, if the input se-
quence is “00101111”, then
the output in the destination
domain will be “0011”. Here the
third data value in the input
sequence which is “1” is lost as
shown in Figure 6.

Solution. In order to prevent
data loss, the data should be held
constant in the source domain
long enough to be properly cap-
tured in the destination domain.
In other words, after every transi-

tion on source data, at least one
destination clock edge should
arrive where there is no setup or
hold violation so that the source
data is captured properly in the
destination domain. There are
several techniques to ensure
this.

For example, a finite state
machine (FSM) can be used to
generate source data at a rate,
such that it is stable for at least
1 complete cycle of the destina-
tion clock. This can be generally
useful for synchronous clocks
when their frequencies are
known. For asynchronous clock
domain crossings, techniques
like handshake and FIFO are
more suitable.

C. Data Incoherency
Problem. As seen in the previous
section whenever new data is
generated in the source clock do-
main, it may take 1 or more des-
tination clock cycles to capture
it, depending on the arrival time
of active clock edges. Consider a
case where multiple signals are
being transferred from one clock
domain to another and each
signal is synchronized separately
using a multi-flop synchronizer.
If all the signals are changing
simultaneously and the source
and destination clock edges ar-
rive close together, some of the
signals may get captured in the
destination domain in the first
clock cycle while some others
may be captured in the second
clock cycle by virtue of metasta-
bility. This may result in an invalid
combination of values on the sig-
nals at the destination side. Data
coherency is said to have been
lost in such a case.

If these signals are together
controlling some function of the
design, then this invalid state
may lead to functional errors.

For example: Assume that
“00” and “11” are two valid values
for a signal X[0:1] generated by
clock C1. As shown in Figure 7,
initially there is a transition from
1->0 on both the bits of X. Clock
C2 captures both the transitions
in the first cycle itself. Hence the
signal Y[0:1] becomes “00”.

Next, there is a transition from

0->1 on both the bits of signal X.
Here the rising edge of clock C2
comes close to the transition on
signal X. While the transition on
X[0] is captured in the first clock
cycle, the transition on X[1] gets
captured in second clock cycle
of C2. This results in an inter-
mediate value of “10” on Y[0:1]
which is an invalid state. Data
coherency is lost in this case.

Solution. In the above exam-
ple, the problem results because
all the bits are not changing to
a new state in the same cycle of
destination clock. If all the bits
either retain their original value
or change to the new value in
the same cycle, then the design
either remains in the original
state or goes to a correct new
state.

Now, if the circuit is designed
in such a way that while chang-
ing the design from one state

to another, only one bit change
is required, then either that bit
would change to a new value or
would retain the original value.
Since all the other bits have the
same value in both the states, the
complete bus will either change
to the new value or retain the
original value in this case.

This in turn implies that if the
bus is Gray-encoded, the prob-
lem would get resolved and an
invalid state would never be
obtained.

However, this is applicable
only for control busses as it
may not be possible to Gray-
encode the data busses. In
such cases, other techniques
like handshake, FIFO and MUX
recirculation can be used to
generate a common control
logic to transfer data correctly.
The MUX recirculation technique
is shown in Figure 8.

6. Data is lost in this case.

5. No data is lost in this case.

4. Effect of metastability on data capture.

http://www.eetindia.co.in

�EE Times-India | December 2007 | eetindia.com

Here, a control signal EN,
generated in the source domain
is synchronized in the destina-
tion domain using a multi-flop
synchronizer. The synchronized
control signal EN_Sync drives the
select pin of the muxes, thereby
controlling the data transfer for
all bits of the bus A. In this way,
individual bits of the bus are not
synchronized separately, and
hence there is no data incoher-

ency. However, it is important
to ensure that when the control
signal is active, the source do-
main data A[0:1] should be held
constant.

Synchronous Clock
Domain Crossings
This section describes various
types of synchronous clock do-
main crossings. Clocks, which
have a known phase and fre-

quency relationship between
them, are known as synchronous
clocks. These are essentially the
clocks originating from the same
clock-root. A clock crossing be-
tween such clocks is known as a
synchronous clock domain cross-
ing. It can be divided into several
categories based on the phase
and frequency relationship of the
source and destination clocks as
follows:

• Clocks with the same
frequency and zero phase
difference

• Clocks with the same
frequency and constant
phase difference

• Clocks with different
frequency and variable phase
difference

• Integer multiple clocks
• Rational multiple clocks

All the above sub categories
may not be used in real designs
but are being considered here
for completeness and better un-
derstanding of the subject.

While describing all the
above cases, it is assumed that
the source clock (C1) and the
destination clock (C2) have the
same phase and frequency jitter
and are balanced with the same
specifications of clock latency
and skew. It is also assumed
that the clocks begin with a zero
phase difference between them
and the “clock to Q” delay of the
flops is 0.

Clocks with the same frequen-
cy and zero phase difference
This refers to two identical clocks,
as the clocks C1 and C2 have the
same frequency and 0 phase dif-
ference. Note, that as the clocks
C1 and C2 are identical and gen-
erated from the same root clock,
the data transfer from C1 to C2
is essentially not a clock domain
crossing. For all practical pur-
poses, this is the case of a single
clock design and is considered
here for completeness.

Whenever data is transferred
from clock C1 to C2, one com-
plete clock cycle of C1 (or C2)
is available for data capture as
shown in Figure 9.

As long as the combinational

logic delay between the source
and destination flops is such
that the setup and hold time of
the circuit can be met, the data
will be transferred correctly. The
only requirement here is that
the design should be STA (static
timing analysis) clean. In that
case, there will be no problem
of metastability, data loss or data
incoherency.

Clocks with the same frequen-
cy and constant phase difference
These are the clocks having the
same time period but a constant
phase difference. A typical ex-
ample is the use of a clock and
its inverted clock. Another ex-
ample is a clock which is phase
shifted from its parent clock, for
example by T/4 where T is the
time period of the clocks.

Clocks C1 and C2 have the
same frequency but are phase
shifted and C1 is leading C2 by
3T/4 time units (Figure 10).

Whenever data is transferred
from clock C1 to C2, there is
more restriction on the com-
binational logic delay due to
smaller setup/hold margins. If
the logic delay at the crossing
is such that the setup and hold
time requirements can be met,
data will be transferred properly
and there will be no metastabil-
ity. In all such cases, there is no
need for a synchronizer. The
only requirement here is that the
design should be STA clean.

Clocks with different frequen-
cy and variable phase difference
These are clocks that have a dif-
ferent frequency and a variable
phase difference. There can be
two sub-categories here, one
where the time period of one
clock is an integer multiple of
the other and a second where
the time period of one clock is
a non-integer (rational) multiple
of the other. In both cases, the
phase difference between the
active edges of clocks is variable.
These two cases are described in
detail below.

A. Integer multiple clocks
In this case, the frequency of one
clock is an integer multiple of the
other and the phase difference
between their active edges is vari-

Figure 9. Clocks with the same frequency and phase.

8. MUX recirculation technique.

7. Data coherency is lost in this case.

http://www.eetindia.co.in

� eetindia.com | December 2007 | EE Times-India

able. Here the minimum possible
phase difference between the
active edges of 2 clocks would al-
ways be equal to the time period
of the fast clock.

In Figure 11 clock C1 is 3 times
faster than clock C2. Assuming T
is the time period of clock C1,
the time available for data cap-
ture by clock C2 could be T, 2T
or 3T depending on which edge
of clock C1 the data is launched.
Hence, the worst case delay of
any path should meet the setup
time with respect to the edge
with a phase difference of T. The
worst case hold check would be
made with respect to the edge
with 0 phase difference.

In all such cases, one com-
plete cycle of the faster clock is
always available for data capture,
hence it should always be pos 8.
Clocks with the same frequency
and phase. 8. Clocks with
the same frequency and phase.
sible to meet the setup and hold
requirements. As a result there
will be no metastability or data
incoherency and a synchronizer
is not needed.

However, there can still be
a problem of data loss in the
case of fast to slow clock cross-
ing. (That is, the source clock
is faster than the destination
clock.) In order to prevent this,
the source data should be held
constant for at least one cycle
of the destination clock. Using
some control circuit can ensure
this, for example, a simple finite
state machine (FSM) would
work in this case. In the example
shown in Figure 11, if the source
data is generated once in every
3 cycles of the source clock,
there would be no data loss.
For the case of slow to fast cross-
ings, there will anyways be no
data loss.

B. Rational multiple clocks
In this case, the frequency of one
clock is a rational or non-integer
multiple of the other clock and
the phase difference between
the active clock edges is variable.

Unlike the situation where
one clock is an integer multiple
of the other, here the minimum
phase difference between

the two clocks can be very
small- small enough to cause
metastability. Whether or not a
metastability problem will oc-
cur depends on the value of the
rational multiple, and the design
technology. Three different
cases are being considered here
with the help of examples.

In the first case, there is a suf-
ficient phase difference between
the active edges of the source
and destination clocks such that
there will be no metastability.

In the second case, the active
clock edges of the two clocks
can come very close together,
close enough to cause metasta-
bility problem. However, in this
case the frequency multiple is
such that, once the clock edges
come close together, there
would be sufficient margin in
the next cycle to capture data
properly without any setup or
hold violation.

In the third case, the clock
edges of the two clocks can be
close enough for many consecu-
tive cycles. This is similar to the
behaviour of asynchronous
clocks except that here the
clock-root for both the clocks is
the same and hence the phase
difference between the clocks
can be calculated.

Note that in all the examples
given below, some delay values
are used and it is assumed that
a phase margin of less than or
equal to 1.5ns between the clock
edges can cause metastability.
This is just a placeholder value
and in real designs, it would be a
function of many things includ-
ing technology used, flop char-
acteristics, etc.

Example 1
This is the case when the active
clock edges of both the clocks will
never come very close together,
and in all cases there would be
a sufficient margin to meet the
setup and hold requirements of
the circuit.

Consider a clock C from which
2 clocks C1 and C2 are derived
with a frequency of divide-by-3
and divide-by-2 respectively
with respect to clock C. Here
clock C1 is 1.5 times slower than

clock C2. As shown in Figure
12, the time period of clock C1
is 15ns and of C2 is 10ns. The
least possible phase difference
between the two clock edges is
2.5ns, which should be sufficient
to meet setup and hold time
requirements.

However, additional com-
binational logic should not be
added at the crossing due to the
very small setup/hold margins.
If there is any logic, its delay
should meet the setup and hold
time requirements. If this condi-
tion can be met, there will be no
metastability and no synchro-
nizer would be required.

Further, if the crossing is a
slow to fast crossing, there will
be no data loss. However, in case
of a fast to slow clock crossing,
there can be data loss. In order
to prevent this, the source data
needs to be held constant for at
least one cycle of the destination
clock so that at least one active

edge of the destination clock ar-
rives between two consecutive
transitions on the source data.

Example 2
In this case, the active clock edges
of both the clocks can come very
close together intermittently.
In other words, the clock edges
come close together once and
then there would be sufficient
margin between the edges for
the next few cycles (to capture
data properly) before they come
close again. Here the word “close”
implies close enough to cause
metastability.

In Figure 13, clocks C1 and
C2 have time periods 10ns and
7ns respectively. Notice, that
the minimum phase difference
between the two clocks is 0.5ns,
which is very small. So, there are
chances of metastability and a
synchronizer would be required.

Due to metastability, the data
may not be captured in the des-

Figure 11. Integer multiple clocks.

Figure 9. Same frequency, phase shifted clocks.

Figure 11. Clock edges never come very close together.

http://www.eetindia.co.in

�EE Times-India | December 2007 | eetindia.com

tination domain when the clock
edges are very close together.
However, in this case, note that
once the clock edges come very
close together, in the next cycle
there is a sufficient margin so
that the destination clock can
capture the data properly. This
is shown by signal B2 in Figure
13. While the expected output
would be B1, the actual wave-
form could look like B2, but still
there is no data loss in this case.
However there can be an issue
of data incoherency as described
previously.

For a fast to slow crossing,
data loss can occur, and in or-
der to prevent this, the source
data should be held constant
for a minimum of one destina-
tion clock cycle. Again, this can
be done by the use of a simple
FSM.

Example 3
This is the case when the phase
difference between the clocks
can be very small at times and
can remain like that for several
cycles. This is very similar to asyn-
chronous clocks except that the
variable phase differences will be
known and will repeat periodi-
cally.

In Figure 14, clocks C1 and C2
have time periods 10ns and 9ns
respectively. It can be seen that
the active clock edges of both
the clocks come very close to-
gether for 4 consecutive cycles.
In the first two cycles there is a
possibility of a setup violation
(as the source clock is leading
the destination clock) and in the
next two cycles there is a pos-
sibility of hold violation (as the
destination clock is leading the
source clock).

In this case, there will be an
issue of metastability and hence
synchronization needs to be
done. Apart from metastability
there can be an issue of data loss
also, even though it is a slow to
fast clock domain crossing. As
can be seen from Figure 14, B1
is the expected output if there
would have been no metastabil-
ity. However, the actual output
can be B2. Here the data value ‘1’
is lost, because in the first cycle

the value ‘1’ is not captured due
to setup violation and in the
second cycle the new value ‘0’ is
incorrectly captured due to hold
violation.

In order to prevent data
loss, the data needs to be held
constant for a minimum of two
cycles of the destination clock.
This is applicable for both fast to
slow as well as slow to fast clock
domain crossings. It can be done
by controlling the source data
generation using a simple FSM.
However, the data incoherency
issue can still be there.

In such cases, standard tech-
niques like handshake and FIFO
are more useful to control data
transfer as they will also take care
of the data incoherency issue.

Asynchronous Clock
Domain Crossings
Clocks that do not have a known
phase or frequency relationship
between them are known as
asynchronous clocks. Whenever
there is a clock crossing between
two asynchronous clocks, their
active edges can arrive very close
together leading to metastability.
Here the phase difference be-
tween the clocks can be variable
and unlike synchronous clocks it
is unpredictable.

Proper synchronization needs
to be done in the destination
domain to prevent metastabil-
ity. Apart from that, there can
be problems of data loss and
data incoherency (in both fast to
slow as well as slow to fast clock
crossings). If the source and des-
tination clock frequencies are
known, holding the source data
constant for two cycles of the
destination clock can prevent
data loss. However, if the circuit
is to be designed to be indepen-
dent of clock frequencies, hand-
shake or FIFO techniques should
be used to prevent metastability,
data loss and data incoherency.

Verification Methodology
This section describes a meth-
odology that will ensure that the
circuit has been designed prop-
erly to handle the clock domain
crossing issues.

The validation activity can

be divided into two categories,
namely structural and function-
al. Structural validation ensures
that appropriate synchroniza-
tion logic has been added wher-
ever it is required and functional
validation ensures that the logic
that has been added is actually
performing the intended func-
tion.

A number of CDC problems
can be detected just by per-
forming structural validation.
These checks are simpler and
much faster than the functional
validation. Moreover, if there
are structural issues, most of the
functional validation would have
no relevance anyway. Hence,
verification should begin with
the structural checks and the
problems detected there should
be corrected before moving on
to functional validation.

Rule-based checking is
a very efficient way to per-
form structural validation.
Assertion-based verification

techniques can be used to
perform functional validation.
Assertions can be inferred au-
tomatically in the design using
some EDA tools, or they can be
inserted in the RTL using any of
the standard assertion languag-
es like OVL, PSL and SVA. Many
EDA vendors support these lan-
guages.

These assertions can either
be simulated in the functional
simulation environment or can
be verified using formal verifi-
cation techniques. Both these
techniques have their own ad-
vantages and disadvantages.

The simulation results are
dependent on the quality of test
vectors used. A problem may go
undetected if the vectors ap-
plied cannot stimulate it, and it
is very difficult to determine the
right set of test vectors that will
give good coverage.

As compared to simulation,
formal techniques give a much
better coverage and there is

Figure 12. Clock edges come close together intermittently.

Figure 14. Clock edges are close for consecutive cycles.

http://www.eetindia.co.in

� eetindia.com | December 2007 | EE Times-India

no need to provide any test
vectors. However, formal tech-
niques have some performance
issues because of state space
explosion, which is a well known
problem in formal analysis (see
reference 4). So, these checks are
not suitable for full chip analysis
but they work reasonably well at
the block level.

A step-by-step approach for
verifying clock domain crossings
is described here.

Step 1
Check for the presence
of valid synchronizers in:
All asynchronous clock
domain crossings, and,
those cases of synchronous clock
domain crossings where there
can be metastability as described
in the section on rational multiple
clocks.

A multi-flop synchronizer is
sufficient to ensure that there will
be no metastability. However,
there can still be a problem of
data incoherency. So, it is advis-
able to check at this stage only,
that multi-flop synchronizers are
used only for scalar signals. They
can also be used for control bus-
ses. They should not be used for
data busses however.

A rule-based checker can be
used to automatically detect all
clock domain crossings and to
check for the presence of valid
synchronizers at all places where
they are required.

If there are missing synchro-
nizers, the designer should mod-
ify the design to add appropriate
synchronization logic.

Step 2
Check for the presence of sepa-
rately synchronized signals that
are converging. These are prob-
able candidates for data incoher-
ency. Doing structural analysis
of the design can identify these
candidates.

The candidate signals for data
incoherence should be verified to
be Gray-encoded. This validation
can be done through assertions.
A structural checking tool could
even generate the assertion
itself whenever it sees signals,
which are candidates for data

incoherency. Figure 15 shows a
control bus clock domain cross-
ing, which is synchronized using
a multi-flop synchronizer but is
not Gray-encoded. A waveform
trace is generated for the asser-
tion failure.

In case the converging sig-
nals cannot be Gray-encoded,
change the synchronization
scheme to one which uses a
common control signal, for ex-
ample, MUX recirculation, FIFO
or handshake. These schemes
still need to be validated for
proper functionality as described
in Step 4.

Step 3
Once the proper synchroniza-
tion logic is in place and the
Gray-encoding checks have been
done, the next step is to verify
that there is no data loss while
transferring data from one clock
domain to the other. This needs
to be checked for the following
two cases:

• Synchronous clock domain
crossings

• All fast to slow crossings
• Slow to fast crossings where

the clock edges can be close
together for continuous
cycles

• All asynchronous clock do-
main crossings

Asserting that each source
data launch is always captured
in the destination domain can
validate these.

In the case of fast to slow syn-
chronous clock domain cross-
ings, where a synchronizer is not
required and for the simple cases
of multi-flop synchronization,
check that after every transition
on the source data an active
edge of the destination clock ar-
rives where there is no setup or
hold violation.

For other synchronization
schemes, some standard func-
tional checks can be done to
ensure that there is no data loss,
which are described in Step 4.

Step 4
In all cases, where some special
synchronization schemes are
used, it is necessary to verify that
they are performing the intended
function correctly. This is impor-
tant to ensure that there will be
no metastability, data incoher-
ency or data loss problem.

The required checks are given
here for three commonly used
schemes:

• Handshake synchronization:
Check that the request-data
and request-acknowledge
protocols are working as per
the specifications.

• FIFO synchronization: Check

that there is no FIFO overflow
or underflow.

• Mux recirculation: With refer-
ence to Figure 8, check that
while the synchronized con-
trol signal EN_Sync is active,
the following two conditions
hold:

o Source data A[0:1] is stable,
and,

o at least one active edge of
destination clock arrives

The methodology described
in the above four steps is also
depicted in Figure 16.

Summary
Traditional verification methods
like simulation and static tim-
ing analysis are not sufficient
to detect all types of problems,
which can occur in clock domain
crossings. The problems that can
occur depend on the types of
clock domain crossings. Similarly,
the solutions to those problems
are also different and hence the
verification techniques required
are different as well. Some of the
basic problems of clock domain
crossings have been discussed
here. The solutions to those issues
are also discussed and a verifica-
tion methodology is proposed
which will ensure that data is
correctly transferred across clock
domains.

Figure 15. Formal verification helps catch gray-encoding failure.

http://www.eetindia.co.in

�EE Times-India | December 2007 | eetindia.com

References
[1] Sanjay Churiwala, “Tackling

multiple clocks in SoCs”, EE
Times March 15, 2004.

[2] Shaker Sarwary, “Solving the
toughest problems in CDC
analysis”, EE Times August 28,
2006.

[3] http://www.asic-world.com/
tidbits/metastablity.htm

[4]K. McMillan, Symbolic Model
Checking, Kluwer Academic
Publishers, Boston, 1993.

16. The flow of the verification methodology.

http://www.eetindia.co.in

