
A Performance and Energy Comparison of FPGAs, GPUs,
and Multicores for Sliding-Window Applications

Jeremy Fowers, Greg Brown, Patrick Cooke, Greg Stitt
University of Florida

Department of Electrical and Computer Engineering
Gainesville, FL 32611

{jfowers, rickpick, pcooke, gstitt}@ufl.edu

ABSTRACT
With the emergence of accelerator devices such as multicores,
graphics-processing units (GPUs), and field-programmable gate
arrays (FPGAs), application designers are confronted with the
problem of searching a huge design space that has been shown to
have widely varying performance and energy metrics for different
accelerators, different application domains, and different use
cases. To address this problem, numerous studies have evaluated
specific applications across different accelerators. In this paper,
we analyze an important domain of applications, referred to as
sliding-window applications, when executing on FPGAs, GPUs,
and multicores. For each device, we present optimization
strategies and analyze use cases where each device is most
effective. The results show that FPGAs can achieve speedup of up
to 11x and 57x compared to GPUs and multicores, respectively,
while also using orders of magnitude less energy.

Categories and Subject Descriptors
C.3 [Special-purpose and Application-based Systems]: Real-
time and embedded systems, C.4 [Performance of Systems]:
Design studies.

Keywords
FPGA, GPU, multicore, sliding window, speedup, parallelism.

1. INTRODUCTION
Over the past decade, computing architectures have started on a
clear trend towards increased parallelism and heterogeneity, with
most mainstream microprocessors now including multiple cores,
and system architectures commonly integrating accelerators such
as graphics-processing units (GPUs) [2][4][21] and field-
programmable gate arrays (FPGAs) [3][6][10][28] over PCIe and
even on the same chip [19][27]. Numerous studies have shown
that such architectures can accelerate applications by orders of
magnitude compared to sequential software [2][3][4][5][26].

However, the multitude of accelerator options has significantly
increased application design complexity due to the need for
extensive design-space exploration to choose an appropriate

device. Although GPUs have become a common accelerator due
to widespread availability, low cost, and a simplified
programming model compared to FPGAs, numerous device
characterization [5][26] and application studies [2][3][4][20] have
shown that metrics for different devices can vary significantly for
different applications. Therefore, design-space exploration of
different devices for different applications is critical to prevent
designers from choosing inappropriate devices.

One challenge that makes such exploration difficult is that there is
rarely a globally optimal device for a particular application.
Instead, applications generally have a set of Pareto-optimal
implementations that tradeoff numerous metrics such as
performance, power, energy, cost, size, reconfigurability,
application-design complexity, fault tolerance, etc. Furthermore,
such exploration is complicated by numerous use cases. For
example, an embedded system performing convolution may
involve much smaller input sizes than convolution in high-
performance computing, which would likely have different
optimal or Pareto-optimal implementations.

In this paper, we perform an extensive analysis of sliding-window
applications to determine the most effective devices for different
use cases by considering performance and energy, different input
sizes, different precisions, and different interconnects (e.g. PCIe,
same chip). Sliding-window applications are a subdomain of
digital signal processing that involve sliding a smaller signal (i.e.,
a window) across all positions in a larger signal (e.g., image),
while generally performing a computationally intensive function
at each window position. We evaluate sliding-window
applications due to their frequent usage in digital signal
processing, which is common on multicores, FPGAs, and GPUs.

The results show that an Altera Stratix III E260 FPGA is
generally the fastest device for sliding-window applications
compared to an NVIDIA GeForce 295 GTX GPU and quad-core
Xeon W3520, with speedups of up to 11x and 57x, respectively.
For an Information Theoretic Learning [24] based application, the
FPGA was the only device capable of real-time usage.
Furthermore, the FPGA used orders of magnitude less energy than
other devices in many situations, providing the only realistic
embedded system implementation for high-definition video.

The main contributions of the paper are summarized as follows:

 Highly optimized circuit architectures for FPGA
implementations of sliding-window applications

 Optimization strategies for sliding-window applications
on GPUs and multicores

 Analysis of performance and energy for different use
cases such as different input sizes, precisions, and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
FPGA’12, February 22–24, 2012, Monterey, California, USA.
Copyright 2012 ACM 978-1-4503-1155-7/12/02...$10.00.

interconnect types, including estimations for emerging
single-chip CPU/GPU devices.

 To our knowledge, we present the first sliding-window
implementations demonstrated to achieve real-time
usage with high-definition video, even while supporting
larger window sizes than previous work.

The remainder of the paper is organized as follows. Section 2
discusses previous work. Section 3 describes the sliding-window
applications that we evaluate. Section 4 describes the custom
circuit architectures for our FPGA implementations, in addition to
optimization strategies for the GPU and multicore
implementations. Section 5 presents experimental results.

2. PREVIOUS WORK
Numerous studies have evaluated application performance for
FPGAs [4][10] and GPUs [20][25]. Much work has focused
specifically on image and video processing [4][15][23][25]. For
example, Sinha et al. [25] evaluated the Kanade-Lucas-Tomasi
(KLT) Feature Tracker algorithm on a GPU, which tracks
specified features in a given image. Porter et al. [23] implemented
several stereo matching algorithms on an FPGA, including sum of
absolute differences (SAD). We also evaluate SAD, but using
different use cases on different devices. [23] measured relative
cost to perform real-time computations using a custom
technology-independent cost function.

Previous work has also compared performances of FPGAs, GPUs,
and CPUs. Baker et al. [3] evaluated a matched filter algorithm on
a Cell processor, FPGA, and GPU, concluding that the Cell
provided the best performance and energy efficiency, but the
GPU exhibited the best performance per dollar. Pauwels et al.
[21] compared two complex vision-based algorithms requiring
real-time throughput. The multi-stage algorithm involved a Gabor
filter, stereo disparity estimates, local image features, and optical
flow. That study found that although FPGAs were faster for
certain single-stage algorithms, the GPU exhibited better
performance when executing the entire multi-stage algorithm.

Several studies have considered different use cases of some of the
same applications as this paper. The authors of [6] implemented
2D convolution and color correction on a GPU and FPGA to
determine if GPUs can replace FPGAs in video processing. The
authors optimized both implementations, and measured
throughput using kernel sizes up to 11x11 for the 2D convolution.
They concluded that the FPGA had better performance at higher
kernel sizes than the GPU. Our study differs by evaluating
multiple sliding-window applications, including 2D convolution,
while also considering different precisions, larger image and

kernel sizes that represent current use cases, and newer devices
including multicore microprocessors.

Yu et al. [28] introduced an analytical approach to determine
potential FPGA performance of sliding-window applications,
while also creating on-chip buffers to exploit data reuse. In this
paper, we evaluate custom FPGA circuits with similar buffering
techniques for various common and emerging applications, while
also comparing to GPUs and multicores.

In [2], Asano et al. studied image-processing techniques on a
multicore CPU, GPU, and FPGA. The implementations included
a 2D filter algorithm, SAD stereo vision disparity, and k-means
clustering. The 2D filter’s performance was measured up to a
15x15 kernel size, 241 SAD operations, and 48x4 distances in k-
means clustering. In contrast to the SAD implementation in this
paper, that previous study implemented a stereo-vision specific
SAD algorithm. In that study, the FPGA had better performance
for SAD and k-means, but was outperformed by the GPU for the
2D filter. The CPU outperformed the GPU in both SAD and k-
means. Our study extends this previous work by providing a more
in depth analysis of sliding-window applications. We present a
generalized circuit architecture for sliding-window applications
over a wider range of image and kernel sizes that apply to current
and emerging use cases of sliding-window applications [12].
Additionally, we provide superior performance at significantly
higher image and kernel sizes, and are the first to our knowledge
to deliver real-time sliding-window processing of high-definition
video on a single GPU or FPGA. We also evaluate a new
application based on Information Theoretic Learning [24], which
is an emerging area highly amenable to FPGA implementation.

3. SLIDING-WINDOW APPLICATIONS
For all applications, the input is a 2D image with dimensions x×y.
Although sliding-windows applications also apply to 1D
examples and signals other than images, this input is
representative of many applications. Each application also takes
as input a 2D kernel of size n×m, whose purpose varies depending
on the application (e.g., an image to search for, a set of constants,
etc.). Each application slides a window of the same size as the
kernel across all possible positions in the image, as shown in
Figure 1, where the data associated with each window are the
underlying image pixels. For each window, the application
performs some application-specific window function, shown as f()
in Figure 2, based on the current window and the kernel.
Although the number of outputs is application specific, sliding-
window applications often generate one output per window, as
shown in the pseudo-code. In some cases, the exact ranges of
sliding windows are application specific. In this paper, we
consider use cases where the kernel is fully immersed in the
image, meaning that the window never exceeds the image

Figure 1: Input access patterns of sliding-window applications,
where a “window” slides over all possible positions in the image.

Input: image of size x×y, kernel of size n×m
for (row=0; row < x-n; row++) {
 for (col=0; col < y-m; col++) {
 // get n*m pixels (i.e., windows
 // starting from current row and col)
 window=image[row..row+n-1][col..col+m-1];
 output[row][col]=f(window,kernel);
 }
}

Figure 2: Pseudo-code for typical sliding window applications,
assuming fully immersed windows, where the window function f()

varies depending on the application.

boundaries. We chose this use case because windows that extend
past image boundaries generally require a padded image. Such
padding commonly requires software pre-processing that is not
relevant to the device comparison, which we therefore excluded.

Note that for the remainder of the paper we use these terms:
 n and m: kernel dimensions
 x and y: image dimensions

Sliding-window applications tend to be highly memory intensive
due to the need to gather each window. For example, a 40×40
window consists of 1,600 pixels. For a 1000×1000 image, there
are (1000-40+1)2 = 923,521 windows. Therefore, the total amount
of pixels an application must read from memory is approximately
1,477,633,600. For 16-bit images, these reads correspond to
approximately 3 terabytes of data, much of which must be
accessed from memory non-sequentially.

Similarly, sliding-window applications are often computationally
intensive due to complex window functions. For example, 2D
convolution multiplies each pixel of a window with a constant in
the kernel and then accumulates the results. For a 40×40 window,
each window requires 1,600 multiplications and 1,599 additions.
For a 1000×1000 image, there are 923,521 different windows,
thus requiring approximately 3 teraoperations.

Many sliding-window applications have a similar behavior as
shown in Figure 2. Therefore, in the following sections, we
simply define the window function f() for each application, along
with characteristics of the image, kernel, and output.

3.1 Sum of Absolute Differences (SAD)
Sum of absolute differences (SAD) is used in content-based
image retrieval [8][29] and other image-processing applications as
a measure of similarity between two images. For example, a
security system may search a video stream for other images (i.e.,
kernels) from a database of criminals. For each kernel, the output
with the lowest SAD value represents the closest match.

As the name suggests, the window function for SAD calculates
the absolute difference between each window pixel and kernel
pixel, and then accumulates the differences for the entire window.
Therefore, each output is a measure of similarity between the
corresponding window and the kernel image, where lower values
represent a closer match. The output upon completion is a two-
dimensional data structure of dimensions (x-n+1)×(y-m+1), which
corresponds to the total number of windows. Although specific
applications would post-process the output, we instead simply
generate the output due to the large variation in SAD applications.

For all evaluations, we consider 16-bit grayscale images for both
the image and the kernel image, while exploring numerous
combinations of image and kernel sizes.

3.2 2D Convolution
2D convolution is a common operation in digital signal
processing and scientific computing used in computing systems
ranging from small embedded systems to high-performance
embedded computing systems (e.g., satellites) to supercomputers.

For 2D convolution, the window function multiplies each image
pixel with a constant in the kernel. The method for generating
each output pixel is shown by the following formula:

output[a][b] =

n−1∑

i=0

m−1∑

j=0

image[a+ i][b+ j]× kernel[n− i][m− j]

This formula multiplies each image pixel with a constant at the
same location in a “flipped” version of the kernel. For a 3×3
window, 2D convolution multiplies pixel (0,0) of the window
with the constant at (2,2) in the kernel, followed by the
multiplication of pixel (0,1) with constant (2,1), etc.

After multiplying the window with the flipped kernel, 2D
convolution accumulates the products, which generates a single
output. The entire output for fully immersed windows is an image
of size (x-n+1)×(y-m+1). For 2D convolution, we consider 16-bit
grayscale images and kernels consisting of various precisions,
including 32-bit floating point and 16-bit fixed point.

One optimization commonly implemented for 2D convolution
consists of performing convolution twice with one-dimensional
kernels, which is possible when the two-dimensional kernel is
separable. In this paper, we evaluate non-separable kernels, due to
their larger computational requirements.

Similarly, applications often perform large 2D convolutions using
FFT convolution due to a lower time complexity. Although we do
evaluate 2D FFT convolution for the GPU and multicore, we did
not evaluate 2D FFT convolution on the FPGA analysis due to the
lack of a 2D FFT core. Therefore, reported FPGA speedups
represent a pessimistic lower bound. Additionally, we found that
our 2D FFT multicore implementation, coded with the FFTW
3.2.2 2D FFT function [9], did not perform significantly better
than the OpenCL sliding-window 2D convolution for the kernel
sizes we tested. While we would expect significant speedup for
larger kernels, we omitted the FFT CPU results from this paper
because they are not applicable to our use cases.

3.3 Correntropy
Correntropy [14] is a measure of similarity based on Information
Theoretic Learning (ITL) [24]. Correntropy can be used for many
purposes [12][14], but we evaluate an application similar to
Section 3.1 that searches an image to find the closest match of
another image. Correntropy is defined as:

k(imagei,j − kernela,b) =
1

σ
√
2π

exp(− (imagei,j − kernela,b)
2

2σ2
)

For the application in this paper, function k() is a Gaussian. Based
on these equations, the correntropy application performs the
following computation for each window. First, correntropy finds
the difference between each pixel in the window (imagei,j)and
each corresponding pixel in the kernel image (kernela,b).
However, instead of summing these differences, each difference is
used as a parameter to the Gaussian function. For an exact match
(i.e., a difference of zero), the Gaussian function will return 1,
which corresponds to a perfect measure of similarity. For larger
differences, the similarity measure will drop increasingly fast
depending on the exact characteristics of the Gaussian curve.
After computing the similarity for each pixel of the window, the
application sums the similarities for all pixels to create a single
value that represents the similarity for the entire window.
Although different applications would process the similarity
values in different ways, the application in this paper outputs the
the two largest values and their corresponding window locations.

4. DEVICE IMPLEMENTATIONS
In this section, we present implementation strategies for the three
sliding-window applications from the previous section. Section
4.1 describes custom circuit architectures for the FPGA. Section

4.2 describes GPU implementations and optimizations. Section
4.3 is similar for OpenCL on multicore processors.

For the FPGA analysis, we target a GiDEL ProcStar III board
with a 65 nm Altera Stratix III E260 FPGA. The board has four
FPGAs, in addition to 3 external memories per FPGA, although
we only use one FPGA to keep device comparisons fair. The
board is connected over PCIe x8 to a 2.26 GHz quad-core Xeon
E5520 CPU with 6 GB of RAM.

For the GPU analysis, we target a 55 nm EVGA GeForce GTX
295 PCIe x16 board with Compute Capability 1.3. This board also
has multiple devices, but we limit analysis to a single device for
fair comparisons. All implementations use CUDA Version 3.2.
All GPU examples were tested using a Red Hat Enterprise 5
Linux 64-bit server with 12 GB of RAM and a 45 nm 2.67 GHz
Intel Xeon 4-core W3520 with 8 threads via Hyper-Threading

The OpenCL multicore implementations use the same system as
the GPU, but with Windows 7 Enterprise 64-bit instead of Linux
in order to use the latest OpenCL Intel SDK Version 1.1.

Although evaluating an older 65 nm FPGA results in a slightly
unfair comparison, the FPGA is still generally the most effective
device for most use cases, as shown in Section 5. Also, although
the slower processor used with the ProcStar III potentially makes
the FPGA results pessimistic, the CPU was responsible for less
than 1% of execution time.

For the SAD and correntropy applications, we limit window sizes
to 45×45 due to shared memory limitations on the GPU.
Interestingly, the FPGA implementations have resource
restrictions that support only slightly larger windows. For 2D
convolution, we restrict window sizes to 25×25 due to limited
FPGA multipliers, as discussed later. The FPGA circuits can
support arbitrary kernel sizes with trivial extensions, but we limit
the analysis to sizes that the FPGA can execute in parallel.

4.1 FPGA Circuit Architecture
Because much of the sliding-window functionality is shared
across multiple applications, all custom circuits used for the
FPGA evaluation use the architecture shown in Figure 3. This
architecture consists of a controller and pipelined datapath that
takes as input a window and the kernel for the application.

To keep the pipelined datapath from stalling, the circuit must
provide a new window every cycle, which requires very high

bandwidth. For example, a 40×40 window of 16-bit data requires
3,200 bytes per cycle, or 320 GB/s for a 100 MHz clock, which
cannot be provided by external memory. However, the window
generator buffers the overlap between consecutive windows
inside of the FPGA, significantly reducing bandwidth
requirements. Although previous studies have introduced various
window generators [28][30], we use a buffer similar to [7] that
aims to maximize performance at the cost of extra area.

The window generator buffers n-1 complete rows of the image
using on-chip RAMs that act as specialized FIFOs. Like all
FIFOs, these specialized FIFOs pop from the front and push to the
back. However, pop operations do not actually delete the data and
simply move the front pointer to the next element.

To use the window generator, the controller initially starts a
sequential read from an external DDR2 memory that stores the
image. The window generator stores arriving pixels in a FIFO
corresponding to the current row. When the current FIFO is full
(i.e., the entire row is buffered), the window generator starts
storing pixels in the next FIFO. After the nth FIFO has received
pixels, the window generator begins to create windows.
Specifically, whenever there are pixels in all n FIFOs, the window
generator pops a pixel from each FIFO into an n×m set of shift
registers used to store the current window. After the window
generator pops m pixels from each FIFO, the shift registers
contain a valid window. The window generator continues to pop
pixels, producing a new window each cycle, until all the FIFOs
are empty, which corresponds to the end of one row of windows.
At this point, the window generator adjusts internal pointers to
move each FIFO up one row, while moving the first FIFO to the
back and discarding the contents because the remaining windows
will not require data from the first row. Because the other FIFOs
already contain the buffered data for a row of the image, the
window generator resets the front pointer for each FIFO to the
first pixel, effectively making the FIFOs full again without having
to reread data from memory. After resetting the front pointers, the
window generator repeats this process for the remaining windows.

To buffer n rows of the image, the window generator requires n*y
words of memory. For example, for a 1920×1080 image with
40×40 windows, the window generator requires 1920*40 memory
words. For 16-bit grayscale images, these words require only 154
kilobytes of on-chip memory, which is a small amount for current
FPGAs. Although other window-generation techniques use less
area [28], those techniques trade off performance. Because on-
chip memory was not a bottleneck for the evaluated applications,
we used the described approach to maximize performance.

For each window, the datapath performs the application-specific
window function using the window and the kernel, which the
circuit also stores in n×m registers. After some latency, the
datapath produces an output each cycle, which a memory
controller writes to a second external DDR2 memory.

The circuit connects to a PCIe bus that allows the host
microprocessor to read and write data into the external memories,
the kernel registers, and the controller. For all applications, the
host software transfers the image into the input DDR2 memory
and then initializes the kernel. Next, the software enables the
controller to start the computation and then polls the controller
until the datapath has produced all outputs. Finally, the software
reads back all outputs from the second DDR2 memory.

Figure 3: Circuit architecture for sliding window applications.

4.1.1 SAD
For the SAD application, we created the datapath shown in Figure
4. The datapath takes 2*n*m inputs, where half of the inputs are
the window pixels (shown as w[]), and the other half are kernel
pixels (k[]). The datapath initially subtracts every corresponding
pair of window and kernel pixels, and then takes the absolute
value, which is stored in a register. The datapath then passes all
n*m absolute differences to a pipelined adder tree that contains
registers at each level. The datapath then outputs the result from
the adder tree. For all SAD evaluations, we use an image and
kernel consisting of 16-bit grayscale images of varying sizes. The
adder tree generates carry bits at each level of the tree to ensure
that overflow cannot occur. Therefore, for 16-bit inputs, each
output is 16+log2(n*m) bits. We could have potentially reduced
area requirements by using 16-bit adders in the adder tree, but
preventing overflow is important for many use cases and also
provides a lower bound on FPGA performance.

The total number of parallel operations for the SAD datapath is
n*m subtractions, n*m absolute values, and n*m-1 additions. For
a 40×40 window, the datapath executes 1,600 subtractions, 1,600
absolute values, and 1,599 additions every cycle after the initial
pipeline latency of 1+log2(n*m).

This SAD circuit, for a 1920×1080 image and 45×45 kernel,
complete with all IP for the GiDEL board, uses 137,260 LUTs
(67%), 156,377 registers (76%), 2,256,464 block memory bits
(15%), and zero DSP blocks on the Stratix III E260. Resource
utilization increases linearly with kernel size and the limiting
resource is logic elements. The circuit was operated at frequencies
between 100 and 115 MHz depending on the kernel size.

4.1.2 2D Convolution
The datapath for 2D convolution is similar to Figure 4, with the
difference that the subtraction and absolute value operations are
replaced by a multiplication. In addition, convolution flips the
order of the kernel in the inputs as described in Section 3.2. The
pipelined adder tree is identical to the description in the previous
section. For the convolution examples, we evaluate 16-bit
grayscale images, and kernels consisting of both 32-bit floating-
point values and 16-bit fixed-point values. To reduce resource
usage from fixed-to-float conversions, we pre-process the 16-bit
image in software and transfer 32-bit float pixels to the FPGA.

The total number of parallel operations for this datapath is n*m
multiplications and n*m-1 additions every cycle. For the floating-
point kernels, the output is also floating point. For the fixed-point

kernels, the output is 16+log2(n*m) bits due to the adder tree
accounting for overflow.

When using a 1920×1080 image and a 16-bit fixed-point 25×25
kernel, this circuit with all GiDEL IP uses 33,547 LUTs (17%),
57,122 registers (28%), 1,601,104 block memory bits (11%), and
738 DSP blocks (96%) on the Stratix III E260. For this circuit, the
limiting resource is multipliers in the DSP blocks. The circuit was
operated at frequencies between 104 and 115 MHz depending on
the kernel size.

The floating-point version uses significantly more DSP blocks to
achieve the same kernel size. The resources available allow up to
a 13×13 kernel, and the circuit uses 129,024 LUTS (63%),
126,821 registers (62%), 1,633,872 block memory bits (11%), and
676 DSP blocks (88%). The limiting resource is DSP blocks and
the circuit used frequencies between 103 and 114 MHz.

4.1.3 Correntropy
Figure 5 illustrates the correntropy datapath. The initial stages of
the pipeline calculate the absolute difference of each pair of
window and kernel pixels, which is identical to SAD. The
datapath then connects the absolute difference to a lookup table
that implements a Gaussian curve. The datapath uses the absolute
difference to take advantage of the symmetry of the Gaussian
curve. By ignoring negative values, we reduce the size of the
lookup table by 50%. Choosing the exact size of the lookup tables
is highly application dependent, but we chose a size of 64 words
based on the curves required by a correntropy-based optical flow
application [12]. In addition to the lookup table, the datapath uses
a comparator and mux that treats points on the Gaussian for
differences of greater than 64 as zero. The output of the Gaussian
lookup is an 8-bit fixed-point value between 0 and 1 that
represents the similarity between each pair of pixels. We chose
the 8-bit precision based on the requirements of [12] and point out
that other applications may require different precisions. These
similarity values are then summed using the same pipelined adder

Figure 4: Datapath for sum of absolute differences (SAD).

Reg

-

w[i][j] k[i][j] w[i+1][j] k[i+1][j] w[i+n][j+m] k[i+n][j+m]

2*n*m inputs

. . . .

. . . .

. . . .

Pipelined Adder Tree

max1

64 word
RAM

Reg

<

64

0

Reg

-

64 word
RAM

Reg

<

64

0

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

>
Reg

Gaussian

Reg

max2

abs abs

Figure 5: Datapath for correntropy.

tree as the previous examples. Finally, the datapath monitors the
output of the adder tree and saves the two largest similarity values
for all possible windows, along with the corresponding window
positions (not shown). Each output is 8+log2(n*m) bits.

The correntropy datapath performs n*m subtracts, n*m absolute
values, n*m Gaussian lookups, and n*m-1 additions every cycle.

For a 1920×1080 image and 45×45 kernel, the correntropy circuit,
with all GiDEL IP, uses 141,633 LUTs (69%), 143,137 registers
(70%), 2,256,464 block memory bits (15%), and zero DSP blocks
on the Stratix III E260. Resource utilization increases linearly
with kernel size, and the limiting factor is logic elements. The
circuit was operated at frequencies between 101 and 111 MHz
depending on the kernel size.

4.2 GPU
A graphics processing unit (GPU) is a highly parallel architecture
which can run thousands of threads. An overview of GPU
functionality is described in [20]. We use the CUDA framework
[17] to implement applications for GPUs.

A complete discussion of the CUDA code is omitted for brevity.
Instead, we focus on optimizations for the CUDA memory
hierarchy, which previous work has shown can significantly
improve performance [20]. The CUDA memory hierarchy
consists of local memory, shared memory, texture memory,
constant memory, and global memory. Ideally, threads should use
local or shared memory, which have the lowest latency, but their
limited size and their restriction of only sharing data within a
thread block requires applications to also use the other memories.
By contrast, global memory has the largest size due to the use of
external memory, and can be accessed by all thread blocks, but
also has the highest latency. Texture memory is a cached version
of global memory, which is more suitable for 2D locality.

The presented GPU implementations use a specialized memory
organization that maximizes the usage of shared memory for the
numerous repeated accesses in sliding-window applications. This
organization stores the entire kernel in shared memory, as well as
a subset of the image needed by the corresponding thread block,
while storing the entire image in texture memory rather than
global memory due to a lower penalty for uncoalesced reads and
improved access times from cache hits.

The basic functionality of the GPU implementations is described
as follows, which is based on [15] and illustrated in Figure 6.
Each thread block initially loads a subset of the image from

texture memory into shared memory, then generates the
corresponding subset of the output pixels. Individual threads
generate small groups of output pixels that we refer to as
macroblocks, which are stored to global memory. Shared memory
stores all image pixels used by a thread block, in addition to the
kernel, which requires (a+n-1)*(b+m-1)+n*m words, where a×b
are the dimensions of the output pixels generated by the thread
block. For this paper, we determined output groups of 64×32
performed well on the targeted device. Therefore, each thread
block uses (64+n-1)*(32+m-1)+n*m words of shared memory.

Another consideration for the GPU is macroblock size. Smaller
macroblocks increase threads per block, but increased thread
count may also increase shared memory bank conflicts. We
empirically determined that 2×2 macroblocks performed well on
the targeted device for sliding-window applications, which
differed from previous work [15] that used 8×8 macroblocks.
Based on this macroblock size, each thread block consists of
32×16=512 threads, which is the maximum amount.

One limitation of this memory organization is that shared memory
limits the maximum window size. For example, for the evaluated
GPU, the shared memory supports window sizes up to 45x45. For
larger windows, implementations must use other memories, which
would likely significantly reduce performance.

The SAD application’s threads compute the sum of absolute
differences between the kernel and the four windows in the
corresponding macroblock.

The 2D convolution threads are similar, but with each thread
performing multiply accumulates as described in Section 3.2. For
the GPU, we also evaluate a frequency-domain implementation of
2D convolution using a 2D FFT as described in [22], which used
the CUFFT library [18]. The frequency-domain implementation
computes the 2D FFT of the kernel and of the image, then
performs a point-wise multiplication of the frequency-domain
signals. The implementation then performs an inverse FFT on the
resulting products to produce the output. Pre and post-processing
is required to account for small kernel sizes and to extract the
output desired. Note that we refer to the original time-domain
implementation as sliding-window convolution and the
frequency-domain version as FFT convolution.

The correntropy implementation for the GPU extends the SAD
implementation by adding the intermediate step of taking the
Gaussian of each absolute difference before accumulating. We
optimized performance by storing the Gaussian function in a
lookup table in shared memory, using the same size lookup table
as the FPGA implementation. Absolute differences cannot be
predicted here, so shared bank conflicts likely cannot be
prevented, but we still expect shared memory to provide the best
performance due to low latency.

One challenge with the GPU implementation of correntropy is
locating maximum similarity values. On the FPGA this
functionality only required two registers, a comparator, and
muxes. However, for the GPU implementation, there is no way to
communicate between thread blocks other than global memory,
and there is no way to synchronize or guarantee the order in
which thread blocks execute. Therefore, finding the maximum
value from multiple thread blocks must take place after the
sliding-window outputs have been produced. We implement this
maximum function as a reduction problem, where each thread
compares a subset of the outputs simultaneously. Each thread
temporarily stores the results, which the implementation then uses

Macro
Block
of 2x2
pixels

32x16 Macro Blocks,
or 64x32 Pixels

Kernel Width – 1
pixels

Subset of output
computed by this block

Extra data required for
computing boundary pixels

Kernel
Height -1

pixels

Figure 6. Organization of shared memory for each thread block.

for a smaller reduction. This reduction process continues until it
computes the two maximum values. We implemented this
reduction by altering a highly optimized reduction adder from
NVIDIA [11].

4.3 Multicore
We used the OpenCL parallel programming standard [16] for the
multicore implementations. Similar to CUDA’s thread
organization, OpenCL organizes threads into a 1, 2, or 3
dimensional grid called an NDRange. This NDRange is divided
into work-groups, which are further divided into work-items. The
work-items are the threads that run on a device, and each work-
item has access to three types of memory (listed from greatest to
smallest latency): global, local, and private. Global memory is
available to all threads. Each work-group has local memory that is
shared among threads in the group. Private memory stores
individual thread data.

Like the CUDA implementations, leveraging the NDRange and
memory hierarchy effectively are vital for optimizing OpenCL
applications. To ensure good performance, we followed all
guidelines specified in [13]. Since caching OpenCL memory
objects on a CPU is managed automatically by hardware,
managing the memory hierarchy is limited to coalescing memory
accesses. As a result, we focused our optimizations on minimizing
communication between threads. Each implementation uses the
same following structure. The NDRange is a 2D grid with the
same dimensions as the output. As recommended in [13], we
stored the image, kernel, and output as buffers in global memory.
Each work-item computes the result of one window. Unlike the
GPU implementations, the OpenCL compiler automatically
groups the work-items into work-groups as well as unrolls loops
and vectorizes operations when applicable [13].

The implementation of each work-item was a straightforward
specification of the window function for each application. The
correntropy implementation used a global lookup table buffer for
the Gaussian calculations. This lookup table was the same size as
the one used for the GPU and FPGA. Like the GPU correntropy
implementation, locating the maximum similarity values required
a two-phase reduction where each work-item locates the
maximum values for a section of the output.

5. EXPERIMENTAL RESULTS
The experiments section is organized as follows. We first define
the experimental setup (Section 5.1). We then evaluate
application performance individually for each device in terms of
frames per second (Section 5.2), while also providing a speedup
analysis. Next, we estimate speedup for emerging single-chip
CPU/GPU systems and standalone FPGAs (Section 5.3). We then
discuss the energy efficiency and performance in embedded
systems (Section 5.4) of all implementations.

5.1 Experimental Setup
Details of the targeted systems are given in Section 4. We also
estimated performance for emerging single-chip systems that
integrate CPUs and GPUs, in addition to standalone FPGAs not
requiring PCIe and a host processor. For simplicity, we refer to
these GPU and FPGA systems as single-chip systems. We
obtained upper-bound performance estimates for these systems by
removing PCIe transfer times.

In addition to the implementations in Section 4, we also evaluate
a sequential C++ implementation on the same microprocessor as

the multicore examples, which we use as a baseline for speedup
comparisons. These baseline implementations were compiled
using g++ 4.1.2 with -O3 optimizations.

All implementations were evaluated for image sizes of 640×480
(480p), 1280×720 (720p), and 1920×1080 (1080p), which are
common video resolutions. The SAD and correntropy
implementations were evaluated at kernel sizes of 4×4, 9×9,
16×16, 25×25, 36×36, and 45×45. 2D convolution was evaluated
at kernel sizes of 4×4, 9×9, 16×16, 25×25. Section 4 explains the
maximum kernel sizes for each example.

5.2 Application Case Studies
In this section, we evaluate the performance of each application
on each device in terms of frames per second (FPS). The frame
rate is derived by inverting the execution time for one frame.

5.2.1 Sum of Absolute Differences
Figure 7 shows the frame rates for each implementation of SAD.
All of the implementations were able to achieve real-time frame
rates of 30 FPS or greater at small image and kernel sizes.
However, the CPU rapidly decreased in performance. The GPU
supported real-time usage when either the image or kernel size
was small, but fell below 30 FPS for kernels larger than 25×25 in
720p and 1080p images. The FPGA was the only device able to
maintain real-time performance over all of the input sizes tested.

The frame rates of the FPGA were constant across all kernel sizes
for the same image size because the circuit computed one window
each cycle regardless of kernel size. For larger kernel sizes that
the circuit cannot compute in parallel, FPGA performance would
decrease linearly as kernel size increased. FPGA frame rate
decreased linearly with larger images, due to larger PCIe transfers

0 10 20 30 40 50

0.1

1

10

100

1000

0 10 20 30 40 50 0 10 20 30 40 50

480p 720p 1080p

Fr
am

e
s
P
e
r S
e
co
n
d

Kernel Size (N x N)

Figure 7. Performance of the SAD implementations measured in
frames per second (1/execution time). Each chart corresponds to
the results for all kernel sizes across one image size. The y-axis

uses a log 10 scale for clarity.

0 10 20 30

0.1

1

10

100

1000

0 10 20 30 0 10 20 30

480p 720p 1080p

Kernel Size (N x N)

Fr
am

e
s
P
e
r S
e
co
n
d

Figure 8. Performance of the 2D Convolution implementations
measured in frames per second (1/execution time). Each chart
corresponds to the results for all kernel sizes across one image

size. The y-axis uses a log 10 scale for clarity.

and the increased number of windows.

CPU and GPU frame rates decreased linearly with kernel size
(width×height) and image size (width×height). The kernel and
image sizes in Figure 7 each increase quadratically, causing the
CPU and GPU graphs to decrease quadratically for each image
size and O(n4) overall. This trend occurs because these
implementations calculate every subtraction and addition using a
limited pool of parallel resources that quickly becomes saturated
as kernel size increases. The GPU always delivers a faster frame
rate than the CPU running OpenCL, which in turn is always faster
than the CPU sequential C++ baseline.

5.2.2 2D Convolution
The frame rates for each implementation of 2D Convolution,
using 16-bit fixed-point kernels, are given in Figure 8. The trends
for 2D convolution were similar to SAD, except on a smaller
scale due to the more limited set of kernel sizes. As mentioned in
Section 4.1.2, the FPGA supports a maximum window of 25×25
due to a shortage of multipliers.

The GPU-FFT and FPGA implementations were able to maintain
frame rates over 30 across all input sizes tested. The two CPU
implementations were only able to provide real-time performance
for 4×4 and 9×9 kernels and had low frame rates overall for
1080p images. The GPU sliding-window (i.e., time domain)
implementation provided the highest frame rates for 4×4 kernels
and was able to deliver 30 FPS for all kernel and image size
combinations except the maximum of 25×25 and 1080p.

It should be noted that the GPU-FFT implementation performs
independently of kernel size when the kernel fits within the FFT
size (i.e. the 1080p version could operate with a 128×128 kernel
in the same amount of time as the 25×25 kernel).

2D convolution using floating-point kernels was also evaluated.
The sequential C++ baseline took an average of 2x longer to use
floating point. The OpenCL and GPU implementations performed
within 5% of their execution times for 16-bit fixed-point kernels.
The FPGA used an average of 20% more time for the same kernel
sizes, due entirely to the additional cost of moving a 32-bit image
over the PCIe bus as described in Section 4.1.2.

5.2.3 Correntropy
The FPS of each implementation of correntropy is given in Figure
9. The trends for correntropy and SAD were extremely similar.

The FPGA delivered real-time performance across all feature
sizes at 480p and 720p, and 27 FPS for all kernel sizes at 1080p.
The GPU provided more than 30 FPS for 25×25 and lower at
480p, 16×16 and lower for 720p, and 9×9 and lower for 1080p.

The CPU implementations only provided real-time frame rates at
the smallest kernel sizes in 480p and 720p.

5.2.4 Discussion
Performance, as indicated by speedup over the CPU sequential
C++ implementation for each application, is shown for 720p
images in Figure 10. The trends for 480p, 720p, and 1080p were
similar enough that it is only necessary to display one image size.

The data shows that, for each application, the sliding-window
GPU implementation (i.e., time domain) was faster than the
FPGA for 4×4 and 9×9 kernel sizes and roughly equivalent in the
16×16 case. The FPGA gained significantly over the GPU at
36×36 and larger kernels, reaching a maximum speedup over the
baseline of 240x, 45x, and 298x for SAD, 2D convolution, and
correntropy, respectively. While the GPU had nearly constant
speedup, the FPGA increased its speedup linearly with kernel size
due to its kernel-size independent performance.

CPU OpenCL implementations provided steady speedup over the
baseline, with a maximum of 3.9x, 3.7x, and 5.3x for SAD, 2D
convolution, and correntropy, respectively. This consistency was
supplied by performing similar operations spread out over the 4
CPU cores. OpenCL was marginally faster than the FPGA at 4x4
kernels and significantly slower at all other sizes.

The GPU-FFT implementation for 2D Convolution was faster
than the FPGA for all kernel sizes tested, with an average of 3x
better performance than the FPGA. As mentioned previously, a
FFT implementation on the FPGA may reduce this speedup.

The data in Figure 11 shows that performance can vary by
application for each device, despite each application sharing the
same basic structure and memory access pattern. The sequential
C++ CPU took an average of 1.7x longer to execute SAD than 2D
convolution because of the extra steps for calculating the absolute

0 10 20 30 40 50

0.1

1

10

100

1000

0 10 20 30 40 50 0 10 20 30 40 50

480p 720p 1080p

Fr
am

e
s
P
e
r S
e
co
n
d

Kernel Size (N x N)

Figure 9. Performance of the correntropy implementations

measured in frames per second (1/execution time). Each chart
corresponds to the results for all kernel sizes across one image

size. The y-axis uses a log 10 scale for clarity.

Sp
e
e
d
u
p
 o
ve
r
C
+
+

Kernel Size (N x N)

1

10

100

1000

0 10 20 30 40 50 0 10 20 30

SAD Convolution Correntropy

0 10 20 30 40 50

Figure 10. Speedup of all implementations over the sequential
C++ baseline for SAD, 2D Convolution, and correntropy at all

kernel sizes tested on 720p images. A log 10 scale is used on the
y-axis for improved clarity.

0 10 20 30 40 50

0.1

1

10

100

1000

0 10 20 30 40 50 0 10 20 30

Fr
am

e
s
P
e
r S
e
co
n
d

SAD Convolution Correntropy

Kernel Size (N x N)

Figure 11. Performance of all implementations in frames per
second for SAD, 2D Convolution, and correntropy at all kernel

sizes tested on 720p images. A log 10 scale is used on the y-axis
for improved clarity.

value. Correntropy took significantly longer for the sequential
C++ than either SAD or 2D Convolution because of the additional
step of accessing the Gaussian lookup table. Additionally,
tracking the maximum value required extra comparisons. The
same trends apply to the CPU OpenCL implementation.

The FPGA implementations took nearly the same amount of time
to execute regardless of the sliding-window function because the
pipelined architecture amortizes any extra steps as latency without
affecting throughput. The GPU implementation for SAD executed
slightly faster than the correntropy implementation because the
Gaussian lookups and the comparisons for establishing the
maximum output became an expensive reduction operation, as
mentioned in Section 4.2.

5.3 Single-Chip Systems
Figure 12 presents speedup of emerging single-chip CPU/GPU
devices in addition to standalone FPGAs over traditional PCIe
accelerators, which we collectively refer to as single-chip
systems. The graphs in Figure 12 are limited to 720p images only
because the trends for all image sizes were similar.

The results show significant improvements compared to
accelerator boards due to the elimination of PCIe transfer times,
which accounted for as much as 65% of execution time for the
GPU and 64% for the FPGA.

The single-chip, sliding-window GPU implementations
experienced the greatest speedup at low kernel sizes, which
resulted from low computation compared to data set size. The
speedup decreased quickly as data transferred over the PCIe x16
bus was amortized against quadratically larger computations.

The standalone FPGA implementations had a nearly constant
speedup averaging 2x over PCIe versions. Speedup was constant
because the execution time did not change as kernel size changed,
leading to no amortization of data-transfer times. The GPU-FFT
convolution implementation followed the same trend.

It should be noted that as of this writing, the available CPU/GPU
chips on the market, such as the AMD Fusion APU and NVIDIA
Tegra 2, do not come close to the performance of the NVIDIA
GeForce GTX 295 used in these experiments. Still, the severity of
the PCIe bottleneck points to huge potential for devices that
hardware can accelerate without bus transfers.

5.4 Energy Comparisons
To evaluate energy consumption, we calculate the energy for a
given implementation by multiplying the execution time of each
implementation by the reported worst-case power consumption of
the corresponding device. Although such an analysis may be
pessimistic, sliding-window applications are likely to reach these

worst-case power levels due to their memory-intensive and
computation-intensive behavior. The CPU implementations have
a worst case power of 130 watts, the GPU implementations use
274.5 watts (130 watt CPU + 144.5 watt GPU), and the FPGA
uses 100 (80 watt CPU + 20 watt FPGA) [1]. When used as a
standalone device the FPGA consumes 20 watts.

The data in Figure 13 shows the stratification between the energy
efficiency of each device. The FPGA was clearly the most
energy-efficient device, with one and two orders of magnitude
lower energy than the sliding window GPU and CPU,
respectively, at the 45×45 kernel size. The GPU-FFT
implementation was able to obtain comparable energy efficiency
to the FPGA for convolution because of its better performance.

Next, we evaluate the amenability of each device for real-time
embedded systems usage by determining the theoretical power
required to provide 30 frames per second. Note that many of the
devices where not capable of providing such performance,
causing the resulting power to far exceed the worst-case power of
the device. We calculate this data by multiplying the energy for 1
frame by 30 frames per second (FPS). Figure 14 presents the
power analysis for correntropy, which was selected for its
applications in resource-limited embedded systems [12]. The
results show that an embedded system using correntropy for target
tracking under a realistic power budget can only be achieved
using an FPGA, as the other devices required orders of magnitude
more power for larger kernels sizes. In addition, the wattage for
non-FPGA systems was optimistic because those implementations
were not capable of providing 30 FPS without parallelizing across
multiple devices, for example 2 GPUs in an SLI configuration.

The FPGA was able to produce 30 FPS correntropy results for 2,
5.5, and 12 watts for 480p, 720p, and 1080p, respectively. The
CPU and GPU required several orders of magnitude higher
power, using a theoretical 8 kW and 3 kW, respectively, for the
1080p 45×45 case.

Sp
e
e
d
u
p
 o
ve
r P
C
Ie

Kernel Size (N x N)

0

1

2

3

0 10 20 30 40 50 0 10 20 30 0 10 20 30 40 50

SAD Convolution Correntropy

Figure 12. Speedup of single-chip implementations over their

PCIe equivalents for SAD, 2D Convolution, and correntropy at all
kernel sizes tested on 720p images.

0 10 20 30 40 50

0.1

1

10

100

1000

0 10 20 30 40 50 0 10 20 30

En
e
rg
y
(J
o
u
le
s)

SAD Convolution Correntropy

Kernel Size (N x N)

Figure 13. Energy consumed to process one frame for SAD, 2D
Convolution, and correntropy at all kernel sizes tested on 720p

images. A log 10 scale is used on the y-axis.

480p 720p 1080p

Kernel Size (N x N)

P
o
w
e
r (
w
at
ts
)

0 10 20 30 40 50

1

10

100

1000

10000

100000

0 10 20 30 40 50 0 10 20 30 40 50

Figure 14. Theoretical wattage required for calculating 30 frames
per second for correntropy. A log 10 scale is used on the y-axis.

A system consisting of a standalone FPGA is practical for this
application because the correntropy architecture described in
Section 4.1.3 is capable of receiving data directly from a camera
with the same Stratix III E260 used in these experiments. By
contrast, the single-chip GPU estimation is excluded from this
comparison because current state-of-the-art embedded GPU
solutions, such as the NVIDIA Tegra 2, do not come close to the
GeForce GTX 295 in performance and do not support CUDA as
of this writing. We plan such analysis as future work.

6. CONCLUSIONS
In this paper, we compared performance and energy of sliding-
window applications when implemented on FPGAs, GPUs, and
multicore devices, under a variety of different use cases. For most
cases, the FPGA provided significantly faster performance, except
for small inputs sizes, with speedups up to 11x and 57x compared
to GPUs and multicores, respectively. GPUs provided the best
performance when the basic sliding-window functionality could
be replaced by frequency-domain algorithms. FPGAs provided
the best energy efficiency in almost all situations, and were in
some cases orders of magnitude better than other devices. For
large input sizes, FPGAs were the only device capable of realistic
embedded system usage. The consistency of the results across the
3 applications studied suggests that the trends described in this
paper can be applied to other sliding-window applications, with
only minor differences caused by the operation applied to the
sliding window. To our knowledge, we also demonstrated the first
real-time sliding-window implementations to operate on high
definition video with kernels up to 45×45.

7. ACKNOWLEDGEMENTS
This work was supported by the National Science Foundation
grant CNS-0914474.

8. REFERENCES
[1] Altera, Inc. 2011 Stratix III Early Power Estimator.

http://www.altera.com/support/devices/estimator/st3-estimator/st3-
power-estimator.html.

[2] Asano, S., Maruyama, T., and Yamaguchi, Y. 2009. Performance
comparison of FPGA, GPU and CPU in image processing. In Proc.
of Int. Conf. on Field Prog, Logic and App. FPL ‘09. 126-131.

[3] Baker, Z.K., Gokhale, M.B., and Tripp, J.L. 2007. Matched filter
computation on FPGA, Cell and GPU. In Proc. of the IEEE Symp. on
Field-Prog. Custom Computing Machines. FCCM’07. 207-218.

[4] Chase, J., Nelson, B., Bodily, J., Zhaoyi W., and Dah-Jye, L. 2008.
Real-time optical flow calculations on FPGA and GPU architectures:
a comparison study. In Proc. of the Int. Symp. on Field-Prog.
Custom Computing Machines. FCCM '08. 173-182.

[5] Che, S., Li, J., Sheaffer, J.W., Skadron, K., and Lach, J. 2008.
Accelerating compute-intensive applications with GPUs and FPGAs.
In Proc. of the Symp. on Application Specific Processors. SASP’08.
101-107.

[6] Cope, B., Cheung, P.Y.K., Luk, W., and Witt, S. 2005. Have GPUs
made FPGAs redundant in the field of video processing? In Proc. of
the IEEE Int. Conf. on Field-Prog. Technology. 111-118.

[7] Dong, Y., Dou, Y., and Zhou, J. 2007. Optimized generation of
memory structure in compiling window operations onto
reconfigurable hardware,” in Proc. of the Int. Symp. on Applied
Reconfigurable Computing, ARC ’07. 110–121.

[8] Friemel, B.H., Bohs, L.N., and Trahey, G.E. 1995. Relative
performance of two-dimensional speckle-tracking techniques:
normalized correlation, non-normalized correlation and sum-
absolute-difference. In Proc. of the IEEE Ultrasonics Symp.. 2,
1481-1484.

[9] Frigo, M., and Johnson, S. 2009. FFTW Library. http://fftw.org

[10] Guo, Z., Najjar, W., Vahid, F., and Vissers, K. 2004. A quantitative
analysis of the speedup factors of FPGAs over processors. In Proc.
of the ACM/SIGDA Int. Symp. on Field Prog. gate arrays. FPGA
’04. 162-170.

[11] Harris, M. 2007. “Optimizing Parallel Reduction in CUDA,”
NVIDIA Developer Technology.

[12] Hunt, L. 2009. Fault-aware machine vision in small unmanned
systems. In Proc. of the Florida Conf. on Recent Advances in
Robotics. FCRAR’09.

[13] Intel. 2010. Writing Optimal OpenCL Code with Intel OpenCL
SDK: Performance Guide. http://software.intel.com/file/37171/.

[14] Liu, W., Pokharel, P., and Principe, J. 2007. Correntropy: Properties
and applications in non-Gaussian signal processing. IEEE
Tranactions on. Signal Processing, 55, 11 (Nov. 2007), 5286–5298.

[15] Mehta, S., Misra, A., Singhal, A., Kumar, P., and Mittal, A. 2010. A
high-performance parallel implementation of sum of absolute
differences algorithm for motion estimation using CUDA. HiPC
Conf. 2010.

[16] Munshi, A. The OpenCL Specification.
http://www.khronos.org/registry/cl/specs/opencl-1.0.29.pdf.

[17] NVIDIA. 2001. CUDA.
http://developer.nvidia.com/object/cuda.html.

[18] NVIDIA. 2011. CUDA CUFFT Library.
http://developer.nvidia.com/cuda-toolkit-40.

[19] NVIDIA. 2011. NVIDIA Tegra 2.
http://www.nvidia.com/object/tegra-2.html.

[20] Owens, J.D., Houston, M., Luebke, D., Green, S., Stone, J.E., and
Phillips, J.C. 2008. GPU computing. Proc. of the IEEE. 96, 5, 879-
899.

[21] Pauwels, K., Tomasi, M., Diaz Alonso, J., Ros, E., and Van Hulle,
M. 2011. A comparison of FPGA and GPU for real-time phase-based
optical flow, stereo, and local image features. IEEE Transactions
on Computers. 99.

[22] Podlozhnyuk, V. 2007. FFT-based 2D convolution. White Paper.
NVIDIA Corporation.

[23] Porter, R.B. and Bergmann, N.W. A generic implementation
framework for FPGA based stereo matching. In Proc. of the IEEE
Speech and Image Technologies for Computing and
Telecommunications, TENCON '97. 461-464.

[24] Principe, J., Fisher III, J., Xu, D. 2000. Information theoretic
learning. In S. Haykin (Ed.), Unsupervised adaptive filtering. New
York, NY: Wiley.

[25] Sinha, S., Frahm, J.M., and Pollefeys M. 2006. GPU-based Video
Feature Tracking and Matching. Technical Report TR06-012,
University of North Carolina at Chapel Hill.

[26] Underwood, K.D. and Hemmert, K.S. 2004. Closing the gap: CPU
and FPGA trends in sustainable floating-point BLAS performance.
In Proc. of the IEEE Symp. on Field-Prog. Custom Computing
Machines, FCCM’04. 219-228.

[27] Xilinx. 2010. Virtex-4 Family Overview v3.1. (Aug 30, 2010).
http://www.xilinx.com/support/documentation/data_sheets/ds112.pdf

[28] Yu, H. and Leeser, M. 2006. Automatic sliding window operation
optimization for FPGA-based computing boards. In Proc. of the
IEEE Symp. on Field-Prog. Custom Computing Machines. FCCM
'06. 76-88.

[29] Zhang, J., He, Y., Yang S., and Zhong, Y. 2003. Performance and
complexity joint optimization for H.264 video coding. In Proc. of the
Int. Symp. on Circuits and Systems. ISCAS '03. 2, 888-891.

[30] Zhi G., Betul B., and Walid N. 2004. Input data reuse in compiling
window operations onto reconfigurable hardware. In Proc. of the
ACM SIGPLAN/SIGBED Conf. on Languages, compilers, and tools
for embedded systems. LCTES '04. 249-256.

