
© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

6. Recommended HDL Coding Styles

This chapter provides Hardware Description Language (HDL) coding style
recommendations to ensure optimal synthesis results when targeting Altera® devices.

Introduction
HDL coding styles can have a significant effect on the quality of results that you
achieve for programmable logic designs. Synthesis tools optimize HDL code for both
logic utilization and performance, however, synthesis tools have no information
about the purpose or intent of the design. The best optimizations require conscious
interaction by the you, the designer.

This chapter includes the following sections:

■ “Quartus II Language Templates” on page 6–2

■ “Using Altera Megafunctions” on page 6–2

■ “Instantiating Altera Megafunctions in HDL Code” on page 6–3

■ “Inferring Multiplier and DSP Functions from HDL Code” on page 6–6

■ “Inferring Memory Functions from HDL Code” on page 6–12

■ “Coding Guidelines for Registers and Latches” on page 6–36

■ “General Coding Guidelines” on page 6–46

■ “Designing with Low-Level Primitives” on page 6–71

f For additional guidelines about structuring your design, refer to the Design
Recommendations for Altera Devices and the Quartus II Design Assistant chapter in
volume 1 of the Quartus II Handbook. For additional handcrafted techniques you can
use to optimize design blocks for the adaptive logic modules (ALMs) in many Altera
devices, including a collection of circuit building blocks and related discussions, refer
to the Advanced Synthesis Cookbook: A Design Guide for Stratix II, Stratix III, and
Stratix IV Devices.

The Altera website also provides design examples for other types of functions and to
target specific applications. Refer to the Design Examples page and the Reference
Designs page.

For style recommendations, options, or HDL attributes specific to your synthesis tool
(including Quartus® II integrated synthesis and other EDA tools), refer to the tool
vendor’s documentation or the appropriate chapter in the Synthesis section in
volume 1 of the Quartus II Handbook.

QII51007-9.1.0

http://www.altera.com/literature/hb/qts/qts_qii51006.pdf
http://www.altera.com/literature/hb/qts/qts_qii51006.pdf
http://www.altera.com/literature/manual/stx_cookbook.pdf
http://www.altera.com/literature/manual/stx_cookbook.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v1_03.pdf
http://www.altera.com/support/examples/exm-index.html
http://www.altera.com/support/refdesigns/ref-index.jsp

6–2 Chapter 6: Recommended HDL Coding Styles
Quartus II Language Templates

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Quartus II Language Templates
Many of the Verilog HDL and VHDL examples in this document correspond with
examples in the templates. You can easily insert examples from this document into
your HDL source code using the Insert Template dialog box in the Quartus II
software user interface, shown in Figure 6–1.

To open the Insert Template dialog box when you have a file open in the Text Editor
of the Quartus II software, on the Edit menu, click Insert Template. Alternatively, you
can right-click in the Text Editor window and click Insert Template.

Using Altera Megafunctions
Altera provides parameterizable megafunctions that are optimized for Altera device
architectures. Using megafunctions instead of coding your own logic saves valuable
design time. Additionally, the Altera-provided megafunctions may offer more
efficient logic synthesis and device implementation. You can scale the megafunction’s
size and specify various options by setting parameters. Megafunctions include the
library of parameterized modules (LPM) and Altera device-specific megafunctions.

To use megafunctions in your HDL code, you can instantiate them as described in
“Instantiating Altera Megafunctions in HDL Code” on page 6–3.

Figure 6–1. Insert Template Dialog Box

Chapter 6: Recommended HDL Coding Styles 6–3
Instantiating Altera Megafunctions in HDL Code

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Sometimes it is preferable to make your code independent of device family or vendor.
In this case, you might not want to instantiate megafunctions directly. For some types
of logic functions, such as memories and DSP functions, you can infer a megafunction
instead of instantiating it. Synthesis tools, including Quartus II integrated synthesis,
recognize certain types of HDL code and automatically infer the appropriate
megafunction. The synthesis tool uses the Altera megafunction code when compiling
your design—even when you do not specifically instantiate the megafunction.
Synthesis tools infer megafunctions to take advantage of logic that is optimized for
Altera devices or to target dedicated architectural blocks.

In cases where you prefer to use generic HDL code instead of instantiating a
megafunction, follow the guidelines and coding examples in “Inferring Multiplier
and DSP Functions from HDL Code” on page 6–6 and “Inferring Memory Functions
from HDL Code” on page 6–12 to ensure your HDL code infers the appropriate Altera
megafunction.

1 You must use megafunctions to access some Altera device-specific architecture
features. You can infer or instantiate megafunctions to target some features such as
memory and DSP blocks. You must instantiate megafunctions to target certain device
and high-speed features such as LVDS drivers, phase-locked loops (PLLs),
transceivers, and double-data rate input/output (DDIO) circuitry.

For some designs, generic HDL code can provide better results than instantiating a
megafunction. The following guidelines and examples describe when to use standard
HDL code instead of LPM megafunctions:

■ For simple addition or subtraction functions, use the + or – symbol instead of an
LPM function. Instantiating an LPM function for simple arithmetic operations can
result in a less efficient result because the function is hard coded and the synthesis
algorithms cannot take advantage of basic logic optimizations.

■ For simple multiplexers and decoders, use array notation (such as out =
data[sel]) instead of an LPM function. Array notation works very well and has
simple syntax. Use the lpm_mux function to take advantage of architectural
features only if you want to force a specific implementation.

■ Avoid division operations where possible. Division is an inherently slow
operation. Many designers use multiplication creatively to produce division
results.

Instantiating Altera Megafunctions in HDL Code
The following sections describe how to use megafunctions by instantiating them in
your HDL code with the following methods:

■ “Instantiating Megafunctions Using the MegaWizard Plug-In Manager”—You can
use the MegaWizard™ Plug-In Manager to parameterize the function and create a
wrapper file.

■ “Creating a Netlist File for Other Synthesis Tools”—You can optionally create a
netlist file instead of a wrapper file.

■ “Instantiating Megafunctions Using the Port and Parameter Definition”—You can
instantiate the function directly in your HDL code.

6–4 Chapter 6: Recommended HDL Coding Styles
Instantiating Altera Megafunctions in HDL Code

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Instantiating Megafunctions Using the MegaWizard Plug-In Manager
Use the MegaWizard Plug-In Manager as described in this section to create
megafunctions in the Quartus II software that you can instantiate in your HDL code.
The MegaWizard Plug-In Manager provides a GUI to customize and parameterize
megafunctions, and ensures that you set all megafunction parameters properly. When
you finish setting parameters, you can specify which files you want generated.
Depending on which language you choose, the MegaWizard Plug-In Manager
instantiates the megafunction with the correct parameters and generates a
megafunction variation file (wrapper file) in Verilog HDL (.v), VHDL (.vhd), or
AHDL (.tdf), along with other supporting files.

The MegaWizard Plug-In Manager provides options to create the following files:

■ A sample instantiation template for the language of the variation file, either
_inst.v, or _inst.vhd, or _inst.tdf.

■ Component Declaration File (.cmp) that can be used in VHDL Design Files.

■ ADHL Include File (.inc) that can be used in Text Design Files (.tdf).

■ Quartus II Block Symbol File (.bsf) for schematic designs.

■ Verilog HDL module declaration file that can be used when instantiating the
megafunction as a black box in a third-party synthesis tool (_bb.v).

■ If you enable the option to generate a synthesis timing and resource estimation
netlist, the MegaWizard Plug-In Manager generates an additional synthesis netlist
file (_syn.v). Refer to “Creating a Netlist File for Other Synthesis Tools” on
page 6–5 for details.

Table 6–1 lists and describes the files generated by the MegaWizard Plug-In Manager.

Table 6–1. MegaWizard Plug-In Manager Generated Files (Part 1 of 2)

File Description

<output file>.v (1) Verilog HDL Variation Wrapper File—Megafunction wrapper file for instantiation in a
Verilog HDL design.

<output file>.vhd (1) VHDL Variation Wrapper File—Megafunction wrapper file for instantiation in a VHDL design.

<output file>.tdf (1) AHDL Variation Wrapper File—Megafunction wrapper file for instantiation in an AHDL design.

<output file>.inc ADHL Include File—Used in AHDL designs.

<output file>.cmp Component Declaration File—Used in VHDL designs.

<output file>.bsf Block Symbol File—Used in Quartus II Block Design Files (.bdf).

<output file>_inst.v Verilog HDL Instantiation Template—Sample Verilog HDL instantiation of the module in the
megafunction wrapper file.

<output file>_inst.vhd VHDL Instantiation Template—Sample VHDL instantiation of the entity in the megafunction
wrapper file.

<output file>_inst.tdf Text Design File Instantiation Template—Sample AHDL instantiation of the subdesign in the
megafunction wrapper file.

<output file>_bb.v Black box Verilog HDL Module Declaration—Hollow-body module declaration that can be
used in Verilog HDL designs to specify port directions when creating black boxes in
third-party synthesis tools.

Chapter 6: Recommended HDL Coding Styles 6–5
Instantiating Altera Megafunctions in HDL Code

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Creating a Netlist File for Other Synthesis Tools
When you use certain megafunctions with third-party EDA synthesis tools (that is,
tools other than Quartus II integrated synthesis), you can optionally create a netlist for
timing and resource estimation instead of a wrapper file.

The netlist file is a representation of the customized logic used in the Quartus II
software. The file provides the connectivity of architectural elements in the
megafunction but may not represent true functionality. This information enables
certain third-party synthesis tools to better report timing and resource estimates. In
addition, synthesis tools can use the timing information to focus timing-driven
optimizations and improve the quality of results.

To generate the netlist, turn on Generate netlist under Timing and resource
estimation on the EDA page of the MegaWizard Plug-In Manager. The netlist file is
called <output file>_syn.v. If you use this netlist for synthesis, you must include the
megafunction wrapper file, either <output file>.v or <output file>.vhd, for placement
and routing in the project created with the Quartus II software.

Because your synthesis tool may call the Quartus II software in the background to
generate this netlist, turning on this option might not be required.

f For information about support for timing and resource estimation netlists in your
synthesis tool, refer to the tool vendor’s documentation or the appropriate chapter in
the Synthesis section in volume 1 of the Quartus II Handbook.

Instantiating Megafunctions Using the Port and Parameter Definition
You can instantiate the megafunction directly in your Verilog HDL, VHDL, or AHDL
code by calling the megafunction and setting its parameters as you would any other
module, component, or subdesign.

f Refer to the specific megafunction in the Quartus II Help for a list of the megafunction
ports and parameters. The Quartus II Help also provides a sample VHDL component
declaration and AHDL function prototype for each megafunction.

1 Altera strongly recommends that you use the MegaWizard Plug-In Manager for
complex megafunctions such as PLLs, transceivers, and LVDS drivers. For details
about using the MegaWizard Plug-In Manager, refer to “Instantiating Megafunctions
Using the MegaWizard Plug-In Manager” on page 6–4.

<output file>_syn.v (2) Synthesis timing and resource estimation netlist—Megafunction netlist may be used by
third-party synthesis tools to improve timing and resource estimations.

Notes to Table 6–1:

(1) The MegaWizard Plug-In Manager generates either the .v, .vhd, or .tdf file, depending on the language you select for the output file on the
megafunction-selection page of the wizard.

(2) The MegaWizard Plug-In Manager generates this file only if you turn on the Generate netlist option under Timing and resource estimation on
the EDA page of the wizard.

Table 6–1. MegaWizard Plug-In Manager Generated Files (Part 2 of 2)

File Description

http://www.altera.com/literature/hb/qts/qts_qii5v1_03.pdf

6–6 Chapter 6: Recommended HDL Coding Styles
Inferring Multiplier and DSP Functions from HDL Code

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Inferring Multiplier and DSP Functions from HDL Code
The following sections describe how to infer multiplier and DSP functions from
generic HDL code, and, if applicable, how to target the dedicated DSP block
architecture in Altera devices:

■ “Multipliers—Inferring the LPM_MULT Megafunction from HDL Code”

■ “Multiply-Accumulators and Multiply-Adders—Inferring ALTMULT_ACCUM
and ALTMULT_ADD Megafunctions from HDL Code” on page 6–8

f For synthesis tool features and options, refer to your synthesis tool documentation or
the appropriate chapter in the Synthesis section in volume 1 of the Quartus II Handbook.

f For more design examples involving advanced multiply functions and complex DSP
functions, refer to the DSP Design Examples page on the Altera website.

Multipliers—Inferring the LPM_MULT Megafunction from HDL Code
To infer multiplier functions, synthesis tools look for multipliers and convert them to
LPM_MULT or ALTMULT_ADD megafunctions, or may map them directly to device
atoms. For devices with DSP blocks, the software can implement the function in a DSP
block instead of logic, depending on device utilization. The Quartus II Fitter can also
place input and output registers in DSP blocks (that is, perform register packing) to
improve performance and area utilization.

f For additional information about the DSP block and the supported functions, refer to
the appropriate Altera device family handbook and the Altera DSP Solutions Center
website.

Example 6–1 and Example 6–2 show Verilog HDL code examples, and Example 6–3
and Example 6–4 show VHDL code examples, for unsigned and signed multipliers
that synthesis tools can infer as an LPM_MULT or ALTMULT_ADD megafunction.
Each example fits into one DSP block element. In addition, when register packing
occurs, no extra logic cells for registers are required.

1 The signed declaration in Verilog HDL is a feature of the Verilog 2001 Standard.

Example 6–1. Verilog HDL Unsigned Multiplier

module unsigned_mult (out, a, b);
output [15:0] out;
input [7:0] a;
input [7:0] b;
assign out = a * b;

endmodule

http://www.altera.com/technology/dsp/dsp-index.jsp
http://www.altera.com/literature/hb/qts/qts_qii5v1_03.pdf
http://www.altera.com/support/examples/dsp/exm-dsp.html

Chapter 6: Recommended HDL Coding Styles 6–7
Inferring Multiplier and DSP Functions from HDL Code

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Example 6–2. Verilog HDL Signed Multiplier with Input and Output Registers (Pipelining = 2)

module signed_mult (out, clk, a, b);
output [15:0] out;
input clk;
input signed [7:0] a;
input signed [7:0] b;

reg signed [7:0] a_reg;
reg signed [7:0] b_reg;
reg signed [15:0] out;
wire signed [15:0] mult_out;

assign mult_out = a_reg * b_reg;

always @ (posedge clk)
begin

a_reg <= a;
b_reg <= b;
out <= mult_out;

end
endmodule

Example 6–3. VHDL Unsigned Multiplier with Input and Output Registers (Pipelining = 2)

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.numeric_std.all;

ENTITY unsigned_mult IS
PORT (

a: IN UNSIGNED (7 DOWNTO 0);
b: IN UNSIGNED (7 DOWNTO 0);
clk: IN STD_LOGIC;
aclr: IN STD_LOGIC;
result: OUT UNSIGNED (15 DOWNTO 0)

);
END unsigned_mult;

ARCHITECTURE rtl OF unsigned_mult IS
SIGNAL a_reg, b_reg: UNSIGNED (7 DOWNTO 0);

BEGIN
PROCESS (clk, aclr)
BEGIN

IF (aclr ='1') THEN
a_reg <= (OTHERS => '0');
b_reg <= (OTHERS => '0');
result <= (OTHERS => '0');

ELSIF (clk'event AND clk = '1') THEN
a_reg <= a;
b_reg <= b;
result <= a_reg * b_reg;

END IF;
END PROCESS;

END rtl;

6–8 Chapter 6: Recommended HDL Coding Styles
Inferring Multiplier and DSP Functions from HDL Code

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Multiply-Accumulators and Multiply-Adders—Inferring ALTMULT_ACCUM and
ALTMULT_ADD Megafunctions from HDL Code

Synthesis tools detect multiply-accumulators or multiply-adders and convert them to
ALTMULT_ACCUM or ALTMULT_ADD megafunctions, respectively, or may map
them directly to device atoms. The Quartus II software then places these functions in
DSP blocks during placement and routing.

1 Synthesis tools infer multiply-accumulator and multiply-adder functions only if the
Altera device family has dedicated DSP blocks that support these functions.

A simple multiply-accumulator consists of a multiplier feeding an addition operator.
The addition operator feeds a set of registers that then feeds the second input to the
addition operator. A simple multiply-adder consists of two to four multipliers feeding
one or two levels of addition, subtraction, or addition/subtraction operators.
Addition is always the second-level operator, if it is used. In addition to the
multiply-accumulator and multiply-adder, the Quartus II Fitter also places input and
output registers into the DSP blocks to pack registers and improve performance and
area utilization.

Some device families offer additional advanced multiply-add and accumulate
functions, such as complex multiplication, input shift register, or larger
multiplications.

f For details about advanced DSP block features, refer to the appropriate device
handbook. For more design examples involving DSP functions and inferring
advanced features in the multiply-add and multiply-accumulate circuitry, refer to the
DSP Design Examples page on Altera’s website.

The Verilog HDL and VHDL code samples shown in Example 6–5 through
Example 6–8 infer multiply-accumulators and multiply-adders with input, output,
and pipeline registers as well as an optional asynchronous clear signal. Using the
three sets of registers provides the best performance through the function, with a
latency of 3. You can remove the registers in your design to reduce the latency.

Example 6–4. VHDL Signed Multiplier

LIBRARY ieee;

USE ieee.std_logic_1164.all;
USE ieee.numeric_std.all;

ENTITY signed_mult IS
PORT (

a: IN SIGNED (7 DOWNTO 0);
b: IN SIGNED (7 DOWNTO 0);
result: OUT SIGNED (15 DOWNTO 0)

);
END signed_mult;

ARCHITECTURE rtl OF signed_mult IS
BEGIN

result <= a * b;
END rtl;

http://www.altera.com/support/examples/dsp/exm-dsp.html
http://www.altera.com/support/examples/dsp/exm-dsp.html
http://www.altera.com/support/examples/dsp/exm-dsp.html

Chapter 6: Recommended HDL Coding Styles 6–9
Inferring Multiplier and DSP Functions from HDL Code

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Example 6–5. Verilog HDL Unsigned Multiply-Accumulator

module unsig_altmult_accum (dataout, dataa, datab, clk, aclr, clken);
input [7:0] dataa, datab;
input clk, aclr, clken;
output reg[16:0] dataout;

reg [7:0] dataa_reg, datab_reg;
reg [15:0] multa_reg;
wire [15:0] multa;
wire [16:0] adder_out;
assign multa = dataa_reg * datab_reg;
assign adder_out = multa_reg + dataout;

always @ (posedge clk or posedge aclr)
begin

if (aclr)
begin

dataa_reg <= 8'b0;
datab_reg <= 8'b0;
multa_reg <= 16'b0;
dataout <= 17'b0;

end
else if (clken)
begin

dataa_reg <= dataa;
datab_reg <= datab;
multa_reg <= multa;
dataout <= adder_out;

end
end

endmodule

6–10 Chapter 6: Recommended HDL Coding Styles
Inferring Multiplier and DSP Functions from HDL Code

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Example 6–6. Verilog HDL Signed Multiply-Adder

module sig_altmult_add (dataa, datab, datac, datad, clock, aclr,
result);

input signed [15:0] dataa, datab, datac, datad;
input clock, aclr;
output reg signed [32:0] result;

reg signed [15:0] dataa_reg, datab_reg, datac_reg, datad_reg;
reg signed [31:0] mult0_result, mult1_result;

always @ (posedge clock or posedge aclr) begin
 if (aclr) begin
 dataa_reg <= 16'b0;
 datab_reg <= 16'b0;
 datac_reg <= 16'b0;
 datad_reg <= 16'b0;
 mult0_result <= 32'b0;
 mult1_result <= 32'b0;
 result <= 33'b0;
 end
 else begin
 dataa_reg <= dataa;
 datab_reg <= datab;
 datac_reg <= datac;
 datad_reg <= datad;
 mult0_result <= dataa_reg * datab_reg;
 mult1_result <= datac_reg * datad_reg;
 result <= mult0_result + mult1_result;
 end

end
endmodule

Chapter 6: Recommended HDL Coding Styles 6–11
Inferring Multiplier and DSP Functions from HDL Code

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Example 6–7. VHDL Signed Multiply-Accumulator

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.numeric_std.all;

ENTITY sig_altmult_accum IS
PORT (

a: IN SIGNED(7 DOWNTO 0);
b: IN SIGNED (7 DOWNTO 0);
clk: IN STD_LOGIC;
aclr: IN STD_LOGIC;
accum_out: OUT SIGNED (15 DOWNTO 0)

) ;
END sig_altmult_accum;

ARCHITECTURE rtl OF sig_altmult_accum IS
SIGNAL a_reg, b_reg: SIGNED (7 DOWNTO 0);
SIGNAL pdt_reg: SIGNED (15 DOWNTO 0);
SIGNAL adder_out: SIGNED (15 DOWNTO 0);

BEGIN
PROCESS (clk, aclr)
BEGIN

 IF (aclr = '1') then
 a_reg <= (others => '0');
 b_reg <= (others => '0');
 pdt_reg <= (others => '0');
 adder_out <= (others => '0');
 ELSIF (clk'event and clk = '1') THEN

a_reg <= (a);
b_reg <= (b);
pdt_reg <= a_reg * b_reg;
adder_out <= adder_out + pdt_reg;

END IF;
END process;
accum_out <= adder_out;

END rtl;

6–12 Chapter 6: Recommended HDL Coding Styles
Inferring Memory Functions from HDL Code

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Inferring Memory Functions from HDL Code
The following sections describe how to infer memory functions from generic HDL
code and, if applicable, to target the dedicated memory architecture in Altera devices:

■ “RAM Functions—Inferring ALTSYNCRAM and ALTDPRAM Megafunctions
from HDL Code” on page 6–13

■ “ROM Functions—Inferring ALTSYNCRAM and LPM_ROM Megafunctions from
HDL Code” on page 6–28

■ “Shift Registers—Inferring the ALTSHIFT_TAPS Megafunction from HDL Code”
on page 6–32

Example 6–8. VHDL Unsigned Multiply-Adder

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.numeric_std.all;

ENTITY unsignedmult_add IS
PORT (

a: IN UNSIGNED (7 DOWNTO 0);
b: IN UNSIGNED (7 DOWNTO 0);
c: IN UNSIGNED (7 DOWNTO 0);
d: IN UNSIGNED (7 DOWNTO 0);
clk: IN STD_LOGIC;
aclr: IN STD_LOGIC;
result: OUT UNSIGNED (15 DOWNTO 0)

);
END unsignedmult_add;

ARCHITECTURE rtl OF unsignedmult_add IS
SIGNAL a_reg, b_reg, c_reg, d_reg: UNSIGNED (7 DOWNTO 0);
SIGNAL pdt_reg, pdt2_reg: UNSIGNED (15 DOWNTO 0);
SIGNAL result_reg: UNSIGNED (15 DOWNTO 0);

BEGIN
PROCESS (clk, aclr)
BEGIN

IF (aclr = '1') THEN
a_reg <= (OTHERS => '0');
b_reg <= (OTHERS => '0');
c_reg <= (OTHERS => '0');
d_reg <= (OTHERS => '0');
pdt_reg <= (OTHERS => '0');
pdt2_reg <= (OTHERS => '0');

ELSIF (clk'event AND clk = '1') THEN
a_reg <= a;
b_reg <= b;
c_reg <= c;
d_reg <= d;
pdt_reg <= a_reg * b_reg;
pdt2_reg <= c_reg * d_reg;
result_reg <= pdt_reg + pdt2_reg;

END IF;
END PROCESS;

result <= result_reg;
END rtl;

Chapter 6: Recommended HDL Coding Styles 6–13
Inferring Memory Functions from HDL Code

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

f For synthesis tool features and options, refer to your synthesis tool documentation or
the appropriate chapter in the Synthesis section in volume 1 of the Quartus II Handbook.

Altera’s dedicated memory architecture offers a number of advanced features that can
be easily targeted using the MegaWizard Plug-In Manager, as described in
“Instantiating Altera Megafunctions in HDL Code” on page 6–3. The coding
recommendations in the following sections provide portable examples of generic
HDL code that infer the appropriate megafunction. However, if you want to use some
of the advanced memory features in Altera devices, consider using the megafunction
directly so that you can control the ports and parameters more easily.

RAM Functions—Inferring ALTSYNCRAM and ALTDPRAM Megafunctions from HDL Code
To infer RAM functions, synthesis tools detect sets of registers and logic that can be
replaced with the ALTSYNCRAM or ALTDPRAM megafunctions for device families
that have dedicated RAM blocks, or may map them directly to device memory atoms.
Tools typically consider all signals and variables that have a two-dimensional array
type and then create a RAM block, if applicable, based on the way the signals,
variables, or both are assigned, referenced, or both in the HDL source description.
This section provides examples demonstrating the coding styles that are inferred to
create a memory block.

Standard synthesis tools recognize single-port and simple dual-port (one read port
and one write port) RAM blocks. Some tools (such as the Quartus II software) also
recognize true dual-port RAM blocks that map to the memory blocks in certain Altera
devices.

1 If your design contains a RAM block that your synthesis tool does not recognize and
infer, the design might require a large amount of system memory that can potentially
cause compilation problems.

When you use a formal verification flow, Altera recommends that you create RAM
blocks in separate entities or modules that contain only the RAM logic. In certain
formal verification flows, for example, when using Quartus II integrated synthesis,
the entity or module containing the inferred RAM is put into a black box
automatically because formal verification tools do not support RAM blocks. The
Quartus II software issues a warning message when this situation occurs. If the entity
or module contains any additional logic outside the RAM block, this logic cannot be
verified because it also must be treated as a black box for formal verification.

The following subsections present several guidelines for inferring RAM functions that
match the dedicated memory architecture in Altera devices, and then provide
recommended HDL code for different types of memory logic.

Use Synchronous Memory Blocks
Altera recommends using synchronous memory blocks for Altera designs. Because
the TriMatrix memory blocks in the newest devices from Altera are synchronous,
RAM designs that are targeted towards architectures that contain these dedicated
memory blocks must be synchronous to be mapped directly into the device
architecture. For these devices, asynchronous memory logic is implemented in regular
logic cells.

http://www.altera.com/literature/hb/qts/qts_qii5v1_03.pdf

6–14 Chapter 6: Recommended HDL Coding Styles
Inferring Memory Functions from HDL Code

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Synchronous memory offers several advantages over asynchronous memory,
including higher frequencies and thus higher memory bandwidth, increased
reliability, and less standby power. In many designs with asynchronous memory, the
memory interfaces with synchronous logic so that the conversion to synchronous
memory design is straightforward. To convert asynchronous memory you can move
registers from the data path into the memory block.

Synchronous memories are supported in all Altera device families. A memory block is
considered synchronous if it uses one of the following read behaviors:

■ Memory read occurs in a Verilog always block with a clock signal or a VHDL
clocked process.

■ Memory read occurs outside a clocked block, but there is a synchronous read
address (that is, the address used in the read statement is registered). This type of
logic is not always inferred as a memory block, depending on the target device
architecture.

1 The synchronous memory structures in Altera devices can differ from the structures
in other vendors’ devices. For best results, match your design to the target device
architecture.

Later subsections provide coding recommendations for various memory types. All of
these examples are synchronous to ensure that they can be directly mapped into the
dedicated memory architecture available in Altera FPGAs.

f For additional information about the dedicated memory blocks in your specific
device, refer to the appropriate Altera device family data sheet on the Altera website
at www.altera.com.

Avoid Unsupported Reset and Control Conditions
To ensure that your HDL code can be implemented in the target device architecture,
avoid unsupported reset conditions or other control logic that does not exist in the
device architecture.

The RAM contents of Altera memory blocks cannot be cleared with a reset signal
during device operation. If your HDL code describes a RAM with a reset signal for the
RAM contents, the logic is implemented in regular logic cells instead of a memory
block. Altera recommends against putting RAM read or write operations in an
always block or process block with a reset signal. If you want to specify memory
contents, initialize the memory as described in “Specifying Initial Memory Contents
at Power-Up” on page 6–26 or write the data to the RAM during device operation.

Example 6–9 shows an example of undesirable code where there is a reset signal that
clears part of the RAM contents. Avoid this coding style because it is not supported in
Altera memories.

http://www.altera.com

Chapter 6: Recommended HDL Coding Styles 6–15
Inferring Memory Functions from HDL Code

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Example 6–10 shows an example of undesirable code where the reset signal affects the
RAM, although the effect may not be intended. Avoid this coding style because it is
not supported in Altera memories.

Example 6–9. Verilog RAM with Reset Signal that Clears RAM Contents: Not Supported in Device
Architecture

module clear_ram
(

input clock, reset, we,
input [7:0] data_in,
input [4:0] address,
output reg [7:0] data_out

);

reg [7:0] mem [0:31];
integer i;

always @ (posedge clock or posedge reset)
begin

if (reset == 1'b1)
mem[address] <= 0;

else if (we == 1'b1)
mem[address] <= data_in;

data_out <= mem[address];
end

endmodule

Example 6–10. Verilog RAM with Reset Signal that Affects RAM: Not Supported in Device
Architecture

module bad_reset
(

input clock,
input reset,
input we,
input [7:0] data_in,
input [4:0] address,
output reg [7:0] data_out,
input d,
output reg q

);

reg [7:0] mem [0:31];
integer i;

always @ (posedge clock or posedge reset)
begin

if (reset == 1'b1)
q <= 0;

else
begin

if (we == 1'b1)
mem[address] <= data_in;

data_out <= mem[address];
q <= d;

end
end

endmodule

6–16 Chapter 6: Recommended HDL Coding Styles
Inferring Memory Functions from HDL Code

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

In addition to reset signals, other control logic can prevent memory logic from being
inferred as a memory block. For example, you cannot use a clock enable on the read
address registers in Stratix® devices, because doing so affects the output latch of the
RAM, and therefore the synthesized result in the device RAM architecture would not
match the HDL description. You can use the address stall feature as a read address
clock enable in Stratix II, Cyclone® II, Arria® GX, and other newer devices to avoid this
limitation. Check the documentation for your device architecture to ensure that your
code matches the hardware available in the device.

Check Read-During-Write Behavior
It is important to check the read-during-write behavior of the memory block
described in your HDL design as compared to the behavior in your target device
architecture. Your HDL source code specifies the memory behavior when you read
and write from the same memory address in the same clock cycle. The code specifies
that the read returns either the old data at the address, or the new data being written
to the address. This behavior is referred to as the read-during-write behavior of the
memory block. Altera memory blocks have different read-during-write behavior
depending on the target device family, memory mode, and block type.

Synthesis tools map an HDL design into the target device architecture, with the goal
of maintaining the functionality described in your source code. Therefore, if your
source code specifies unsupported read-during-write behavior for the device RAM
blocks, the software must implement the logic outside the RAM hardware in regular
logic cells.

One common problem occurs when there is a continuous read in the HDL code, as
shown in the following examples. You should avoid using these coding styles:

//Verilog HDL concurrent signal assignment
assign q = ram[raddr_reg];

-- VHDL concurrent signal assignment
q <= ram(raddr_reg);

When a write operation occurs, this type of HDL implies that the read should
immediately reflect the new data at the address, independent of the read clock.
However, that is not the behavior of TriMatrix memory blocks. In the device
architecture, the new data is not available until the next edge of the read clock.
Therefore, if the synthesis tool mapped the logic directly to a TriMatrix memory block,
the device functionality and gate-level simulation results would not match the HDL
description or function simulation results. If the write clock and read clock are the
same, the synthesis tool can infer memory blocks and add extra bypass logic so that
the device behavior matches the HDL behavior. If the write and read clocks are
different, the synthesis tool cannot reliably add bypass logic, so the logic is
implemented in regular logic cells instead of dedicated RAM blocks. The examples in
the following sections discuss some of these differences for read-during-write
conditions.

In addition, the MLAB feature in Stratix III and Stratix IV logic array blocks (LABs)
does not easily support old data or new data behavior for a read-during-write in the
dedicated device architecture. Implementing the extra logic to support this behavior
significantly reduces timing performance through the memory.

1 For best performance in MLAB memories, your design should not depend on the read
data during a write operation.

Chapter 6: Recommended HDL Coding Styles 6–17
Inferring Memory Functions from HDL Code

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

In many synthesis tools, you can specify that the read-during-write behavior is not
important to your design; for example, if you never read from the same address to
which you write in the same clock cycle. For Quartus II integrated synthesis, add the
synthesis attribute ramstyle set to "no_rw_check" to allow the software to choose
the read-during-write behavior of a RAM, rather than use the behavior specified by
your HDL code. Using this type of attribute prevents the synthesis tool from using
extra logic to implement the memory block, and in some cases, can allow memory
inference when it would otherwise be impossible.

f For more information about attribute syntax, the no_rw_check attribute value, or
specific options for your synthesis tool, refer to your synthesis tool documentation or
the appropriate chapter in the Synthesis section in volume 1 of the Quartus II Handbook.

Subsequent subsections provide coding recommendations for various memory types.
Each example describes the read-during-write behavior and addresses the support for
the memory type in Altera devices.

Controlling Inference and Implementation in Device RAM Blocks
Tools usually do not infer small RAM blocks because small RAM blocks typically can
be implemented more efficiently using the registers in regular logic. If you are using
Quartus II integrated synthesis, you can direct the software to infer RAM blocks for
all sizes with the Allow Any RAM Size for Recognition option in the More Analysis
& Synthesis Settings dialog box.

Some synthesis tools provide options to control the implementation of inferred RAM
blocks for Altera devices with TriMatrix memory blocks. For example, Quartus II
integrated synthesis provides the ramstyle synthesis attribute to specify the type of
memory block or to specify the use of regular logic instead of a dedicated memory
block. Quartus II integrated synthesis does not map inferred memory into MLABs
unless the HDL code specifies the appropriate ramstyle attribute, although the
Fitter may map some memories to MLABs.

f For details about using the ramstyle attribute, refer to the Quartus II Integrated
Synthesis chapter in volume 1 of the Quartus II Handbook. For information about
synthesis attributes in other synthesis tools, refer to the appropriate chapter in the
Synthesis section in volume 1 of the Quartus II Handbook.

If you want to control the implementation after the RAM function is inferred during
synthesis, you can set the ram_block_type parameter of the ALTSYNCRAM
megafunction. In the Assignment Editor, select Parameters in the Categories list. You
can use the Node Finder or drag the appropriate instance from the Project Navigator
window to enter the RAM hierarchical instance name. Type ram_block_type as the
Parameter Name and type one of the following TriMatrix memory types in the Value
field: "M-RAM", "M4K", "M512K", "M9K", "M144K", or "MLAB".

Single-Clock Synchronous RAM with Old Data Read-During-Write Behavior
The code examples in this section show Verilog HDL and VHDL code that infers
simple dual-port, single-clock synchronous RAM. Single-port RAM blocks use a
similar coding style.

http://www.altera.com/literature/hb/qts/qts_qii5v1_03.pdf
http://www.altera.com/literature/hb/qts/qts_qii51008.pdf
http://www.altera.com/literature/hb/qts/qts_qii51008.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v1_03.pdf

6–18 Chapter 6: Recommended HDL Coding Styles
Inferring Memory Functions from HDL Code

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

The read-during-write behavior in these examples is to read the old data at the
memory address. Refer to “Check Read-During-Write Behavior” on page 6–16 for
details. Altera recommends that you use the Old Data Read-During-Write coding
style for most RAM blocks as long as your design does not require the RAM location’s
new value when you perform a simultaneous read and write to that RAM location.
For best performance in MLAB memories, use the appropriate attribute so that your
design does not depend on the read data during a write operation.

If you require that the read-during-write results in new data, refer to “Single-Clock
Synchronous RAM with New Data Read-During-Write Behavior” on page 6–19.

The simple dual-port RAM code samples shown in Example 6–11 and Example 6–12
map directly into Altera TriMatrix memory.

Single-port versions of memory blocks (that is, using the same read address and write
address signals) can allow better RAM utilization than dual-port memory blocks,
depending on the device family.

Example 6–11. Verilog HDL Single-Clock Simple Dual-Port Synchronous RAM with Old Data
Read-During-Write Behavior

module single_clk_ram(
output reg [7:0] q,
input [7:0] d,
input [6:0] write_address, read_address,
input we, clk

);
reg [7:0] mem [127:0];

always @ (posedge clk) begin
if (we)

mem[write_address] <= d;
q <= mem[read_address]; // q doesn't get d in this clock cycle

end
endmodule

Chapter 6: Recommended HDL Coding Styles 6–19
Inferring Memory Functions from HDL Code

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Single-Clock Synchronous RAM with New Data Read-During-Write Behavior
The examples in this section describe RAM blocks in which a simultaneous read and
write to the same location reads the new value that is currently being written to that
RAM location.

To implement this behavior in the target device, synthesis software adds bypass logic
around the RAM block. This bypass logic increases the area utilization of the design
and decreases the performance if the RAM block is part of the design’s critical path.
Refer to “Check Read-During-Write Behavior” on page 6–16 for details. If this
behavior is not required for your design, use the examples from “Single-Clock
Synchronous RAM with Old Data Read-During-Write Behavior” on page 6–17.

The simple dual-port RAM shown in Example 6–13 and Example 6–14 require the
software to create bypass logic around the RAM block.

Single-port versions of the Verilog memory block (that is, using the same read address
and write address signals) do not require any logic cells to create bypass logic in the
Arria GX, Stratix, and Cyclone series of devices, because the device memory supports
new data read-during-write behavior when in single-port mode (same clock, same
read address, and same write address).

Example 6–12. VHDL Single-Clock Simple Dual-Port Synchronous RAM with Old Data
Read-During-Write Behavior

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY single_clock_ram IS
PORT (

clock: IN STD_LOGIC;
data: IN STD_LOGIC_VECTOR (2 DOWNTO 0);
write_address: IN INTEGER RANGE 0 to 31;
read_address: IN INTEGER RANGE 0 to 31;
we: IN STD_LOGIC;
q: OUT STD_LOGIC_VECTOR (2 DOWNTO 0)

);
END single_clock_ram;

ARCHITECTURE rtl OF single_clock_ram IS
TYPE MEM IS ARRAY(0 TO 31) OF STD_LOGIC_VECTOR(2 DOWNTO 0);
SIGNAL ram_block: MEM;

BEGIN
PROCESS (clock)
BEGIN

IF (clock'event AND clock = '1') THEN
IF (we = '1') THEN

ram_block(write_address) <= data;
END IF;
q <= ram_block(read_address);
-- VHDL semantics imply that q doesn't get data
-- in this clock cycle

END IF;
END PROCESS;

END rtl;

6–20 Chapter 6: Recommended HDL Coding Styles
Inferring Memory Functions from HDL Code

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

1 Example 6–13 is similar to Example 6–11, but Example 6–13 uses a blocking
assignment for the write so that the data is assigned immediately.

An alternative way to create a single-clock RAM is to use an assign statement to read
the address of mem to create the output q, as shown in the following coding style. By
itself, the code describes new data read-during-write behavior. However, if the RAM
output feeds a register in another hierarchy, a read-during-write results in the old
data. Synthesis tools may not infer a RAM block if the tool cannot determine which
behavior is described, such as when the memory feeds a hard hierarchical partition
boundary. For this reason, avoid using this alternate type of coding style:

reg [7:0] mem [127:0];
reg [6:0] read_address_reg;

always @ (posedge clk) begin
if (we)

mem[write_address] <= d;

read_address_reg <= read_address;
end

assign q = mem[read_address_reg];

Example 6–13. Verilog HDL Single-Clock Simple Dual-Port Synchronous RAM with New Data
Read-During-Write Behavior

module single_clock_wr_ram(
output reg [7:0] q,
input [7:0] d,
input [6:0] write_address, read_address,
input we, clk

);
reg [7:0] mem [127:0];

always @ (posedge clk) begin
if (we)

mem[write_address] = d;
q = mem[read_address]; // q does get d in this clock cycle if

we is high
end

endmodule

Chapter 6: Recommended HDL Coding Styles 6–21
Inferring Memory Functions from HDL Code

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

The VHDL sample in Example 6–14 uses a concurrent signal assignment to read from
the RAM. By itself, this example describes new data read-during-write behavior.
However, if the RAM output feeds a register in another hierarchy, a read-during-write
results in the old data. Synthesis tools may not infer a RAM block if the tool cannot
determine which behavior is described, such as when the memory feeds a hard
hierarchical partition boundary.

For Quartus II integrated synthesis, if you do not require the read-through-write
capability, add the synthesis attribute ramstyle="no_rw_check" to allow the
software to choose the read-during-write behavior of a RAM, rather than use the
behavior specified by your HDL code.

Simple Dual-Port, Dual-Clock Synchronous RAM
In dual clock designs, synthesis tools cannot accurately infer the read-during-write
behavior because it depends on the timing of the two clocks within the target device.
Therefore, the read-during-write behavior of the synthesized design is undefined and
may differ from your original HDL code. Refer to “Check Read-During-Write
Behavior” on page 6–16 for details.

When Quartus II integrated synthesis infers this type of RAM, it issues a warning
because of the undefined read-during-write behavior. If this functionality is
acceptable in your design, you can avoid the warning by adding the synthesis
attribute ramstyle="no_rw_check" to allow the software to choose the
read-during-write behavior of a RAM.

Example 6–14. VHDL Single-Clock Simple Dual-Port Synchronous RAM with New Data
Read-During-Write Behavior

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY single_clock_rw_ram IS
PORT (

clock: IN STD_LOGIC;
data: IN STD_LOGIC_VECTOR (2 DOWNTO 0);
write_address: IN INTEGER RANGE 0 to 31;
read_address: IN INTEGER RANGE 0 to 31;
we: IN STD_LOGIC;
q: OUT STD_LOGIC_VECTOR (2 DOWNTO 0)

);
END single_clock_rw_ram;

ARCHITECTURE rtl OF single_clock_rw_ram IS
TYPE MEM IS ARRAY(0 TO 31) OF STD_LOGIC_VECTOR(2 DOWNTO 0);
SIGNAL ram_block: MEM;
SIGNAL read_address_reg: INTEGER RANGE 0 to 31;

BEGIN
PROCESS (clock)
BEGIN

IF (clock'event AND clock = '1') THEN
IF (we = '1') THEN

ram_block(write_address) <= data;
END IF;
read_address_reg <= read_address;

END IF;
END PROCESS;
q <= ram_block(read_address_reg);

END rtl;

6–22 Chapter 6: Recommended HDL Coding Styles
Inferring Memory Functions from HDL Code

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

The code samples shown in Example 6–15 and Example 6–16 show Verilog HDL and
VHDL code that infers dual-clock synchronous RAM. The exact behavior depends on
the relationship between the clocks.

Example 6–15. Verilog HDL Simple Dual-Port, Dual-Clock Synchronous RAM

module dual_clock_ram(
output reg [7:0] q,
input [7:0] d,
input [6:0] write_address, read_address,
input we, clk1, clk2

);
reg [6:0] read_address_reg;
reg [7:0] mem [127:0];

always @ (posedge clk1)
begin

if (we)
mem[write_address] <= d;

end

always @ (posedge clk2) begin
q <= mem[read_address_reg];
read_address_reg <= read_address;

end
endmodule

Example 6–16. VHDL Simple Dual-Port, Dual-Clock Synchronous RAM

LIBRARY ieee;
USE ieee.std_logic_1164.all;
ENTITY dual_clock_ram IS

PORT (
clock1, clock2: IN STD_LOGIC;
data: IN STD_LOGIC_VECTOR (3 DOWNTO 0);
write_address: IN INTEGER RANGE 0 to 31;
read_address: IN INTEGER RANGE 0 to 31;
we: IN STD_LOGIC;
q: OUT STD_LOGIC_VECTOR (3 DOWNTO 0)

);
END dual_clock_ram;
ARCHITECTURE rtl OF dual_clock_ram IS

TYPE MEM IS ARRAY(0 TO 31) OF STD_LOGIC_VECTOR(3 DOWNTO 0);
SIGNAL ram_block: MEM;
SIGNAL read_address_reg : INTEGER RANGE 0 to 31;

BEGIN
PROCESS (clock1)
BEGIN

IF (clock1'event AND clock1 = '1') THEN
IF (we = '1') THEN

ram_block(write_address) <= data;
END IF;

END IF;
END PROCESS;
PROCESS (clock2)
BEGIN

IF (clock2'event AND clock2 = '1') THEN
q <= ram_block(read_address_reg);
read_address_reg <= read_address;

END IF;
END PROCESS;

END rtl;

Chapter 6: Recommended HDL Coding Styles 6–23
Inferring Memory Functions from HDL Code

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

True Dual-Port Synchronous RAM
The code examples in this section show Verilog HDL and VHDL code that infers true
dual-port synchronous RAM. Different synthesis tools may differ in their support for
these types of memories. This section describes the inference rules for Quartus II
integrated synthesis. This type of RAM inference is supported only for the Arria GX,
Stratix, and Cyclone series of devices.

Altera TriMatrix memory blocks have two independent address ports, allowing for
operations on two unique addresses simultaneously. A read operation and a write
operation can share the same port if they share the same address. The Quartus II
software infers true dual-port RAMs in Verilog HDL and VHDL with any
combination of independent read or write operations in the same clock cycle, with at
most two unique port addresses, performing two reads and one write, two writes and
one read, or two writes and two reads in one clock cycle with one or two unique
addresses.

In the TriMatrix RAM block architecture, there is no priority between the two ports.
Therefore, if you write to the same location on both ports at the same time, the result
is indeterminate in the device architecture. You must ensure your HDL code does not
imply priority for writes to the memory block, if you want the design to be
implemented in a dedicated hardware memory block. For example, if both ports are
defined in the same process block, the code is synthesized and simulated sequentially
so that there is a priority between the two ports. If your code does imply a priority, the
logic cannot be implemented in the device RAM blocks and is implemented in regular
logic cells.

You must also consider the read-during-write behavior of the RAM block to ensure
that it can be mapped directly to the device RAM architecture. Refer to “Check
Read-During-Write Behavior” on page 6–16 for details.

When a read and write operation occurs on the same port for the same address, the
read operation may behave as follows:

■ Read new data—This mode matches the behavior of TriMatrix memory blocks.

■ Read old data—This mode is supported only by TriMatrix memory blocks in Arria
II GX, Cyclone III, Stratix III, and Stratix IV newer device families. This behavior is
not possible in TriMatrix memory blocks of older families.

When a read and write operation occurs on different ports for the same address (also
known as mixed port), the read operation may behave as follows:

■ Read new data—Quartus II integrated synthesis supports this mode by creating
bypass logic around the TriMatrix memory block.

■ Read old data—This behavior is supported by TriMatrix memory blocks.

The Verilog HDL single-clock code sample shown in Example 6–17 maps directly into
Altera TriMatrix memory. When a read and write operation occurs on the same port
for the same address, the new data being written to the memory is read. When a read
and write operation occurs on different ports for the same address, the old data in the
memory is read. Simultaneous writes to the same location on both ports results in
indeterminate behavior.

A dual-clock version of this design describes the same behavior, but the memory in
the target device will have undefined mixed port read-during-write behavior because
it depends on the relationship between the clocks.

6–24 Chapter 6: Recommended HDL Coding Styles
Inferring Memory Functions from HDL Code

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

If you use the following Verilog HDL read statements instead of the if-else
statements in Example 6–17, the HDL code specifies that the read results in old data
when a read operation and write operation occurs at the same time for the same
address on the same port or mixed ports. This behavior is supported only in the
TriMatrix memories of Arria II GX, Cyclone III, Stratix III, and Stratix IV newer device
families, and is not inferred as memory for older device families.

always @ (posedge clk)
begin // Port A
 if (we_a)

 ram[addr_a] <= data_a;

 q_a <= ram[addr_a];
end

always @ (posedge clk)
begin // Port B
 if (we_b)

 ram[addr_b] <= data_b;

 q_b <= ram[addr_b];
end

Example 6–17. Verilog HDL True Dual-Port RAM with Single Clock

module true_dual_port_ram_single_clock
(

input [(DATA_WIDTH-1):0] data_a, data_b,
input [(ADDR_WIDTH-1):0] addr_a, addr_b,
input we_a, we_b, clk,
output reg [(DATA_WIDTH-1):0] q_a, q_b

);

parameter DATA_WIDTH = 8;
parameter ADDR_WIDTH = 6;

// Declare the RAM variable
reg [DATA_WIDTH-1:0] ram[2**ADDR_WIDTH-1:0];

always @ (posedge clk)
begin // Port A

if (we_a)
begin

ram[addr_a] <= data_a;
q_a <= data_a;

end
else

q_a <= ram[addr_a];
end
always @ (posedge clk)
begin // Port b

if (we_b)
begin

ram[addr_b] <= data_b;
q_b <= data_b;

end
else

q_b <= ram[addr_b];
end

endmodule

Chapter 6: Recommended HDL Coding Styles 6–25
Inferring Memory Functions from HDL Code

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

The VHDL single-clock code sample shown in Example 6–18 maps directly into
Altera TriMatrix memory. When a read and write operation occurs on the same port
for the same address, the new data being written to the memory is read. When a read
and write operation occurs on different ports for the same address, the old data in the
memory is read. Altera recommends that you avoid this condition because
simultaneous write operations to the same location on both ports results in
indeterminate behavior.

A dual-clock version of this design describes the same behavior, but the memory in
the target device will have undefined mixed port read-during-write behavior because
it depends on the relationship between the clocks.

Example 6–18. VHDL True Dual-Port RAM with Single Clock (Part 1 of 2)

library ieee;
use ieee.std_logic_1164.all;

entity true_dual_port_ram_single_clock is

generic
(

DATA_WIDTH : natural := 8;
ADDR_WIDTH : natural := 6

);

port
(

clk : in std_logic;
addr_a: in natural range 0 to 2**ADDR_WIDTH - 1;
addr_b: in natural range 0 to 2**ADDR_WIDTH - 1;
data_a: in std_logic_vector((DATA_WIDTH-1) downto 0);
data_b: in std_logic_vector((DATA_WIDTH-1) downto 0);
we_a: in std_logic := '1';
we_b: in std_logic := '1';
q_a : out std_logic_vector((DATA_WIDTH -1) downto 0);
q_b : out std_logic_vector((DATA_WIDTH -1) downto 0)

);

end true_dual_port_ram_single_clock;

architecture rtl of true_dual_port_ram_single_clock is

-- Build a 2-D array type for the RAM
subtype word_t is std_logic_vector((DATA_WIDTH-1) downto 0);
type memory_t is addr_a(raddr'high downto 0) of word_t;

-- Declare the RAM signal.
signal ram : memory_t;

6–26 Chapter 6: Recommended HDL Coding Styles
Inferring Memory Functions from HDL Code

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Example 6-18. VHDL True Dual-Port RAM with Single Clock (Part 2of 2)

Specifying Initial Memory Contents at Power-Up
Your synthesis tool may offer various ways to specify the initial contents of an
inferred memory.

1 Certain device memory types do not support initialized memory, such as the M-RAM
blocks in Stratix and Stratix II devices.

There are slight power-up and initialization differences between dedicated RAM
blocks and the MLAB memory due to the continuous read of the MLAB. Altera
dedicated RAM block outputs always power-up to zero and are set to the initial value
on the first read. For example, if address 0 is pre-initialized to FF, the RAM block
powers up with the output at 0. A subsequent read after power-up from address 0
outputs the pre-initialized value of FF. Therefore, if a RAM is powered up and an
enable (read enable or clock enable) is held low, the power-up output of 0 is
maintained until the first valid read cycle. The MLAB is implemented using registers
that power-up to 0, but are initialized to their initial value immediately at power-up
or reset. Therefore, the initial value is seen, regardless of the enable status. Quartus II
integrated synthesis does not map inferred memory to MLABs unless the HDL code
specifies the appropriate ramstyle attribute.

begin

process(clk)
begin
if(rising_edge(clk)) then -- Port A

if(we_a = '1') then
ram(addr_a) <= data_a;

-- Read-during-write on the same port returns NEW data
q_a <= data_a;

else
-- Read-during-write on the mixed port returns OLD data
q_a <= ram(addr_a);

end if;
end if;

end process;

process(clk)
begin
if(rising_edge(clk)) then -- Port B

if(we_b = '1') then
ram(addr_b) <= data_b;

-- Read-during-write on the same port returns NEW data
q_b <= data_b;

else
-- Read-during-write on the mixed port returns OLD data
q_b <= ram(addr_b);

end if;
end if;
end process;

end rtl;

Chapter 6: Recommended HDL Coding Styles 6–27
Inferring Memory Functions from HDL Code

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Quartus II integrated synthesis supports the ram_init_file synthesis attribute that
allows you to specify a Memory Initialization File (.mif) for an inferred RAM block.

f For information about the ram_init_file attribute, refer to the Quartus II Integrated
Synthesis chapter in volume 1 of the Quartus II Handbook. For information about
synthesis attributes in other synthesis tools, refer to the tool vendor’s documentation.

In Verilog HDL, you can use an initial block to initialize the contents of an inferred
memory. Quartus II integrated synthesis automatically converts the initial block into a
.mif file for the inferred RAM. Example 6–19 shows Verilog HDL code that infers a
simple dual-port RAM block and corresponding .mif file.

Quartus II integrated synthesis and other synthesis tools also support the $readmemb
and $readmemh commands so that RAM initialization and ROM initialization work
identically in synthesis and simulation. Example 6–20 shows an initial block that
initializes an inferred RAM block using the $readmemb command.

f Refer to the Verilog Language Reference Manual (LRM) 1364-2001 Section 17.2.8 or the
example in the Templates for the Quartus II software for details about the format of
the ram.txt file.

Example 6–19. Verilog HDL RAM with Initialized Contents

module ram_with_init(
output reg [7:0] q,
input [7:0] d,
input [4:0] write_address, read_address,
input we, clk

);
reg [7:0] mem [0:31];
integer i;

initial begin
for (i = 0; i < 32; i = i + 1)

mem[i] = i[7:0];
end

always @ (posedge clk) begin
if (we)

mem[write_address] <= d;
q <= mem[read_address];

end
endmodule

Example 6–20. Verilog HDL RAM Initialized with the readmemb Command

reg [7:0] ram[0:15];
initial
begin

$readmemb("ram.txt", ram);
end

http://www.altera.com/literature/hb/qts/qts_qii51008.pdf
http://www.altera.com/literature/hb/qts/qts_qii51008.pdf

6–28 Chapter 6: Recommended HDL Coding Styles
Inferring Memory Functions from HDL Code

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

In VHDL, you can initialize the contents of an inferred memory by specifying a
default value for the corresponding signal. Quartus II integrated synthesis
automatically converts the default value into a .mif file for the inferred RAM.
Example 6–21 shows VHDL code that infers a simple dual-port RAM block and
corresponding .mif file.

ROM Functions—Inferring ALTSYNCRAM and LPM_ROM Megafunctions from HDL Code
To infer ROM functions, synthesis tools detect sets of registers and logic that can be
replaced with the ALTSYNCRAM or LPM_ROM megafunctions, depending on the
target device family, only for device families that have dedicated memory blocks.

ROMs are inferred when a CASE statement exists in which a value is set to a constant
for every choice in the case statement. Because small ROMs typically achieve the best
performance when they are implemented using the registers in regular logic, each
ROM function must meet a minimum size requirement to be inferred and placed into
memory.

Example 6–21. VHDL RAM with Initialized Contents

LIBRARY ieee;
USE ieee.std_logic_1164.all;
use ieee.numeric_std.all;

ENTITY ram_with_init IS
PORT(

clock: IN STD_LOGIC;
data: IN UNSIGNED (7 DOWNTO 0);
write_address: IN integer RANGE 0 to 31;
read_address: IN integer RANGE 0 to 31;
we: IN std_logic;
q: OUT UNSIGNED (7 DOWNTO 0));

END;

ARCHITECTURE rtl OF ram_with_init IS

TYPE MEM IS ARRAY(31 DOWNTO 0) OF unsigned(7 DOWNTO 0);
FUNCTION initialize_ram

return MEM is
variable result : MEM;

BEGIN
FOR i IN 31 DOWNTO 0 LOOP

result(i) := to_unsigned(natural(i), natural'(8));
END LOOP;
RETURN result;

END initialize_ram;

SIGNAL ram_block : MEM := initialize_ram;
BEGIN

PROCESS (clock)
BEGIN

IF (clock'event AND clock = '1') THEN
IF (we = '1') THEN
ram_block(write_address) <= data;
END IF;
q <= ram_block(read_address);

END IF;
END PROCESS;

END rtl;

Chapter 6: Recommended HDL Coding Styles 6–29
Inferring Memory Functions from HDL Code

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

1 If you use Quartus II integrated synthesis, you can direct the software to infer ROM
blocks for all sizes with the Allow Any ROM Size for Recognition option in the
More Analysis & Synthesis Settings dialog box.

Some synthesis tools provide options to control the implementation of inferred ROM
blocks for Altera devices with TriMatrix memory blocks. For example, Quartus II
integrated synthesis provides the romstyle synthesis attribute to specify the type of
memory block or to specify the use of regular logic instead of a dedicated memory
block.

f For details about using the romstyle attribute, refer to the Quartus II Integrated
Synthesis chapter in volume 1 of the Quartus II Handbook. For information about
synthesis attributes in other synthesis tools, refer to the appropriate chapter in the
Synthesis section in volume 1 of the Quartus II Handbook.

When you are using a formal verification flow, Altera recommends that you create
ROM blocks in separate entities or modules that contain only the ROM logic, because
you may need to treat the entity and module as a black box during formal verification.

1 Because formal verification tools do not support ROM megafunctions, Quartus II
integrated synthesis does not infer ROM megafunctions when a formal verification
tool is selected.

The Verilog HDL and VHDL code samples shown in Example 6–22 through
Example 6–25 infer synchronous ROM blocks. Depending on the device family’s
dedicated RAM architecture, the ROM logic may have to be synchronous; refer tothe
device family handbook for details.

For device architectures with synchronous RAM blocks, such as the Stratix series
devices and newer device families, either the address or the output must be registered
for synthesis software to infer a ROM block. When your design uses output registers,
the synthesis software implements registers from the input registers of the RAM block
without affecting the functionality of the ROM. If you register the address, the power-
up state of the inferred ROM can be different from the HDL design. In this scenario,
the synthesis software issues a warning. The Quartus II Help explains the condition
under which the functionality changes when you use Quartus II integrated synthesis.

The ROM code examples shown in Example 6–22 through Example 6–25 map directly
to the Altera TriMatrix memory architecture.

http://www.altera.com/literature/hb/qts/qts_qii51008.pdf
http://www.altera.com/literature/hb/qts/qts_qii51008.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v1_03.pdf

6–30 Chapter 6: Recommended HDL Coding Styles
Inferring Memory Functions from HDL Code

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Example 6–22. Verilog HDL Synchronous ROM

module sync_rom (clock, address, data_out);
input clock;
input [7:0] address;
output [5:0] data_out;

reg [5:0] data_out;

always @ (posedge clock)
begin

case (address)
8'b00000000: data_out = 6'b101111;
8'b00000001: data_out = 6'b110110;
...
8'b11111110: data_out = 6'b000001;
8'b11111111: data_out = 6'b101010;

endcase
end

endmodule

Example 6–23. VHDL Synchronous ROM

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY sync_rom IS
PORT (

clock: IN STD_LOGIC;
address: IN STD_LOGIC_VECTOR(7 downto 0);
data_out: OUT STD_LOGIC_VECTOR(5 downto 0)

);
END sync_rom;

ARCHITECTURE rtl OF sync_rom IS
BEGIN
PROCESS (clock)

BEGIN
IF rising_edge (clock) THEN

CASE address IS
WHEN "00000000" => data_out <= "101111";
WHEN "00000001" => data_out <= "110110";
...
WHEN "11111110" => data_out <= "000001";
WHEN "11111111" => data_out <= "101010";
WHEN OTHERS => data_out <= "101111";

END CASE;
END IF;
END PROCESS;

END rtl;

Chapter 6: Recommended HDL Coding Styles 6–31
Inferring Memory Functions from HDL Code

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Example 6–24. Verilog HDL Dual-Port Synchronous ROM Using readmemb

module dual_port_rom (
input [(addr_width-1):0] addr_a, addr_b,
input clk,
output reg [(data_width-1):0] q_a, q_b

);
parameter data_width = 8;
parameter addr_width = 8;

reg [data_width-1:0] rom[2**addr_width-1:0];

initial // Read the memory contents in the file
dual_port_rom_init.txt.

begin
$readmemb("dual_port_rom_init.txt", rom);

end

always @ (posedge clk)
begin

q_a <= rom[addr_a];
q_b <= rom[addr_b];

end
endmodule

6–32 Chapter 6: Recommended HDL Coding Styles
Inferring Memory Functions from HDL Code

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Shift Registers—Inferring the ALTSHIFT_TAPS Megafunction from HDL Code
To infer shift registers, synthesis tools detect a group of shift registers of the same
length and convert them to an ALTSHIFT_TAPS megafunction. To be detected, all the
shift registers must have the following characteristics:

■ Use the same clock and clock enable

■ Do not have any other secondary signals

■ Have equally spaced taps that are at least three registers apart

Example 6–25. VHDL Dual-Port Synchronous ROM Using Initialization Function

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity dual_port_rom is
generic (

DATA_WIDTH : natural := 8;
ADDR_WIDTH : natural := 8

);
port (

clk : in std_logic;
addr_a: in natural range 0 to 2**ADDR_WIDTH - 1;
addr_b: in natural range 0 to 2**ADDR_WIDTH - 1;
q_a : out std_logic_vector((DATA_WIDTH -1) downto 0);
q_b : out std_logic_vector((DATA_WIDTH -1) downto 0)

);
end entity;

architecture rtl of dual_port_rom is
-- Build a 2-D array type for the ROM
subtype word_t is std_logic_vector((DATA_WIDTH-1) downto 0);
type memory_t is array(addr_a'high downto 0) of word_t;

function init_rom
return memory_t is
variable tmp : memory_t := (others => (others => '0'));

begin
for addr_pos in 0 to 2**ADDR_WIDTH - 1 loop

-- Initialize each address with the address itself
tmp(addr_pos) := std_logic_vector(to_unsigned(addr_pos,

DATA_WIDTH));
end loop;
return tmp;

end init_rom;

-- Declare the ROM signal and specify a default initialization value.
signal rom : memory_t := init_rom;

begin
process(clk)
begin
if (rising_edge(clk)) then

q_a <= rom(addr_a);
q_b <= rom(addr_b);

end if;
end process;

end rtl;

Chapter 6: Recommended HDL Coding Styles 6–33
Inferring Memory Functions from HDL Code

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

When you use a formal verification flow, Altera recommends that you create shift
register blocks in separate entities or modules containing only the shift register logic,
because you might have to treat the entity or module as a black box during formal
verification.

1 Because formal verification tools do not support shift register megafunctions,
Quartus II integrated synthesis does not infer the ALTSHIFT_TAPS megafunction
when a formal verification tool is selected. You can select EDA tools for use with your
design on the EDA Tool Settings page of the Settings dialog box in the Quartus II
software.

f For more information about the ALTSHIFT_TAPS megafunction, refer to the
ALTSHIFT_TAPS Megafunction User Guide.

Synthesis software recognizes shift registers only for device families that have
dedicated RAM blocks, and the software uses certain guidelines to determine the best
implementation. The following guidelines are followed in Quartus II integrated
synthesis and are common in other EDA tools. The Quartus II software determines
whether to infer the ALTSHIFT_TAPS megafunction based on the width of the
registered bus (W), the length between each tap (L), and the number of taps (N). If the
Auto Shift Register Recognition setting is set to Auto, Quartus II integrated
synthesis uses the Optimization Technique setting, logic and RAM utilization
information about the design, and timing information from Timing-Driven Synthesis
to determine which shift registers are implemented in RAM blocks for logic.

■ If the registered bus width is one (W = 1), the software infers ALTSHIFT_TAPS if
the number of taps times the length between each tap is greater than or equal to 64
(N × L  64).

■ If the registered bus width is greater than one (W > 1), the software infers
ALTSHIFT_TAPS if the registered bus width times the number of taps times the
length between each tap is greater than or equal to 32 (W × N × L  32).

If the length between each tap (L) is not a power of two, the software uses more logic
to decode the read and write counters. This situation occurs because for different sizes
of shift registers, external decode logic that uses logic elements (LEs) or ALMs is
required to implement the function. This decode logic eliminates the performance and
utilization advantages of implementing shift registers in memory.

The registers that the software maps to the ALTSHIFT_TAPS megafunction and places
in RAM are not available in a Verilog HDL or VHDL output file for simulation tools
because their node names do not exist after synthesis.

Simple Shift Register
The code samples shown in Example 6–26 and Example 6–27 show a simple,
single-bit wide, 64-bit long shift register. The synthesis software implements the
register (W = 1 and M = 64) in an ALTSHIFT_TAPS megafunction for supported
devices and maps it to RAM in supported devices, which may be placed in dedicated
RAM blocks or MLAB memory. If the length of the register is less than 64 bits, the
software implements the shift register in logic.

http://www.altera.com/literature/ug/ug_alt_shift_taps.pdf

6–34 Chapter 6: Recommended HDL Coding Styles
Inferring Memory Functions from HDL Code

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Shift Register with Evenly Spaced Taps
The code samples shown in Example 6–28 and Example 6–29 show a Verilog HDL and
VHDL 8-bit wide, 64-bit long shift register (W > 1 and M = 64) with evenly spaced
taps at 15, 31, and 47. The synthesis software implements this function in a single
ALTSHIFT_TAPS megafunction and maps it to RAM in supported devices, which is
allowed placement in dedicated RAM blocks or MLAB memory.

Example 6–26. Verilog HDL Single-Bit Wide, 64-Bit Long Shift Register

module shift_1x64 (clk, shift, sr_in, sr_out);
input clk, shift;
input sr_in;
output sr_out;

reg [63:0] sr;

always @ (posedge clk)
begin

if (shift == 1'b1)
begin

sr[63:1] <= sr[62:0];
sr[0] <= sr_in;

end
end
assign sr_out = sr[63];

endmodule

Example 6–27. VHDL Single-Bit Wide, 64-Bit Long Shift Register

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.all;
ENTITY shift_1x64 IS
PORT (
clk: IN STD_LOGIC;
shift: IN STD_LOGIC;
sr_in: IN STD_LOGIC;
sr_out: OUT STD_LOGIC
);
END shift_1x64;

ARCHITECTURE arch OF shift_1x64 IS
TYPE sr_length IS ARRAY (63 DOWNTO 0) OF STD_LOGIC;
SIGNAL sr: sr_length;
BEGIN

PROCESS (clk)
BEGIN
IF (clk'EVENT and clk = '1') THEN

IF (shift = '1') THEN
sr(63 DOWNTO 1) <= sr(62 DOWNTO 0);
sr(0) <= sr_in;
END IF;

END IF;
END PROCESS;
sr_out <= sr(63);

END arch;

Chapter 6: Recommended HDL Coding Styles 6–35
Inferring Memory Functions from HDL Code

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Example 6–28. Verilog HDL 8-Bit Wide, 64-Bit Long Shift Register with Evenly Spaced Taps

module shift_8x64_taps (clk, shift, sr_in, sr_out, sr_tap_one,
sr_tap_two, sr_tap_three);

input clk, shift;
input [7:0] sr_in;
output [7:0] sr_tap_one, sr_tap_two, sr_tap_three, sr_out;

reg [7:0] sr [63:0];
integer n;

 always @ (posedge clk)
begin

if (shift == 1'b1)
begin

for (n = 63; n>0; n = n-1)
begin

sr[n] <= sr[n-1];
end
sr[0] <= sr_in;

end

end
assign sr_tap_one = sr[15];
assign sr_tap_two = sr[31];
assign sr_tap_three = sr[47];
assign sr_out = sr[63];

endmodule

6–36 Chapter 6: Recommended HDL Coding Styles
Coding Guidelines for Registers and Latches

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Coding Guidelines for Registers and Latches
This section provides device-specific coding recommendations for Altera registers
and latches. Understanding the architecture of the target Altera device helps ensure
that your code produces the expected results and achieves the optimal quality of
results.

This section provides guidelines in the following areas:

■ “Register Power-Up Values in Altera Devices”

■ “Secondary Register Control Signals Such as Clear and Clock Enable” on
page 6–38

■ “Latches” on page 6–42

Register Power-Up Values in Altera Devices
Registers in the device core always power up to a low (0) logic level on all Altera
devices. However, there are ways to implement logic such that registers behave as if
they were powering up to a high (1) logic level.

Example 6–29. VHDL 8-Bit Wide, 64-Bit Long Shift Register with Evenly Spaced Taps

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.all;
ENTITY shift_8x64_taps IS

PORT (
clk: IN STD_LOGIC;
shift: IN STD_LOGIC;
sr_in: IN STD_LOGIC_VECTOR(7 DOWNTO 0);
sr_tap_one: OUT STD_LOGIC_VECTOR(7 DOWNTO 0);
sr_tap_two : OUT STD_LOGIC_VECTOR(7 DOWNTO 0);
sr_tap_three: OUT STD_LOGIC_VECTOR(7 DOWNTO 0);
sr_out: OUT STD_LOGIC_VECTOR(7 DOWNTO 0)

);
END shift_8x64_taps;

ARCHITECTURE arch OF shift_8x64_taps IS
SUBTYPE sr_width IS STD_LOGIC_VECTOR(7 DOWNTO 0);
TYPE sr_length IS ARRAY (63 DOWNTO 0) OF sr_width;
SIGNAL sr: sr_length;

BEGIN
PROCESS (clk)
BEGIN

IF (clk'EVENT and clk = '1') THEN
IF (shift = '1') THEN

sr(63 DOWNTO 1) <= sr(62 DOWNTO 0);
sr(0) <= sr_in;

END IF;
END IF;

END PROCESS;
sr_tap_one <= sr(15);
sr_tap_two <= sr(31);
sr_tap_three <= sr(47);
sr_out <= sr(63);

END arch;

Chapter 6: Recommended HDL Coding Styles 6–37
Coding Guidelines for Registers and Latches

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

If you use a preset signal on a device that does not support presets in the register
architecture, your synthesis tool may convert the preset signal to a clear signal, which
requires synthesis to perform an optimization referred to as NOT gate push-back.
NOT gate push-back adds an inverter to the input and the output of the register so
that the reset and power-up conditions will appear to be high but the device operates
as expected. In this case, your synthesis tool may issue a message informing you
about the power-up condition. The register itself powers up low, but the register
output is inverted, so the signal that arrives at all destinations is high.

Due to these effects, if you specify a non-zero reset value, you may cause your
synthesis tool to use the asynchronous clear (aclr) signals available on the registers
to implement the high bits with NOT gate push-back. In that case, the registers look as
though they power up to the specified reset value.

When an asynchronous load (aload) signal is available in the device registers, your
synthesis tools can implement a reset of 1 or 0 value by using an asynchronous load of
1 or 0. When the synthesis tool uses a load signal, it is not performing NOT gate
push-back, so the registers power up to a 0 logic level.

f For additional details, refer to the appropriate device family handbook or the
appropriate handbook on the Altera website.

Designers typically use an explicit reset signal for the design, which forces all registers
into their appropriate values after reset. Altera recommends this practice to reset the
device after power-up to restore the proper state if there is any doubt about the
power-up conditions of the device.

You can make your design more stable and avoid potential glitches by synchronizing
external or combinational logic of the device architecture before you drive the
asynchronous control ports of registers.

f For additional information about good synchronous design practices, refer to the
Design Recommendations for Altera Devices and the Quartus II Design Assistant chapter in
volume 1 of the Quartus II Handbook.

If you want to force a particular power-up condition for your design, you can use the
synthesis options available in your synthesis tool. With Quartus II integrated
synthesis, you can apply the Power-Up Level logic option. You can also apply the
option with an altera_attribute assignment in your source code. Using this
option forces synthesis to perform NOT gate push-back because synthesis tools
cannot actually change the power-up states of core registers.

You can apply the Quartus II integrated synthesis Power-Up Level logic option to a
specific register or to a design entity, module, or subdesign. If you do so, every
register in that block receives the value. Registers power up to 0 by default; therefore,
you can use this assignment to force all registers to power up to 1 using NOT gate
push-back.

1 Using NOT gate push-back as a global assignment could slightly degrade the quality
of results due to the number of inverters that are required. In some situations, issues
are caused by enable or secondary control logic inference. It may also be more difficult
to migrate such a design to an ASIC or a HardCopy® device. You can simulate the
power-up behavior in a functional simulation if you use initialization.

http://www.altera.com/literature/hb/qts/qts_qii51006.pdf

6–38 Chapter 6: Recommended HDL Coding Styles
Coding Guidelines for Registers and Latches

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

f The Power-Up Level option and the altera_attribute assignment are described
in the Quartus II Integrated Synthesis chapter in volume 1 of the Quartus II Handbook.

Some synthesis tools can also read the default or initial values for registered signals
and implement this behavior in the device. For example, Quartus II integrated
synthesis converts default values for registered signals into Power-Up Level settings.
When the Quartus II software reads the default values, the synthesized behavior
matches the power-up state of the HDL code during a functional simulation.

For example, the code samples in Example 6–30 and Example 6–31 both infer a
register for q and set its power-up level to high.

1 If the target device architecture does not support two asynchronous control signals,
such as aclr and aload, you cannot set a different power-up state and reset state. If
the NOT-gate push-back algorithm creates logic to set a register to 1, that register will
power-up high. If you set a different power-up condition through a synthesis
assignment or initial value, the power-up level is ignored during synthesis.

Secondary Register Control Signals Such as Clear and Clock Enable
The registers in Altera FPGAs provide a number of secondary control signals (such as
clear and enable signals) that you can use to implement control logic for each register
without using extra logic cells. Device families vary in their support for secondary
signals, so consult the device family data sheet to verify which signals are available in
your target device.

To make the most efficient use of the signals in the device, your HDL code should
match the device architecture as closely as possible. The control signals have a certain
priority due to the nature of the architecture, so your HDL code should follow that
priority where possible.

Example 6–30. Verilog Register with High Power-Up Value

reg q = 1’b1; //q has a default value of ‘1’

always @ (posedge clk)
begin

q <= d;
end

Example 6–31. VHDL Register with High Power-Up Level

SIGNAL q : STD_LOGIC := '1'; -- q has a default value of '1'

PROCESS (clk, reset)
BEGIN

IF (rising_edge(clk)) THEN
q <= d;

END IF;
END PROCESS;

http://www.altera.com/literature/hb/qts/qts_qii51008.pdf

Chapter 6: Recommended HDL Coding Styles 6–39
Coding Guidelines for Registers and Latches

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Your synthesis tool can emulate any control signals using regular logic, so achieving
functionally correct results is always possible. However, if your design requirements
are flexible in terms of which control signals are used and in what priority, match your
design to the target device architecture to achieve the most efficient results. If the
priority of the signals in your design is not the same as that of the target architecture,
extra logic may be required to implement the control signals. This extra logic uses
additional device resources and can cause additional delays for the control signals.

In addition, there are certain cases where using logic other than the dedicated control
logic in the device architecture can have a larger impact. For example, the clock enable
signal has priority over the synchronous reset or clear signal in the device
architecture. The clock enable turns off the clock line in the LAB, and the clear signal is
synchronous. Therefore, in the device architecture, the synchronous clear takes effect
only when a clock edge occurs.

If you code a register with a synchronous clear signal that has priority over the clock
enable signal, the software must emulate the clock enable functionality using data
inputs to the registers. Because the signal does not use the clock enable port of a
register, you cannot apply a Clock Enable Multicycle constraint. In this case, following
the priority of signals available in the device is clearly the best choice for the priority
of these control signals, and using a different priority causes unexpected results with
an assignment to the clock enable signal.

1 The priority order for secondary control signals in Altera devices differs from the
order for other vendors’ devices. If your design requirements are flexible regarding
priority, verify that the secondary control signals meet design performance
requirements when migrating designs between FPGA vendors and try to match your
target device architecture to achieve the best results.

The signal order is the same for all Altera device families, although as noted
previously, not all device families provide every signal. The following priority order is
observed:

1. Asynchronous Clear, aclr—highest priority

2. Preset, pre

3. Asynchronous Load, aload

4. Enable, ena

5. Synchronous Clear, sclr

6. Synchronous Load, sload

7. Data In, data—lowest priority

The following examples provide Verilog HDL and VHDL code that creates a register
with the aclr, aload, and ena control signals.

6–40 Chapter 6: Recommended HDL Coding Styles
Coding Guidelines for Registers and Latches

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

1 The Verilog HDL example (Example 6–32) does not have adata on the sensitivity list,
but the VHDL example (Example 6–33) does. This is a limitation of the Verilog HDL
language—there is no way to describe an asynchronous load signal (in which q
toggles if adata toggles while aload is high). All synthesis tools should infer an
aload signal from this construct despite this limitation. When they perform such
inference, you may see information or warning messages from the synthesis tool.

Example 6–32. Verilog HDL D-Type Flipflop (Register) with ena, aclr, and aload Control Signals

module dff_control(clk, aclr, aload, ena, data, adata, q);
input clk, aclr, aload, ena, data, adata;
output q;

reg q;

always @ (posedge clk or posedge aclr or posedge aload)
begin

if (aclr)
q <= 1'b0;

else if (aload)
q <= adata;

else if (ena)
q <= data;

end
endmodule

Example 6–33. VHDL D-Type Flipflop (Register) with ena, aclr, and aload Control Signals

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY dff_control IS
PORT (

clk: IN STD_LOGIC;
aclr: IN STD_LOGIC;
aload: IN STD_LOGIC;
adata: IN STD_LOGIC;
ena: IN STD_LOGIC;

 data: IN STD_LOGIC;
q: OUT STD_LOGIC

);
END dff_control;

ARCHITECTURE rtl OF dff_control IS
BEGIN

PROCESS (clk, aclr, aload, adata)
BEGIN

IF (aclr = '1') THEN
q <= '0';
ELSIF (aload = '1') THEN
q <= adata;
ELSE

IF (clk = '1' AND clk'event) THEN
IF (ena ='1') THEN

q <= data;
END IF;

END IF;
END IF;

END PROCESS;
END rtl;

Chapter 6: Recommended HDL Coding Styles 6–41
Coding Guidelines for Registers and Latches

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

The preset signal is not available in many device families; therefore, it is not included
in the examples.

Creating many registers with different sload and sclr signals can make packing the
registers into LABs difficult for the Quartus II Fitter because the sclr and sload
signals are LAB-wide signals. In addition, using the LAB-wide sload signal prevents
the Fitter from packing registers using the quick feedback path in the device
architecture, which means that some registers cannot be packed with other logic.

Synthesis tools typically restrict use of sload and sclr signals to cases in which
there are enough registers with common signals to allow good LAB packing. Using
the look-up table (LUT) to implement the signals is always more flexible if it is
available. Because different device families offer different numbers of control signals,
inference of these signals is also device-specific. For example, because Stratix II
devices have more flexibility than Stratix devices with respect to secondary control
signals, synthesis tools might infer more sload and sclr signals for Stratix II
devices.

If you use these additional control signals, use them in the priority order that matches
the device architecture. To achieve the most efficient results, ensure the sclr signal
has a higher priority than the sload signal in the same way that aclr has higher
priority than aload in the previous examples. Remember that the register signals are
not inferred unless the design meets the conditions described previously. However, if
your HDL described the desired behavior, the software always implements logic with
the correct functionality.

In Verilog HDL, the following code for sload and sclr could replace the
if (ena) q <= data; statements in the Verilog HDL example shown in
Example 6–32 (after adding the control signals to the module declaration).

In VHDL, the following code for sload and sclr could replace the IF (ena ='1')
THEN q <= data; END IF; statements in the VHDL example shown in
Example 6–33 on page 6–40 (after adding the control signals to the entity declaration).

Example 6–34. Verilog HDL sload and sclr Control Signals

if (ena) begin
if (sclr)

q <= 1'b0;
else if (sload)

q <= sdata;
else

q <= data;
end

Example 6–35. VHDL sload and sclr Control Signals

IF (ena ='1') THEN
IF (sclr = '1') THEN

q <= '0';
ELSIF (sload = '1') THEN

q <= sdata;
ELSE

q <= data;
END IF;

END IF;

6–42 Chapter 6: Recommended HDL Coding Styles
Coding Guidelines for Registers and Latches

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Latches
A latch is a small combinational loop that holds the value of a signal until a new value
is assigned.

1 Altera recommends that you design without the use of latches whenever possible.

f For additional information about the issues involved in designing with latches and
combinational loops, refer to the Design Recommendations for Altera Devices and the
Quartus II Design Assistant chapter in volume 1 of the Quartus II Handbook.

Latches can be inferred from HDL code when you did not intend to use a latch, as
described in “Unintentional Latch Generation”. If you do intend to infer a latch, it is
important to infer it correctly to guarantee correct device operation as detailed in
“Inferring Latches Correctly” on page 6–43.

Unintentional Latch Generation
When you are designing combinational logic, certain coding styles can create an
unintentional latch. For example, when CASE or IF statements do not cover all
possible input conditions, latches may be required to hold the output if a new output
value is not assigned. Check your synthesis tool messages for references to inferred
latches. If your code unintentionally creates a latch, make code changes to remove the
latch.

1 Latches have limited support in formal verification tools. Therefore, ensure that you
do not infer latches unintentionally. For example, an incomplete CASE statement may
create a latch when you are using formal verification in your design flow.

The full_case attribute can be used in Verilog HDL designs to treat unspecified
cases as don’t care values (X). However, using the full_case attribute can cause
simulation mismatches because this attribute is a synthesis-only attribute, so
simulation tools still treat the unspecified cases as latches.

f Refer to the appropriate chapter in the Synthesis section in volume 1 of the Quartus II
Handbook for more information about using attributes in your synthesis tool. The
Quartus II Integrated Synthesis chapter in volume 1 of the Quartus II Handbook provides
an example explaining possible simulation mismatches.

Omitting the final else or when others clause in an if or case statement can also
generate a latch. Don’t care (X) assignments on the default conditions are useful in
preventing latch generation. For the best logic optimization, assign the default case
or final else value to don’t care (X) instead of a logic value.

The VHDL sample code shown in Example 6–36 prevents unintentional latches.
Without the final else clause, this code creates unintentional latches to cover the
remaining combinations of the sel inputs. When you are targeting a Stratix device
with this code, omitting the final else condition can cause the synthesis software to
use up to six LEs, instead of the three it uses with the else statement. Additionally,
assigning the final else clause to 1 instead of X can result in slightly more LEs,
because the synthesis software cannot perform as much optimization when you
specify a constant value compared to a don’t care value.

http://www.altera.com/literature/hb/qts/qts_qii51006.pdf
http://www.altera.com/literature/hb/qts/qts_qii51006.pdf
http://www.altera.com/literature/hb/qts/qts_qii51008.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v1_03.pdf

Chapter 6: Recommended HDL Coding Styles 6–43
Coding Guidelines for Registers and Latches

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Inferring Latches Correctly
Synthesis tools can infer a latch that does not exhibit the glitch and timing hazard
problems typically associated with combinational loops.

1 Any use of latches generates warnings and is flagged if the design is migrated to a
HardCopy ASIC. In addition, timing analysis does not completely model latch timing
in some cases. Do not use latches unless required by your design, and you fully
understand the impact of using the latches.

When using Quartus II integrated synthesis, latches that are inferred by the software
are reported in the User-Specified and Inferred Latches section of the Compilation
Report. This report indicates whether the latch is considered safe and free of timing
hazards.

If a latch or combinational loop in your design is not listed in the User-Specified and
Inferred Latches section, it means that it was not inferred as a safe latch by the
software and is not considered glitch-free.

All combinational loops listed in the Analysis & Synthesis Logic Cells Representing
Combinational Loops table in the Compilation Report are at risk of timing hazards.
These entries indicate possible problems with your design that you should
investigate. However, it is possible to have a correct design that includes
combinational loops. For example, it is possible that the combinational loop cannot be
sensitized. This can occur in cases where there is an electrical path in the hardware,
but either the designer knows that the circuit never encounters data that causes that
path to be activated, or the surrounding logic is set up in a mutually exclusive manner
that prevents that path from ever being sensitized, independent of the data input.

Example 6–36. VHDL Code Preventing Unintentional Latch Creation

LIBRARY ieee;
USE IEEE.std_logic_1164.all;

ENTITY nolatch IS
PORT (a,b,c: IN STD_LOGIC;

sel: IN STD_LOGIC_VECTOR (4 DOWNTO 0);
oput: OUT STD_LOGIC);

END nolatch;

ARCHITECTURE rtl OF nolatch IS
BEGIN

PROCESS (a,b,c,sel) BEGIN
if sel = "00000" THEN

oput <= a;
ELSIF sel = "00001" THEN

oput <= b;
ELSIF sel = "00010" THEN

oput <= c;
ELSE --- Prevents latch inference

oput <= ''X'; --/
END if;

END PROCESS;
END rtl;

6–44 Chapter 6: Recommended HDL Coding Styles
Coding Guidelines for Registers and Latches

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

For macrocell-based devices such as MAX® 7000AE and MAX 3000A, all data (D-type)
latches and set-reset (S-R) latches listed in the Analysis & Synthesis User-Specified
and Inferred Latches table have an implementation free of timing hazards such as
glitches. The implementation includes both a cover term to ensure there is no
glitching and a single macrocell in the feedback loop.

For 4-input LUT-based devices such as Stratix devices, the Cyclone series, and MAX II
devices, all latches in the User-Specified and Inferred Latches table with a single
LUT in the feedback loop are free of timing hazards when a single input changes.
Because of the hardware behavior of the LUT, the output does not glitch when a single
input toggles between two values that are supposed to produce the same output
value. Because of the hardware behavior of the LUT, the output does not glitch when
a single input toggles between two values that are supposed to produce the same
output value, such as a D-type input toggling when the enable input is inactive or a
set input toggling when a reset input with higher priority is active. This hardware
behavior of the LUT means that no cover term is required for a loop around a single
LUT. The Quartus II software uses a single LUT in the feedback loop whenever
possible. A latch that has data, enable, set, and reset inputs in addition to the output
fed back to the input cannot be implemented in a single 4-input LUT. If the Quartus II
software cannot implement the latch with a single-LUT loop because there are too
many inputs, the User-Specified and Inferred Latches table indicates that the latch is
not free of timing hazards.

For 6-input LUT-based devices, the software can implement all latch inputs with a
single adaptive look-up table (ALUT) in the combinational loop. Therefore, all latches
in the User-Specified and Inferred Latches table are free of timing hazards when a
single input changes.

If a latch is listed as a safe latch, other optimizations performed by the Quartus II
software, such as physical synthesis netlist optimizations in the Fitter, maintain the
hazard-free performance.

To ensure hazard-free behavior, only one control input can change at a time. Changing
two inputs simultaneously, such as deasserting set and reset at the same time, or
changing data and enable at the same time, can produce incorrect behavior in any
latch.

Quartus II integrated synthesis infers latches from always blocks in Verilog HDL and
process statements in VHDL, but not from continuous assignments in Verilog HDL
or concurrent signal assignments in VHDL. These rules are the same as for register
inference. The software infers registers or flipflops only from always blocks and
process statements.

The Verilog HDL code sample shown in Example 6–37 infers a S-R latch correctly in
the Quartus II software.

Chapter 6: Recommended HDL Coding Styles 6–45
Coding Guidelines for Registers and Latches

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

The VHDL code sample shown in Example 6–38 infers a D-type latch correctly in the
Quartus II software.

The following example shows a Verilog HDL continuous assignment that does not
infer a latch in the Quartus II software:

assign latch_out = (~en & latch_out) | (en & data);

The behavior of the assignment is similar to a latch, but it may not function correctly
as a latch and its timing is not analyzed as a latch.

Quartus II integrated synthesis also creates safe latches when possible for
instantiations of the LPM_LATCH megafunction. You can use this megafunction to
create a latch with any combination of data, enable, set, and reset inputs. The same
limitations apply for creating safe latches as for inferring latches from HDL code.

Example 6–37. Verilog HDL Set-Reset Latch

module simple_latch (
input SetTerm,
input ResetTerm,
output reg LatchOut
);

always @ (SetTerm or ResetTerm) begin
if (SetTerm)

LatchOut = 1'b1
else if (ResetTerm)

LatchOut = 1'b0
end

endmodule

Example 6–38. VHDL Data Type Latch

LIBRARY IEEE;
USE IEEE.std_logic_1164.all;

ENTITY simple_latch IS
PORT (
enable, data : IN STD_LOGIC;
q : OUT STD_LOGIC
);
END simple_latch;

ARCHITECTURE rtl OF simple_latch IS
BEGIN

latch : PROCESS (enable, data)
BEGIN
IF (enable = '1') THEN
q <= data;
END IF;
END PROCESS latch;
END rtl;

6–46 Chapter 6: Recommended HDL Coding Styles
General Coding Guidelines

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Inferring the Altera LPM_LATCH function in another synthesis tool ensures that the
implementation is also recognized as a latch in the Quartus II software. If a
third-party synthesis tool implements a latch using the LPM_LATCH megafunction,
the Quartus II integrated synthesis lists the latch in the User-Specified and Inferred
Latches table in the same way as it lists latches created in HDL source code. The
coding style necessary to produce an LPM_LATCH implementation may depend on
your synthesis tool. Some third-party synthesis tools list the number of LPM_LATCH
functions that are inferred.

For LUT-based families, the Fitter uses global routing for control signals, including
signals that Analysis and Synthesis identifies as latch enables. In some cases the
global insertion delay may decrease the timing performance. If necessary, you can
turn off the Quartus II Global Signal logic option to manually prevent the use of
global signals. Global latch enables are listed in the Global & Other Fast Signals table
in the Compilation Report.

General Coding Guidelines
This section helps you understand how synthesis tools map various types of HDL
code into the target Altera device. Following Altera recommended coding styles, and
in some cases designing logic structures to match the appropriate device architecture,
can provide significant improvements in the design’s quality of results.

This section provides coding guidelines for the following logic structures:

■ “Tri-State Signals”. This section explains how to create tri-state signals for
bidirectional I/O pins.

■ “Clock Multiplexing” on page 6–47. This section provides recommendations for
multiplexing clock signals.

■ “Adder Trees” on page 6–51. This section explains the different coding styles that
lead to optimal results for devices with 4-input look-up tables and 6-input ALUTs.

■ “State Machines” on page 6–53. This section helps ensure the best results when
you use state machines.

■ “Multiplexers” on page 6–60. This section explains how multiplexers can be
synthesized for 4-input LUT devices, addresses common problems, and provides
guidelines to achieve optimal resource utilization.

■ “Cyclic Redundancy Check Functions” on page 6–68. This section provides
guidelines for getting good results when designing Cyclic Redundancy Check
(CRC) functions.

■ “Comparators” on page 6–69. This section explains different comparator
implementations and provides suggestions for controlling the implementation.

■ “Counters” on page 6–71. This section provides guidelines to ensure your counter
design targets the device architecture optimally.

Tri-State Signals
When you target Altera devices, you should use tri-state signals only when they are
attached to top-level bidirectional or output pins. Avoid lower-level bidirectional
pins, and avoid using the Z logic value unless it is driving an output or bidirectional
pin.

Chapter 6: Recommended HDL Coding Styles 6–47
General Coding Guidelines

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Synthesis tools implement designs with internal tri-state signals correctly in Altera
devices using multiplexer logic, but Altera does not recommend this coding practice.

1 In hierarchical block-based or incremental design flows, a hierarchical boundary
cannot contain any bidirectional ports, unless the lower-level bidirectional port is
connected directly through the hierarchy to a top-level output pin without connecting
to any other design logic. If you use boundary tri-states in a lower-level block,
synthesis software must push the tri-states through the hierarchy to the top level to
make use of the tri-state drivers on output pins of Altera devices. Because pushing
tri-states requires optimizing through hierarchies, lower-level tri-states are restricted
with block-based design methodologies.

The code examples shown in Example 6–39 and Example 6–40 show Verilog HDL and
VHDL code that creates tri-state bidirectional signals.

Clock Multiplexing
Clock multiplexing is sometimes used to operate the same logic function with
different clock sources. This type of logic can introduce glitches that create functional
problems, and the delay inherent in the combinational logic can lead to timing
problems. Clock multiplexers trigger warnings from a wide range of design rule
check and timing analysis tools.

Example 6–39. Verilog HDL Tri-State Signal

module tristate (myinput, myenable, mybidir);
input myinput, myenable;
inout mybidir;
assign mybidir = (myenable ? myinput : 1'bZ);

endmodule

Example 6–40. VHDL Tri-State Signal

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;

ENTITY tristate IS
PORT (

mybidir : INOUT STD_LOGIC;
myinput : IN STD_LOGIC;
myenable : IN STD_LOGIC
);

END tristate;

ARCHITECTURE rtl OF tristate IS
BEGIN

mybidir <= 'Z' WHEN (myenable = '0') ELSE myinput;
END rtl;

6–48 Chapter 6: Recommended HDL Coding Styles
General Coding Guidelines

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Altera recommends using dedicated hardware to perform clock multiplexing when it
is available, instead of using multiplexing logic. For example, you can use the Clock
Switchover feature or the Clock Control Block available in certain Altera devices.
These dedicated hardware blocks avoid glitches, ensure that you use global low-skew
routing lines, and avoid any possible hold time problems on the device due to logic
delay on the clock line. Many Altera devices also support dynamic PLL
reconfiguration, which is the safest and most robust method of changing clock rates
during device operation.

f Refer to the appropriate device data sheet or handbook for device-specific
information about clocking structures. Also refer to the ALTCLKCTRL Megafunction
User Guide, the ALTPLL Megafunction User Guide, and the Phase-Locked Loops
Reconfiguration (ALTPLL_RECONFIG) Megafunction User Guide.

If you implement a clock multiplexer in logic cells because the design has too many
clocks to use the clock control block, or if dynamic reconfiguration is too complex for
your design, it is important to consider simultaneous toggling inputs and ensure
glitch-free transitions.

Figure 6–2 shows a simple representation of a clock multiplexer (mux) in a device
with 6-input LUTs.

The data sheet for your target device describes how LUT outputs may glitch during a
simultaneous toggle of input signals, independent of the LUT function. Although in
practice the 4:1 MUX function does not generate detectable glitches during
simultaneous data input toggles, it is possible to construct cell implementations that
do exhibit significant glitches, so this simple clock mux structure is not recommended.
An additional problem with this implementation is that the output behaves erratically
during a change in the clk_select signals. This behavior could create timing
violations on all registers fed by the system clock and result in possible metastability.

A more sophisticated clock select structure can eliminate the simultaneous toggle and
switching problems, as shown in Figure 6–3.

Figure 6–2. Simple Clock Multiplexer in a 6-Input LUT

clk0

clk1

clk2

clk3

Sys_clk

clk_select (static)

http://www.altera.com/literature/ug/ug_altclock.pdf
http://www.altera.com/literature/ug/ug_altclock.pdf
http://www.altera.com/literature/ug/ug_altpll.pdf
http://www.altera.com/literature/ug/ug_altpll_reconfig.pdf
http://www.altera.com/literature/ug/ug_altpll_reconfig.pdf

Chapter 6: Recommended HDL Coding Styles 6–49
General Coding Guidelines

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

This structure can be generalized for any number of clock channels. Example 6–41
contains a parameterized version in Verilog HDL. The design enforces that no clock
activates until all others have been inactive for at least a few cycles, and that activation
occurs while the clock is low. The design applies a synthesis_keep directive to the
AND gates on the right side of the figure, which ensures there are no simultaneous
toggles on the input of the clk_out OR gate.

1 Switching from clock A to clock B requires that clock A continue to operate for at least
a few cycles. If the old clock stops immediately, the design sticks. The select signals
are implemented as a “one-hot” control in this example, but you can use other
encoding if you prefer. The input side logic is asynchronous and is not critical. This
design can tolerate extreme glitching during the switch process.

Figure 6–3. Glitch-Free Clock Multiplexer Structure

sel0

sel1

clk0

clk1

clk_out

DQ DQ DQ

DQDQDQ

6–50 Chapter 6: Recommended HDL Coding Styles
General Coding Guidelines

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Example 6–41. Verilog HDL Clock Multiplexing Design to Avoid Glitches

module clock_mux (clk,clk_select,clk_out);

parameter num_clocks = 4;

input [num_clocks-1:0] clk;
input [num_clocks-1:0] clk_select; // one hot
output clk_out;

genvar i;

reg [num_clocks-1:0] ena_r0;
reg [num_clocks-1:0] ena_r1;
reg [num_clocks-1:0] ena_r2;
wire [num_clocks-1:0] qualified_sel;

// A look-up-table (LUT) can glitch when multiple inputs
// change simultaneously. Use the keep attribute to
// insert a hard logic cell buffer and prevent
// the unrelated clocks from appearing on the same LUT.

wire [num_clocks-1:0] gated_clks /* synthesis keep */;

initial begin
ena_r0 = 0;
ena_r1 = 0;
ena_r2 = 0;
end

generate
for (i=0; i<num_clocks; i=i+1)
begin : lp0
wire [num_clocks-1:0] tmp_mask;
assign tmp_mask = {num_clocks{1'b1}} ^ (1 << i);

assign qualified_sel[i] = clk_select[i] &
(~|(ena_r2 & tmp_mask));

always @(posedge clk[i]) begin
ena_r0[i] <= qualified_sel[i];
ena_r1[i] <= ena_r0[i];
end

always @(negedge clk[i]) begin
ena_r2[i] <= ena_r1[i];
end

assign gated_clks[i] = clk[i] & ena_r2[i];
end
endgenerate

// These will not exhibit simultaneous toggle by construction
assign clk_out = |gated_clks;

endmodule

Chapter 6: Recommended HDL Coding Styles 6–51
General Coding Guidelines

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Adder Trees
Structuring adder trees appropriately to match your targeted Altera device
architecture can result in significant performance and density improvements. A good
example of an application using a large adder tree is a finite impulse response (FIR)
correlator. Using a pipelined binary or ternary adder tree appropriately can greatly
improve the quality of your results.

This section explains why coding recommendations are different for Altera 4-input
LUT devices and 6-input LUT devices.

Architectures with 4-Input LUTs in Logic Elements
Architectures such as Stratix devices and the Cyclone series of devices contain 4-input
LUTs as the standard combinational structure in the LE.

If your design can tolerate pipelining, the fastest way to add three numbers A, B, and
C in devices that use 4-input lookup tables is to add A + B, register the output, and
then add the registered output to C. Adding A + B takes one level of logic (one bit is
added in one LE), so this runs at full clock speed. This can be extended to as many
numbers as desired.

Example 6–42 shows five numbers A, B, C, D, and E are added. Adding five numbers
in devices that use 4-input lookup tables requires four adders and three levels of
registers for a total of 64 LEs (for 16-bit numbers).

Example 6–42. Verilog HDL Pipelined Binary Tree

module binary_adder_tree (a, b, c, d, e, clk, out);
parameter width = 16;
input [width-1:0] a, b, c, d, e;
input clk;
output [width-1:0] out;

wire [width-1:0] sum1, sum2, sum3, sum4;
reg [width-1:0] sumreg1, sumreg2, sumreg3, sumreg4;
// Registers

always @ (posedge CLK)
begin

sumreg1 <= sum1;
sumreg2 <= sum2;
sumreg3 <= sum3;
sumreg4 <= sum4;

end

// 2-bit additions
assign sum1 = A + B;
assign sum2 = C + D;
assign sum3 = sumreg1 + sumreg2;
assign sum4 = sumreg3 + E;
assign out = sumreg4;

endmodule

6–52 Chapter 6: Recommended HDL Coding Styles
General Coding Guidelines

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Architectures with 6-Input LUTs in Adaptive Logic Modules
High-performance Altera device families use a 6-input LUT in their basic logic
structure, so these devices benefit from a different coding style from the previous
example presented for 4-input LUTs. Specifically, in these devices, ALMs can
simultaneously add three bits. Therefore, the tree in Example 6–42 must be two levels
deep and contain just two add-by-three inputs instead of four add-by-two inputs.

Although the code in the previous example compiles successfully for 6-input LUT
devices, the code is inefficient and does not take advantage of the 6-input adaptive
ALUT. By restructuring the tree as a ternary tree, the design becomes much more
efficient, significantly improving density utilization. Therefore, when you are
targeting with ALUTs and ALMs, large pipelined binary adder trees designed for
4-input LUT architectures should be rewritten to take advantage of the advanced
device architecture.

Example 6–43 uses just 32 ALUTs in a Stratix II device—more than a 4:1 advantage
over the number of LUTs in the prior example implemented in a Stratix device.

1 You cannot pack a LAB full when using this type of coding style because of the
number of LAB inputs. However, in a typical design, the Quartus II Fitter can pack
other logic into each LAB to take advantage of the unused ALMs.

These examples show pipelined adders, but partitioning your addition operations can
help you achieve better results in nonpipelined adders as well. If your design is not
pipelined, a ternary tree provides much better performance than a binary tree. For
example, depending on your synthesis tool, the HDL code
sum = (A + B + C) + (D + E) is more likely to create the optimal
implementation of a 3-input adder for A + B + C followed by a 3-input adder for
sum1 + D + E than the code without the parentheses. If you do not add the
parentheses, the synthesis tool may partition the addition in a way that is not optimal
for the architecture.

Example 6–43. Verilog HDL Pipelined Ternary Tree

module ternary_adder_tree (a, b, c, d, e, clk, out);
parameter width = 16;
input [width-1:0] a, b, c, d, e;
input clk;
output [width-1:0] out;

wire [width-1:0] sum1, sum2;
reg [width-1:0] sumreg1, sumreg2;
// registers

always @ (posedge clk)
begin

sumreg1 <= sum1;
sumreg2 <= sum2;

end

// 3-bit additions
assign sum1 = a + b + c;
assign sum2 = sumreg1 + d + e;
assign out = sumreg2;

endmodule

Chapter 6: Recommended HDL Coding Styles 6–53
General Coding Guidelines

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

State Machines
Synthesis tools can recognize and encode Verilog HDL and VHDL state machines
during synthesis. This section presents guidelines to ensure the best results when you
use state machines. Ensuring that your synthesis tool recognizes a piece of code as a
state machine allows the tool to recode the state variables to improve the quality of
results, and allows the tool to use the known properties of state machines to optimize
other parts of the design. When synthesis recognizes a state machine, it is often able to
improve the design area and performance.

To achieve the best results on average, synthesis tools often use one-hot encoding for
FPGA devices and minimal-bit encoding for CPLD devices, although the choice of
implementation can vary for different state machines and different devices. Refer to
your synthesis tool documentation for specific ways to control the manner in which
state machines are encoded.

f For information about state machine encoding in Quartus II integrated synthesis,
refer to the State Machine Processing section in the Quartus II Integrated Synthesis
chapter in volume 1 of the Quartus II Handbook.

To ensure proper recognition and inference of state machines and to improve the
quality of results, Altera recommends that you observe the following guidelines,
which apply to both Verilog HDL and VHDL:

■ Assign default values to outputs derived from the state machine so that synthesis
does not generate unwanted latches.

■ Separate the state machine logic from all arithmetic functions and data paths,
including assigning output values.

■ If your design contains an operation that is used by more than one state, define the
operation outside the state machine and cause the output logic of the state
machine to use this value.

■ Use a simple asynchronous or synchronous reset to ensure a defined power-up
state. If your state machine design contains more elaborate reset logic, such as both
an asynchronous reset and an asynchronous load, the Quartus II software
generates regular logic rather than inferring a state machine.

If a state machine enters an illegal state due to a problem with the device, the design
likely ceases to function correctly until the next reset of the state machine. Synthesis
tools do not provide for this situation by default. The same issue applies to any other
registers if there is some kind of fault in the system. A default or when others
clause does not affect this operation, assuming that your design never deliberately
enters this state. Synthesis tools remove any logic generated by a default state if it is
not reachable by normal state machine operation.

Many synthesis tools (including Quartus II integrated synthesis) have an option to
implement a safe state machine. The software inserts extra logic to detect an illegal
state and force the state machine’s transition to the reset state. It is commonly used
when the state machine can enter an illegal state. The most common cause of this
situation is a state machine that has control inputs that come from another clock
domain, such as the control logic for a dual-clock FIFO.

http://www.altera.com/literature/hb/qts/qts_qii51008.pdf

6–54 Chapter 6: Recommended HDL Coding Styles
General Coding Guidelines

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

This option protects only state machines by forcing them into the reset state. All other
registers in the design are not protected this way. If the design has asynchronous
inputs, Altera recommends using a synchronization register chain instead of relying
on the safe state machine option.

f For additional information about tool-specific options for implementing state
machines, refer to the tool vendor’s documentation or the appropriate chapter in the
Synthesis section in volume 1 of the Quartus II Handbook.

The following two sections, “Verilog HDL State Machines” and “VHDL State
Machines” on page 6–58, describe additional language-specific guidelines and coding
examples.

Verilog HDL State Machines
To ensure proper recognition and inference of Verilog HDL state machines, observe
the following additional Verilog HDL guidelines. Some of these guidelines may be
specific to Quartus II integrated synthesis. Refer to your synthesis tool documentation
for specific coding recommendations.

If the state machine is not recognized and inferred by the synthesis software (such as
Quartus II integrated synthesis), the state machine is implemented as regular logic
gates and registers and the state machine is not listed as a state machine in the
Analysis & Synthesis section of the Quartus II Compilation Report. In this case, the
software does not perform any of the optimizations that are specific to state machines.

■ If you are using the SystemVerilog standard, use enumerated types to describe
state machines (as shown in the “SystemVerilog State Machine Coding Example”
on page 6–57).

■ Represent the states in a state machine with the parameter data types in
Verilog-1995 and -2001 and use the parameters to make state assignments (as
shown in the “Verilog-2001 State Machine Coding Example” on page 6–55). This
implementation makes the state machine easier to read and reduces the risk of
errors during coding.

1 Altera recommends against the direct use of integer values for state
variables such as next_state <= 0. However, using an integer does not
prevent inference in the Quartus II software.

■ No state machine is inferred in the Quartus II software if the state transition logic
uses arithmetic similar to that shown in the following example:

case (state)
0: begin

if (ena) next_state <= state + 2;
else next_state <= state + 1;

end
1: begin
...

endcase

■ No state machine is inferred in the Quartus II software if the state variable is an
output.

■ No state machine is inferred in the Quartus II software for signed variables.

http://www.altera.com/literature/hb/qts/qts_qii5v1_03.pdf

Chapter 6: Recommended HDL Coding Styles 6–55
General Coding Guidelines

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Verilog-2001 State Machine Coding Example

The following module verilog_fsm is an example of a typical Verilog HDL state
machine implementation (Example 6–44).

This state machine has five states. The asynchronous reset sets the variable state to
state_0. The sum of in_1 and in_2 is an output of the state machine in state_1
and state_2. The difference (in_1 – in_2) is also used in state_1 and state_2.
The temporary variables tmp_out_0 and tmp_out_1 store the sum and the
difference of in_1 and in_2. Using these temporary variables in the various states of
the state machine ensures proper resource sharing between the mutually exclusive
states.

6–56 Chapter 6: Recommended HDL Coding Styles
General Coding Guidelines

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Example 6–44. Verilog-2001 State Machine

module verilog_fsm (clk, reset, in_1, in_2, out);
input clk, reset;
input [3:0] in_1, in_2;
output [4:0] out;
parameter state_0 = 3'b000;
parameter state_1 = 3'b001;
parameter state_2 = 3'b010;
parameter state_3 = 3'b011;
parameter state_4 = 3'b100;

reg [4:0] tmp_out_0, tmp_out_1, tmp_out_2;
reg [2:0] state, next_state;

always @ (posedge clk or posedge reset)
begin

if (reset)
state <= state_0;

else
state <= next_state;

end
always @ (state or in_1 or in_2)
begin

tmp_out_0 = in_1 + in_2;
tmp_out_1 = in_1 - in_2;
case (state)

state_0: begin
tmp_out_2 <= in_1 + 5'b00001;
next_state <= state_1;

end
state_1: begin

if (in_1 < in_2) begin
next_state <= state_2;
tmp_out_2 <= tmp_out_0;

end
else begin

next_state <= state_3;
tmp_out_2 <= tmp_out_1;

end
end
state_2: begin

tmp_out_2 <= tmp_out_0 - 5'b00001;
next_state <= state_3;

end
state_3: begin

tmp_out_2 <= tmp_out_1 + 5'b00001;
next_state <= state_0;

end
state_4:begin

tmp_out_2 <= in_2 + 5'b00001;
next_state <= state_0;

end
default:begin

tmp_out_2 <= 5'b00000;
next_state <= state_0;

end
endcase

end
assign out = tmp_out_2;

endmodule

Chapter 6: Recommended HDL Coding Styles 6–57
General Coding Guidelines

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

An equivalent implementation of this state machine can be achieved by using
‘define instead of the parameter data type, as follows:

‘define state_0 3'b000
‘define state_1 3'b001
‘define state_2 3'b010
‘define state_3 3'b011
‘define state_4 3'b100

In this case, the state and next_state assignments are assigned a ‘state_x
instead of a state_x, as shown in the following example:

next_state <= ‘state_3;

1 Although the ‘define construct is supported, Altera strongly recommends the use
of the parameter data type because doing so preserves the state names throughout
synthesis.

SystemVerilog State Machine Coding Example

The module enum_fsm shown in Example 6–45 is an example of a SystemVerilog
state machine implementation that uses enumerated types. Altera recommends using
this coding style to describe state machines in SystemVerilog.

1 In Quartus II integrated synthesis, the enumerated type that defines the states for the
state machine must be of an unsigned integer type as shown in Example 6–45. If you
do not specify the enumerated type as int unsigned, a signed int type is used by
default. In this case, the Quartus II integrated synthesis synthesizes the design, but
does not infer or optimize the logic as a state machine.

6–58 Chapter 6: Recommended HDL Coding Styles
General Coding Guidelines

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

VHDL State Machines
To ensure proper recognition and inference of VHDL state machines, represent the
states in a state machine with enumerated types and use the corresponding types to
make state assignments. This implementation makes the state machine easier to read
and reduces the risk of errors during coding. If the state is not represented by an
enumerated type, synthesis software (such as Quartus II integrated synthesis) does
not recognize the state machine. Instead, the state machine is implemented as regular
logic gates and registers and the state machine is not listed as a state machine in the
Analysis & Synthesis section of the Quartus II Compilation Report. In this case, the
software does not perform any of the optimizations that are specific to state machines.

VHDL State Machine Coding Example

The following entity, vhd1_fsm, is an example of a typical VHDL state machine
implementation (Example 6–46).

This state machine has five states. The asynchronous reset sets the variable state to
state_0. The sum of in1 and in2 is an output of the state machine in state_1 and
state_2. The difference (in1 - in2) is also used in state_1 and state_2. The
temporary variables tmp_out_0 and tmp_out_1 store the sum and the difference of
in1 and in2. Using these temporary variables in the various states of the state
machine ensures proper resource sharing between the mutually exclusive states.

Example 6–45. SystemVerilog State Machine Using Enumerated Types

module enum_fsm (input clk, reset, input int data[3:0], output int o);

enum int unsigned { S0 = 0, S1 = 2, S2 = 4, S3 = 8 } state, next_state;

always_comb begin : next_state_logic
 next_state = S0;
 case(state)

S0: next_state = S1;
S1: next_state = S2;
S2: next_state = S3;
S3: next_state = S3;

 endcase
end

always_comb begin
 case(state)

 S0: o = data[3];
 S1: o = data[2];
 S2: o = data[1];
 S3: o = data[0];

 endcase
end

always_ff@(posedge clk or negedge reset) begin
 if(~reset)

 state <= S0;
 else

 state <= next_state;
end
endmodule

Chapter 6: Recommended HDL Coding Styles 6–59
General Coding Guidelines

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Example 6–46. VHDL State Machine (Part 1 of 2)

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.numeric_std.all;

ENTITY vhdl_fsm IS
PORT(

clk: IN STD_LOGIC;
reset: IN STD_LOGIC;
in1: IN UNSIGNED(4 downto 0);
in2: IN UNSIGNED(4 downto 0);
out_1: OUT UNSIGNED(4 downto 0)
);

END vhdl_fsm;

ARCHITECTURE rtl OF vhdl_fsm IS
TYPE Tstate IS (state_0, state_1, state_2, state_3, state_4);
SIGNAL state: Tstate;
SIGNAL next_state: Tstate;

BEGIN
PROCESS(clk, reset)
BEGIN

IF reset = '1' THEN
state <=state_0;

ELSIF rising_edge(clk) THEN
state <= next_state;

END IF;
END PROCESS;

PROCESS (state, in1, in2)
VARIABLE tmp_out_0: UNSIGNED (4 downto 0);
VARIABLE tmp_out_1: UNSIGNED (4 downto 0);

6–60 Chapter 6: Recommended HDL Coding Styles
General Coding Guidelines

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Example 6-46. VHDL State Machine (Part 2 of 2))

Multiplexers
Multiplexers form a large portion of the logic utilization in many FPGA designs. By
optimizing your multiplexer logic, you ensure the most efficient implementation in
your Altera device. This section addresses common problems and provides design
guidelines to achieve optimal resource utilization for multiplexer designs. The section
also describes various types of multiplexers, and how they are implemented in the
4-input LUT found in many FPGA architectures, such as Altera’s Stratix devices.

1 Stratix II and newer high-performance devices have 6-input ALUTs and are not
specifically addressed here. Although many of the principles and techniques for
optimization are similar, device utilization differs in the 6-input LUT devices. For
example, these devices can implement wider multiplexers in one ALM than can be
implemented in the 4-input LUT of an LE.

BEGIN
tmp_out_0 := in1 + in2;
tmp_out_1 := in1 - in2;
CASE state IS

WHEN state_0 =>
out_1 <= in1;
next_state <= state_1;

WHEN state_1 =>
IF (in1 < in2) then

next_state <= state_2;
out_1 <= tmp_out_0;

ELSE
next_state <= state_3;
out_1 <= tmp_out_1;

END IF;
WHEN state_2 =>

IF (in1 < "0100") then
out_1 <= tmp_out_0;

ELSE
out_1 <= tmp_out_1;

END IF;
next_state <= state_3;

WHEN state_3 =>
out_1 <= "11111";
next_state <= state_4;

WHEN state_4 =>
out_1 <= in2;
next_state <= state_0;

WHEN OTHERS =>
out_1 <= "00000";
next_state <= state_0;

END CASE;
END PROCESS;

END rtl;

Chapter 6: Recommended HDL Coding Styles 6–61
General Coding Guidelines

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Quartus II Software Option for Multiplexer Restructuring
Quartus II integrated synthesis provides the Restructure Multiplexers logic option
that extracts and optimizes buses of multiplexers during synthesis. In certain
situations, this option automatically performs some of the recoding functions
described in this section without changing the HDL code in your design. The default
setting Auto for this option uses the optimization when it is most likely to benefit the
optimization targets for your design. You can turn the option on or off specifically to
have more control over its use.

f For details, refer to the Restructure Multiplexers subsection in the Quartus II Integrated
Synthesis chapter in volume 1 of the Quartus II Handbook.

Even with this Quartus II-specific option turned on, it is beneficial to understand how
your coding style can be interpreted by your synthesis tool, and avoid the situations
that can cause problems in your design.

Multiplexer Types
This subsection addresses how multiplexers are created from various types of HDL
code. CASE statements, IF statements, and state machines are all common sources of
multiplexer logic in designs. These HDL structures create different types of
multiplexers including binary multiplexers, selector multiplexers, and priority
multiplexers. Understanding how multiplexers are created from HDL code and how
they might be implemented during synthesis is the first step toward optimizing
multiplexer structures for best results.

Binary Multiplexers

Binary multiplexers select inputs based on binary-encoded selection bits.
Example 6–47 shows Verilog HDL code for two ways to describe a simple 4:1 binary
multiplexer.

A 4:1 binary multiplexer is efficiently implemented by using two 4-input LUTs. Larger
binary multiplexers can be constructed that use the 4:1 multiplexer; constructing an
N-input multiplexer (N:1 multiplexer) from a tree of 4:1 multiplexers can result in a
structure using as few as 0.66*(N - 1) LUTs.

Selector Multiplexers

Selector multiplexers have a separate select line for each data input. The select lines
for the multiplexer are one-hot encoded. Example 6–48 shows a simple Verilog HDL
code example describing a one-hot selector multiplexer.

Example 6–47. Verilog HDL Binary-Encoded Multiplexers

case (sel)
2'b00: z = a;
2'b01: z = b;
2'b10: z = c;
2'b11: z = d;

endcase

http://www.altera.com/literature/hb/qts/qts_qii51008.pdf
http://www.altera.com/literature/hb/qts/qts_qii51008.pdf

6–62 Chapter 6: Recommended HDL Coding Styles
General Coding Guidelines

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Selector multiplexers are commonly built as a tree of AND and OR gates. Using this
scheme, two inputs can be selected using two select lines in a single 4-input LUT that
uses two AND gates and an OR gate. The outputs of these LUTs can be combined
with a wide OR gate. An N-input selector multiplexer of this structure requires at
least 0.66*(N-0.5) LUTs, which is just slightly worse than the best binary multiplexer.

Priority Multiplexers

In priority multiplexers, the select logic implies a priority. The options to select the
correct item must be checked in a specific order based on signal priority. These
structures commonly are created from IF, ELSE, WHEN, SELECT, and ?: statements in
VHDL or Verilog HDL. The example VHDL code in Example 6–49 probably results in
the schematic implementation illustrated in Figure 6–4.

The multiplexers shown in Figure 6–4 form a chain, evaluating each condition or
select bit sequentially.

An N-input priority multiplexer uses a LUT for every 2:1 multiplexer in the chain,
requiring N-1 LUTs. This chain of multiplexers is likely to increase delay because the
critical path through the logic traverses every multiplexer in the chain.

Example 6–48. Verilog HDL One-Hot-Encoded Case Statement

case (sel)
4'b0001: z = a;
4'b0010: z = b;
4'b0100: z = c;
4'b1000: z = d;
default: z = 1'bx;

endcase

Example 6–49. VHDL IF Statement Implying Priority

IF cond1 THEN z <= a;
ELSIF cond2 THEN z <= b;
ELSIF cond3 THEN z <= c;
ELSE z <= d;
END IF;

Figure 6–4. Priority Multiplexer Implementation of an IF Statement

1 0

1 0

cond3

cond2

cond1 1 0

c

b

a

z

d

Chapter 6: Recommended HDL Coding Styles 6–63
General Coding Guidelines

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

To improve the timing delay through the multiplexer, avoid priority multiplexers if
priority is not required. If the order of the choices is not important to the design, use a
CASE statement to implement a binary or selector multiplexer instead of a priority
multiplexer. If delay through the structure is important in a multiplexed design
requiring priority, consider recoding the design to reduce the number of logic levels to
minimize delay, especially along your critical paths.

Default or Others Case Assignment
To fully specify the cases in a CASE statement, include a default (Verilog HDL) or
OTHERS (VHDL) assignment. This assignment is especially important in one-hot
encoding schemes where many combinations of the select lines are unused.
Specifying a case for the unused select line combinations gives the synthesis tool
information about how to synthesize these cases, and is required by the Verilog HDL
and VHDL language specifications.

Some designs do not require that the outcome in the unused cases be considered,
often because designers assume these cases will not occur. For these types of designs,
you can specify any value for the default or OTHERS assignment. However, be
aware that the assignment value you choose can have a large effect on the logic
utilization required to implement the design due to the different ways synthesis tools
treat different values for the assignment, and how the synthesis tools use different
speed and area optimizations.

To obtain best results, explicitly define invalid CASE selections with a separate
default or OTHERS statement instead of combining the invalid cases with one of the
defined cases.

If the value in the invalid cases is not important, specify those cases explicitly by
assigning the X (don’t care) logic value instead of choosing another value. This
assignment allows your synthesis tool to perform the best area optimizations.

You can experiment with different default or OTHERS assignments for your HDL
design and your synthesis tool to test the effect they have on logic utilization in your
design.

Implicit Defaults
The IF statements in Verilog HDL and VHDL can be a convenient way to specify
conditions that do not easily lend themselves to a CASE-type approach. However,
using IF statements can result in complicated multiplexer trees that are not easy for
synthesis tools to optimize.

In particular, every IF statement has an implicit ELSE condition, even when it is not
specified. These implicit defaults can cause additional complexity in a multiplexed
design.

The code in Example 6–50 represents a multiplexer with four inputs (a, b, c, d) and
one output (z). Altera does not recommend using this coding style.

6–64 Chapter 6: Recommended HDL Coding Styles
General Coding Guidelines

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Although the code appears to implement a 4:1 multiplexer, each of the three separate
IF statements in the code has an implicit ELSE condition that is not specified. Because
the output values for the ELSE cases are not specified, the synthesis tool assumes the
intent is to maintain the same output value for these cases and infers a combinational
loop, such as a latch. Latches add to the design’s logic utilization and can also make
timing analysis difficult and lead to other problems.

The code sample shown in Example 6–51 shows code with the same functionality as
the code shown in Example 6–50, but specifies the ELSE cases explicitly. (This is not a
recommended coding style improvement, but it explicitly shows the default
conditions from the previous example.)

Figure 6–5 is a schematic representing the code in Example 6–51, which illustrates that
the multiplexer logic is significantly more complicated than a basic 4:1 multiplexer,
although there are only four inputs.

Example 6–50. VHDL IF Statement with Implicit Defaults

IF cond1 THEN
IF cond2 THEN

z <= a;
END IF;

ELSIF cond3 THEN
IF cond4 THEN

z <= b;
ELSIF cond5 THEN

z <= c;
END IF;

ELSIF cond6 THEN
z <= d;

END IF;

Example 6–51. VHDL IF Statement with Default Conditions Explicitly Specified

IF cond1 THEN
IF cond2 THEN

z <= a;
ELSE

z <= z;
END IF;

ELSIF cond3 THEN
IF cond4 THEN

z <= b;
ELSIF cond5 THEN

z <= c;
ELSE

z <= z;
END IF;

ELSIF cond6 THEN
z <= d;

ELSE
z <= z;

END IF;

Chapter 6: Recommended HDL Coding Styles 6–65
General Coding Guidelines

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

There are several ways you can simplify the multiplexed logic and remove the
unrequired defaults. The optimal method may be to recode the design so the logic
takes the structure of a 4:1 CASE statement. Alternatively, if priority is important, you
can restructure the code to deduce default cases and flatten the multiplexer. In this
example, instead of IF cond1 THEN IF cond2, use IF (cond1 AND cond2), which
performs the same function. In addition, examine whether the defaults are don’t care
cases. In this example, you can promote the last ELSIF cond6 statement to an ELSE
statement if no other valid cases can occur.

Avoid unnecessary default conditions in your multiplexer logic to reduce the
complexity and logic utilization required to implement your design.

Degenerate Multiplexers
A degenerate multiplexer is a multiplexer in which not all of the possible cases are
used for unique data inputs. The cases that are not required tend to contribute to
inefficiency in the logic utilization for these multiplexers. You can recode degenerate
multiplexers so they take advantage of the efficient logic utilization possible with full
binary multiplexers.

Example 6–52 shows a VHDL CASE statement describing a degenerate multiplexer.

The number of select lines in a binary multiplexer normally dictates the size of a
multiplexer required to implement the desired function. For example, the multiplexer
structure represented in Figure 6–6 has four select lines capable of implementing a
binary multiplexer with 16 inputs. However, the design does not use all 16 inputs,
which makes this multiplexer a degenerate 16:1 multiplexer.

Figure 6–5. Multiplexer Implementation of an IF Statement with Implicit Defaults

Example 6–52. VHDL CASE Statement Describing a Degenerate Multiplexer

CASE sel[3:0] IS
WHEN "0101" => z <= a;
WHEN "0111" => z <= b;
WHEN "1010" => z <= c;
WHEN OTHERS => z <= d;

END CASE;

1 0

1 0

cond6
0 1cond4

0 1cond2

cond3

cond1

0 1cond5

1 0

z

z a

z c

d

b

z

6–66 Chapter 6: Recommended HDL Coding Styles
General Coding Guidelines

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

In Figure 6–6, the first and fourth multiplexers in the top level can easily be eliminated
because all four inputs to each multiplexer are the same value, and the number of
inputs to the other multiplexers can be reduced, as shown in Figure 6–7.

Implementing this version of the multiplexer still requires at least five 4-input LUTs,
two for each of the remaining 3:1 multiplexers and one for the 2:1 multiplexer. This
design selects an output from only four inputs; a 4:1 binary multiplexer can be
implemented optimally in two LUTs, therefore this degenerate multiplexer tree
reduces the efficiency of the logic.

You can improve logic utilization of this structure by recoding the select lines to
implement a full 4:1 binary multiplexer. The code sample shown in Example 6–53
shows a recoder design that translates the original select lines into the z_sel signal
with binary encoding.

The code sample shown in Example 6–54 shows you how to implement the full binary
multiplexer.

Figure 6–6. Binary Degenerate Multiplexer

Figure 6–7. Optimized Version of the Degenerate Binary Multiplexer

Example 6–53. VHDL Recoder Design for Degenerate Binary Multiplexer

CASE sel[3:0] IS
WHEN "0101" => z_sel <= "00";
WHEN "0111" => z_sel <= "01";
WHEN "1010" => z_sel <= "10";
WHEN OTHERS => z_sel <= "11";

END CASE;

sel[1:0]

Binary MUX
sel[3:2]

“10xx”“01xx”

“00xx” “11xx”

z

a b c d

sel[1:0]

sel[3:2]

“10xx”“01xx”

“00xx” “11xx”

3:1

3:1

2:1

a

z

b c d

Chapter 6: Recommended HDL Coding Styles 6–67
General Coding Guidelines

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Use the new z_sel control signal from the recoder design to control the 4:1 binary
multiplexer that chooses between the four inputs a, b, c, and d, as illustrated in
Figure 6–8. The complexity of the select lines is handled in the recoder design, and the
data multiplexing is performed with simple binary select lines enabling the most
efficient implementation.

The design for the recoder can be implemented in two LUTs and the efficient 4:1
binary multiplexer uses two LUTs, for a total of four LUTs. The original degenerate
multiplexer required five LUTs, so the recoded version uses 20% less logic than the
original.

You can often improve the logic utilization of multiplexers by recoding the select lines
into full binary cases. Although logic is required to perform the encoding, the overall
logic utilization is often improved.

Buses of Multiplexers
The inputs to multiplexers are often data input buses in which the same multiplexer
function is performed on a set of data input buses. In these cases, any inefficiency in
the multiplexer is multiplied by the number of bits in the bus. The issues described in
the previous sections become even more important for wide multiplexer buses.

For example, the recoding of select lines into full binary cases detailed in the previous
section can often be used in multiplexed buses. Recoding the select lines may have to
be completed only once for all the multiplexers in the bus. By sharing the recoder
logic among all bits in the bus, you can greatly improve the logic efficiency of a bus of
multiplexers.

The degenerate multiplexer in the previous section requires five LUTs to implement.
If the inputs and output are 32 bits wide, the function could require 32 * 5 or 160
LUTs for the whole bus. The recoder design uses only two LUTs, and the select lines
have to be recoded only once for the entire bus. The binary 4:1 multiplexer requires
two LEs per bit of the bus. The total logic utilization for the recoded version could be
2 + (2 × 32) or 66 LUTs for the whole bus, compared to 160 LUTs for the original
version. The logic savings become more important with wide multiplexer buses.

Example 6–54. VHDL 4:1 Binary Multiplexer Design

CASE z_sel[1:0] IS
WHEN "00" => z <= a;
WHEN "01" => z <= b;
WHEN "10" => z <= c;
WHEN "11" => z <= d;

END CASE;

Figure 6–8. Binary Multiplexer with Recorder

a b c d
sel[3:0]

z_sel[1:0]

Recoder

4:1

z

6–68 Chapter 6: Recommended HDL Coding Styles
General Coding Guidelines

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Using techniques to optimize degenerate multiplexers, removing implicit defaults are
not required, and choosing the optimal DEFAULT or OTHERS case can play an
important role when optimizing buses of multiplexers.

Cyclic Redundancy Check Functions
CRC computations are used heavily by communications protocols and storage
devices to detect any corruption of data. These functions are highly effective; there is a
very low probability that corrupted data can pass a 32-bit CRC check.

CRC functions typically use wide XOR gates to compare the data. The way synthesis
tools flatten and factor these XOR gates to implement the logic in FPGA LUTs can
greatly impact the area and performance results for the design. XOR gates have a
cancellation property that creates an exceptionally large number of reasonable
factoring combinations, so synthesis tools cannot always choose the best result by
default.

The 6-input ALUT has a significant advantage over 4-input LUTs for these designs.
When properly synthesized, CRC processing designs can run at high speeds in
devices with 6-input ALUTs.

The following guidelines help you improve the quality of results for CRC designs in
Altera devices.

If Performance is Important, Optimize for Speed
Synthesis tools flatten XOR gates to minimize area and depth of levels of logic.
Synthesis tools such as Quartus II integrated synthesis target area optimization by
default for these logic structures. Therefore, for more focus on depth reduction, set the
synthesis optimization technique to speed.

Flattening for depth sometimes causes a significant increase in area.

Use Separate CRC Blocks Instead of Cascaded Stages
Some designers optimize their CRC designs to use cascaded stages (for example, four
stages of 8 bits). In such designs, intermediate calculations are used as required (such
as the calculations after 8, 24, or 32 bits) depending on the data width. This design is
not optimal in FPGA devices. The XOR cancellations that can be performed in CRC
designs mean that the function does not require all the intermediate calculations to
determine the final result. Therefore, forcing the use of intermediate calculations
increases the area required to implement the function, as well as increasing the logic
depth because of the cascading. It is typically better to create full separate CRC blocks
for each data width that you require in the design, then multiplex them together to
choose the appropriate mode at a given time.

Use Separate CRC Blocks Instead of Allowing Blocks to Merge
Synthesis tools often attempt to optimize CRC designs by sharing resources and
extracting duplicates in two different CRC blocks because of the factoring options in
the XOR logic. As addressed previously, the CRC logic allows significant reductions
but this works best when each CRC function is optimized separately. Check for
duplicate extraction behavior if you have different CRC functions that are driven by
common data signals or that feed the same destination signals.

Chapter 6: Recommended HDL Coding Styles 6–69
General Coding Guidelines

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

If you are having problems with the quality of results and you see that two CRC
functions are sharing logic, ensure that the blocks are synthesized independently
using one of the following methods:

■ Define each CRC block as a separate design partition in an incremental
compilation design flow

f For details, refer to the Quartus II Incremental Compilation for Hierarchical
and Team-Based Design chapter in volume 1 of the Quartus II Handbook.

■ Synthesize each CRC block as a separate project in your third-party synthesis tool
and then write a separate Verilog Quartus Mapping (.vqm) or EDIF netlist file for
each

Take Advantage of Latency if Available
If your design can use more than one cycle to implement the CRC functionality,
adding registers and retiming the design can help reduce area, improve performance,
and reduce power utilization. If your synthesis tool offers a retiming feature (such as
the Quartus II software Perform gate-level register retiming option), you can insert
an extra bank of registers at the input and allow the retiming feature to move the
registers for better results. You can also build the CRC unit half as wide and alternate
between halves of the data in each clock cycle.

Save Power by Disabling CRC Blocks When Not in Use
CRC designs are heavy consumers of dynamic power because the logic toggles
whenever there is a change in the design. To save power, use clock enables to disable
the CRC function for every clock cycle that the logic is not required. Some designs
don’t check the CRC results for a few clock cycles while other logic is performed. It is
valuable to disable the CRC function even for this short amount of time.

Use the Device Synchronous Load (sload) Signal to Initialize
The data in many CRC designs must be initialized to 1’s before operation. If your
target device supports the use of the sload signal, you should use it to set all the
registers in your design to 1’s before operation. To enable use of the sload signal,
follow the coding guidelines presented in “Secondary Register Control Signals Such
as Clear and Clock Enable” on page 6–38. You can check the register equations in the
Timing Closure Floorplan or the Chip Planner to ensure that the signal was used as
expected.

f If you must force a register implementation using an sload signal, you can use
low-level device primitives as described in the Designing with Low-Level Primitives
User Guide.

Comparators
Synthesis software, including Quartus II integrated synthesis, uses device and
context-specific implementation rules for comparators (<, >, or ==) and selects the
best one for your design. This section provides some information about the different
types of implementations available and provides suggestions on how you can code
your design to encourage a specific implementation.

http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/ug/ug_low_level.pdf
http://www.altera.com/literature/ug/ug_low_level.pdf

6–70 Chapter 6: Recommended HDL Coding Styles
General Coding Guidelines

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

The == comparator is implemented in general logic cells. The < comparison can be
implemented using the carry chain or general logic cells. In devices with 6-input
ALUTs, the carry chain is capable of comparing up to three bits per cell. In devices
with 4-input LUTs, the capacity is one bit of comparison per cell, similar to an
add/subtract chain. The carry chain implementation tends to be faster than the
general logic on standalone benchmark test cases, but can result in lower performance
when it is part of a larger design due to the increased restriction on the Fitter. The area
requirement is similar for most input patterns. The synthesis software selects an
appropriate implementation based on the input pattern.

If you are using Quartus II integrated synthesis, you can guide the synthesis by using
specific coding styles. To select a carry chain implementation explicitly, rephrase your
comparison in terms of addition. As a simple example, the following coding style
allows the synthesis tool to select the implementation, which is most likely using
general logic cells in modern device families:

wire [6:0] a,b;
wire alb = a<b;

In the following coding style, the synthesis tool uses a carry chain (except for a few
cases, such as when the chain is very short or the signals a and b minimize to the
same signal):

wire [6:0] a,b;
wire [7:0] tmp = a - b;
wire alb = tmp[7]

This second coding style uses the top bit of the tmp signal, which is 1 in twos
complement logic if a is less than b, because the subtraction a – b results in a negative
number.

If you have any information about the range of the input, you have “don’t care”
values that you can use to optimize the design. Because this information is not
available to the synthesis tool, you can often reduce the device area required to
implement the comparator with specific hand implementation of the logic.

You can also check whether a bus value is within a constant range with a small
amount of logic area by using the logic structure shown in Figure 6–9. This type of
logic occurs frequently in address decoders.

Figure 6–9. Example Logic Structure for Using Comparators to Check a Bus Value Range

Address[]

Select[0]Select[3] Select[2] Select[1]

< 200< 2f00 < 1a0 < 100

Chapter 6: Recommended HDL Coding Styles 6–71
Designing with Low-Level Primitives

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Counters
Implementing counters in HDL code is easy; they are implemented with an adder
followed by registers. Remember that the register control signals, such as enable
(ena), synchronous clear (sclr), and synchronous load (sload), are available. For
the best area utilization, ensure that the up/down control or controls are expressed in
terms of one addition instead of two separate addition operators.

If you use the following coding style, your synthesis tool may implement two
separate carry chains for addition (if it doesn’t detect the issue and optimize the logic):

out <= count_up ? out + 1 : out - 1;

The following coding style requires only one adder along with some other logic:

out <= out + (count_up ? 1 : -1);

In this case, the coding style better matches the device hardware because there is only
one carry chain adder, and the –1 constant logic is implemented in the LUT in front of
the adder without adding extra area utilization.

Designing with Low-Level Primitives
Low-level HDL design is the practice of using low-level primitives and assignments
to dictate a particular hardware implementation for a piece of logic. Low-level
primitives are small architectural building blocks that assist you in creating your
design. With the Quartus II software, you can use low-level HDL design techniques to
force a specific hardware implementation that can help you achieve better resource
utilization or faster timing results.

1 Using low-level primitives is an advanced technique to help with specific design
challenges, and is optional in the Altera design flow. For many designs, synthesizing
generic HDL source code and Altera megafunctions gives you the best results.

Low-level primitives allow you to use the following types of coding techniques:

■ Instantiate the logic cell or LCELL primitive to prevent Quartus II integrated
synthesis from performing optimizations across a logic cell

■ Create carry and cascade chains using CARRY, CARRY_SUM, and CASCADE
primitives

■ Instantiate registers with specific control signals using DFF primitives

■ Specify the creation of LUT functions by identifying the LUT boundaries

■ Use I/O buffers to specify I/O standards, current strengths, and other I/O
assignments

■ Use I/O buffers to specify differential pin names in your HDL code, instead of
using the automatically-generated negative pin name for each pair

f For details about and examples of using these types of assignments, refer to the
Designing with Low-Level Primitives User Guide.

http://www.altera.com/literature/ug/ug_low_level.pdf
http://www.altera.com/literature/ug/ug_low_level.pdf

6–72 Chapter 6: Recommended HDL Coding Styles
Conclusion

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Conclusion
Because coding style and megafunction implementation can have such a large effect
on your design performance, it is important to match the coding style to the device
architecture from the very beginning of the design process. To improve design
performance and area utilization, take advantage of advanced device features, such as
memory and DSP blocks, as well as the logic architecture of the targeted Altera device
by following the coding recommendations presented in this chapter.

f For additional optimization recommendations, refer to the Area and Timing
Optimization chapter in volume 2 of the Quartus II Handbook.

Referenced Documents
This chapter references the following documents:

■ Area and Timing Optimization chapter in volume 2 of the Quartus II Handbook

■ Advanced Synthesis Cookbook: A Design Guide for Stratix II, Stratix III, and Stratix IV
Devices

■ ALTSHIFT_TAPS Megafunction User Guide

■ Design Recommendations for Altera Devices and the Quartus II Design Assistant
chapter in volume 1 of the Quartus II Handbook

■ Designing with Low-Level Primitives User Guide

■ Quartus II Integrated Synthesis chapter in volume 1 of the Quartus II Handbook

■ Quartus II Incremental Compilation for Hierarchical and Team-Based Design chapter in
volume 1 of the Quartus II Handbook

■ Synthesis section in volume 1 of the Quartus II Handbook

http://www.altera.com/literature/manual/stx_cookbook.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v1_03.pdf
http://www.altera.com/literature/hb/qts/qts_qii52005.pdf
http://www.altera.com/literature/hb/qts/qts_qii52005.pdf
http://www.altera.com/literature/hb/qts/qts_qii52005.pdf
http://www.altera.com/literature/hb/qts/qts_qii51006.pdf
http://www.altera.com/literature/hb/qts/qts_qii51008.pdf
http://www.altera.com/literature/ug/ug_low_level.pdf
http://www.altera.com/literature/ug/ug_alt_shift_taps.pdf

Chapter 6: Recommended HDL Coding Styles 6–73
Document Revision History

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Document Revision History
Table 6–2 shows the revision history for this chapter.

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

Table 6–2. Document Revision History

Date and
Document Version Changes Made Summary of Changes

November 2009
v9.1.0

■ Updated support for Controlling Inference and
Implementation in Device RAM Blocks

■ Updated support for Shift Registers

Updated for the Quartus II 9.1 software
release.

March 2009
v9.0.0

■ Corrected and updated several examples

■ Added support for Arria II GX devices

■ Other minor changes to chapter

Updated for the Quartus II 9.0 software
release.

November 2008
v8.1.0

Changed to 8-1/2 x 11 page size. No change to content. Updated for the Quartus II 8.1 software
release.

May 2008

v8.0.0

Updates for the Quartus II software version 8.0 release,
including:

■ Added information to “RAM Functions—Inferring
ALTSYNCRAM and ALTDPRAM Megafunctions from
HDL Code” on page 6–13

■ Added information to “Avoid Unsupported Reset and
Control Conditions” on page 6–14

■ Added information to “Check Read-During-Write
Behavior” on page 6–16

■ Added two new examples to “ROM Functions—Inferring
ALTSYNCRAM and LPM_ROM Megafunctions from HDL
Code” on page 6–28: Example 6–24 and Example 6–25

■ Added new section: “Clock Multiplexing” on page 6–46

■ Added hyperlinks to references within the chapter

■ Minor editorial updates

Updates and enhancements to subject
coverage for the Quartus II software
version 8.0 release.

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

	6. Recommended HDL Coding Styles
	Introduction
	Quartus II Language Templates
	Using Altera Megafunctions
	Instantiating Altera Megafunctions in HDL Code
	Instantiating Megafunctions Using the MegaWizard Plug-In Manager
	Creating a Netlist File for Other Synthesis Tools
	Instantiating Megafunctions Using the Port and Parameter Definition

	Inferring Multiplier and DSP Functions from HDL Code
	Multipliers—Inferring the LPM_MULT Megafunction from HDL Code
	Multiply-Accumulators and Multiply-Adders—Inferring ALTMULT_ACCUM and ALTMULT_ADD Megafunctions from HDL Code

	Inferring Memory Functions from HDL Code
	RAM Functions—Inferring ALTSYNCRAM and ALTDPRAM Megafunctions from HDL Code
	Use Synchronous Memory Blocks
	Avoid Unsupported Reset and Control Conditions
	Check Read-During-Write Behavior
	Controlling Inference and Implementation in Device RAM Blocks
	Single-Clock Synchronous RAM with Old Data Read-During-Write Behavior
	Single-Clock Synchronous RAM with New Data Read-During-Write Behavior
	Simple Dual-Port, Dual-Clock Synchronous RAM
	True Dual-Port Synchronous RAM
	Specifying Initial Memory Contents at Power-Up

	ROM Functions—Inferring ALTSYNCRAM and LPM_ROM Megafunctions from HDL Code
	Shift Registers—Inferring the ALTSHIFT_TAPS Megafunction from HDL Code
	Simple Shift Register
	Shift Register with Evenly Spaced Taps

	Coding Guidelines for Registers and Latches
	Register Power-Up Values in Altera Devices
	Secondary Register Control Signals Such as Clear and Clock Enable
	Latches
	Unintentional Latch Generation
	Inferring Latches Correctly

	General Coding Guidelines
	Tri-State Signals
	Clock Multiplexing
	Adder Trees
	Architectures with 4-Input LUTs in Logic Elements
	Architectures with 6-Input LUTs in Adaptive Logic Modules

	State Machines
	Verilog HDL State Machines
	VHDL State Machines

	Multiplexers
	Quartus II Software Option for Multiplexer Restructuring
	Multiplexer Types
	Default or Others Case Assignment
	Implicit Defaults
	Degenerate Multiplexers
	Buses of Multiplexers

	Cyclic Redundancy Check Functions
	If Performance is Important, Optimize for Speed
	Use Separate CRC Blocks Instead of Cascaded Stages
	Use Separate CRC Blocks Instead of Allowing Blocks to Merge
	Take Advantage of Latency if Available
	Save Power by Disabling CRC Blocks When Not in Use
	Use the Device Synchronous Load (sload) Signal to Initialize

	Comparators
	Counters

	Designing with Low-Level Primitives
	Conclusion
	Referenced Documents
	Document Revision History

