
Lab 4: Finite State Machines
EEL 4712 – Spring 2012

 1

Objective:

The objective of this lab is to use finite state machines to implement several counters, with
the clock being generated from a debounced button press. It is up to you to determine how the
counters get mapped onto the board by analyzing the provided top_level entity.

Required tools and parts:

Quartus2, ModelSim-Altera Starter Edition, UF-4712 board

Pre-requisite:

You must be “up-to-speed” with Quartus, ModelSim, and the board before coming to lab.

Pre-lab requirements:

Debounce Logic and Clock Generator

1. To be able to see the output of the counters in real time, you will need to a slow clock signal
that is controlled by a button press. To do this, you will create a clock generator that
generates a single clock pulse (i.e. low-high-low transition) when the button has been
pressed for 1000ms (1 sec). If the button is continually held down, it should generate a pulse
every second until the button is released.

This step requires several entities. First, design a clock divider (clk_div.vhd) that converts the
25 MHz clock on the board to a 1000 Hz clock with any duty cycle you want. Next, design the
clock generator (clk_gen.vhd), which will count 1000 Hz clock pulses (each is 1 millisecond)
while the button is pressed down until between 1000ms and 1001 ms have elapsed, at which
point it will output a single clock pulse with the same width as the 1000 Hz clock. Note that
the clock generator should only create a pulse after 1000 ms have elapsed. In other words,
because of the 1 ms resolution of the input clock, the actual time could be anywhere from
[1000ms, 1001 ms) depending on when the user presses the button. If the button is pressed
right before a rising clock edge, the generator waits for approximately 1000 ms. If the button
is pressed right after a clock edge, the generator waits just under 1001 ms.

Although this timing is not noticeable to someone using the board, timing is often critical in
digital circuits. Therefore, the testbench will ensure you are waiting for the requested amount
of time. As an example where the timing differences would be more obvious, imagine the
input clock being 1 Hz. If the generator doesn’t wait at least one second and the user presses
the button right before a rising edge, the generator would create a clock pulse instantly,
which would obviously not seem like a second. Of course, if the user pressed the button right
after a rising edge, the generator would wait almost 2 seconds, but this would still meet the
specified requirement.

You are free to implement the clock generator architecture however you like, as long as the
entity doesn’t change from the provided file and as long as it uses the clock divider. Feel free
to add additional entities that you may require. Note that requiring the button to be held down
eliminates bouncing problems, because the bounces will simply reset the time by a negligible
amount (1 ms).

Note that both the clk_div and clk_gen entity use generics. Clk_div must work using generics
that specify the input and output clock frequencies. Clk_gen works by specifying how many
milliseconds the button must be pressed to generate a clock pulse.

Lab 4: Finite State Machines
EEL 4712 – Spring 2012

 2

A test bench is provided to help you test clk_div and clk_gen, although you should also test
each entity using your own test benches.

4-bit Gray code counter

2. Design a 4-bit Gray code counter. Gray code is a numerical system where two successive
values differ by only a single bit. Therefore, the binary sequence for the counter should be:

0000 (0)

0001 (1)

0011 (3)

0010 (2)

0110 (6)

0111 (7)

0101 (5)

0100 (4)

1100 (C)

1101 (D)

1111 (F)

1110 (E)

1010 (A)

1011 (B)

1001 (9)

1000 (8)

Note that after “1000” the counter should go back to the beginning and output “0000”. Create
an architecture for the provided Gray code counter called gray1 (gray1.vhd). Use the 1-
process FSM model (i.e., a single process with nothing except clock and reset in the
sensitivity list). Use the provided entity.

Turn in all vhdl files. For clk_div, include in your pre-lab report waveforms for clock ratios
of 2 and 4. See the testbench for details on how to change the ratio. For clk_gen, your code
will be tested using a testbench similar to the one provided, so make sure there are no error
messages during your simulations. Also, make sure to test different ms times for the button
press.

Create your own test bench and use it to generate a waveform that illustrates the
correct functionality. Include the waveform in your pre-lab report. Turn in all vhdl files.

Lab 4: Finite State Machines
EEL 4712 – Spring 2012

 3

3. Create an architecture for the provided gray2 entity (gray2.vhd), using the 2-process FSM
model (i.e., one process for sequential logic and one process for combinational logic). Use
the provided entity.

4-bit Up/Down Counter with Load

4. Create a 4-bit up/down counter (counter.vhd) that counts upwards when the active-low input
“up_n” is asserted (i.e., =’0’) and down otherwise. The counter should count from 0 to 15 and
overlap to 0 when counting up, and the opposite when counting down, although the counter
should start at 0 when reset. In addition, the counter should be able to load a count from one
of the dipswitches when load_n = ‘0’. Load_n should take priority over up_n. Both load_n and
up_n are synchronous.

You are free to implement the counter however you want, as long as you conform to the
provided entity. Be aware that this counter can be implemented with very little code, so if your
architecture description is getting long, consider a different way of implementing it.

Top Level

5. Read the code for the provided top_level entity (top_level.vhd) and describe what it does. Be
specific.

Include the description in your pre-lab report.

In-lab procedure (do as much as possible ahead of time):

1. Using Quartus, assign pins to each of the top_level.vhd inputs/outputs such that the signals
are connected to the appropriate locations on the board. Note that the exact connections are
purposely omitted so that you have to understand the top_level.vhd file. Make sure to add the
7-segment decoder code to your project.

2. Download your design to the board, and test it for different inputs and outputs. Demonstrate
the correct functionality for the TA.

3. Be prepared to answer simple questions or to make simple extensions that your TA
may request. If you have done the pre-lab exercises, these questions should not be
difficult.

Lab report: (In-lab part only)

 If you had any problems with portions of the lab that could not be resolved during lab,
please discuss them along with possible justifications and solutions. If you had no
problems, this report is not necessary.

Create your own test bench and use it to generate a waveform that illustrates the
correct functionality. Include the waveform in your pre-lab report. Turn in all vhdl files.

Create your own test bench and use it to generate a waveform that illustrates the
correct functionality. Add annotations to illustrate all input operations (up, down, load).
Include the waveform in your pre-lab report. Turn in all vhdl files.

Lab 4: Finite State Machines
EEL 4712 – Spring 2012

 4

Turn the lab report in on e-learning, if explanation is needed for partial credit. Make sure
to turn it in to the “lab” section and not the “pre-lab” section.

