EEL 4712 Name:

Midterm 1 — Spring 2013
VERSION 1
UFID:

Sign your name here if you would like for your test to be returned in class:

IMPORTANT:

* Please be neat and write (or draw) carefully. If we cannot read it with a
reasonable effort, it is assumed wrong.

* As always, the best answer gets the most points.

COVER SHEET:

Problem#t: Points

1 (15 points)

2 (12 points) Total:

3 (6 points)

4 (6 points)

5 (6 points)

6 (6 points)

7 (6 points)

8 (12 points)

9 (12 points)

10 (15 points)

11 (4 points) 4

Regrade Info:

ENTITY entity name IS

PORT (_ input name, input name : IN STD LOGIC;

__input vector name : IN STD LOGIC VECTOR(_ high downto _ low);
__bidir name, _ bidir name : INOUT STD LOGIC;

__output name, output name : OUT STD LOGIC) ;

END entity name;

ARCHITECTURE a OF entity name IS
SIGNAL signal name : STD LOGIC;
BEGIN

—-— Process Statement

-- Concurrent Signal Assignment

-- Conditional Signal Assignment
-- Selected Signal Assignment

-- Component Instantiation Statement
END a;

__instance name: _ component name PORT MAP (component port =>
___component port => connect port);

WITH expression SELECT

__signal <= _ expression WHEN _ constant value,
__expression WHEN _ constant value,
___expression WHEN _ constant value,
__expression WHEN _ constant value;

__signal <= expression WHEN _ boolean expression ELSE
__expression WHEN boolean expression ELSE
___expression;

IF expression THEN
___statement;
__statement;

ELSIF _ expression THEN
___statement;
___statement;

ELSE

___statement;
___statement;

END IF;

CASE expression IS
WHEN constant value =>
___statement;
___statement;
WHEN constant value =>
___statement;
__statement;
WHEN OTHERS =>
__statement;

statement;
END CASE;

<generate label>: FOR <loop id> IN <range> GENERATE
—-— Concurrent Statement (s)

END GENERATE;

type array type is array(_ upperbound downto _ lowerbound);

___connect port,

1) (15 points) Fill in the following behavioral VHDL to implement the

illustrated circuit. Assume that clk and rst connect to every register. All
wires and operations are width bits. Ignore overflow from the adders.

library ieee;
use leee.std logic 1164.all;
use ieee.numeric std.all;

entity testl is

generic (
width : positive := 16);
port (
clk, rst : in std logic;
inl, in2, in3 : in std logic vector(width-1 downto 0);
output : out std logic vector (width-1 downto 0));
end testl;

architecture BHV of testl is

begin

process (clk, rst)

begin
if (rst = '1l') then

elsif (rising edge(clk)) then

end if;
end process;

end BHV;

in1

in2

in3

Reg

Reg

Reg

output

2) (12 points) Identify the violations (if any) of the synthesis coding guidelines for sequential logic.

library ieee;
use ieee.std logic 1164.all;
use leee.numeric std.all;

entity count is

generic (
width : positive := 16);
port (
clk : in std logic;
rst : in std logic;
en : in std logic;
input : in std logic vector (width-1 downto 0);
zero : out std logic);

end count;
architecture BHV of count is

signal count : signed(width-1 downto 0);
begin

process (clk, rst)
begin

if (count > 0) then

count <= count - 1;
end if;
if (rst = '1'") then

count <= (others => '0"');

elsif (clk = '1l' and clk'event) then
if (en = '1') then
count <= signed(input) ;
end 1if;

if (count = 0) then

zero <= '1"';
else
zero <= '0';
end if;
end if;

end process;
end BHV;

3) (6 points)When using sequential statements, when does a signal’s value get updated?

4) (6 points)When using sequential statements, when does a variable’s value get updated?

5) (6 points) For a behavioral architecture of a priority encoder, briefly explain if a case statement or an
if statement is a more appropriate construct.

6) (6 points) While implementing a behavioral architecture for an ALU, you get a warning during
synthesis about a latch being inferred for output “overflow.” What does this suggest is wrong with
your VHDL code?

7) (6 points) When defining a state machine with 100 states, you notice that a particular output x has a
value of ‘0’ in 95 of the states. What does this suggest that you should do to simplify your code?

8) (12 points) Fill in the provided code to create the illustrated structural architecture using a series of
A components. Assume you are given the shown A entity, which has already been defined
elsewhere. The length of the series is specified by the generic width.

Pre-defined Entity A Desired Structural Architecture
inl x(width-1) x(1) x(0)
v v v
out2 «—4 A |e—in2 Ze—— A l&— ... «—{ A || A le—j
v v v v
outl y(width-1) y(1) y(0)

library ieee;
use leee.std logic 1164.all;

entity test2 is

generic (
width : positive := 8);
port (
x : 1in std logic vector (width-1 downto 0);

j : in std logic;
y : out std logic vector(width-1 downto 0);
z : out std logic);

end test2;

architecture STR of test2 is

component A

port (
inl, in2 : in std logic;
outl, out2 : out std logic);

end component;

begin
U LOOP : for i in 0 to width-1 generate

U A : entity work.A
port map (

inl =>

in2 =>

outl =>

outz2 =>
)

end generate U LOOP;

end STR;

9) (12 points) Fill in the code to implement the following Moore finite state machine, using the 2-
process FSM model. Assume that if an edge does not have a corresponding condition, that edge is
always taken on a rising clock edge. Assume that SO is the start state. Use the next page if extra
room is needed.

go=0

library ieee;
use leee.std logic 1164.all;

entity fsm is

port (
clk, rst, go, x : in std logic;
% : out std logic vector (1l downto 0));
end fsm;

architecture PROC2 of fsm is

type STATE TYPE is (SO, S1, S2, S3);
signal state, next state : STATE TYPE;

begin

process (clk, rst)

begin
if (rst = '1') then
elsif (clk'event and clk = '1') then
end 1if;

end process;

process ()
begin

end process;
end PROC2;

10) a. (3 points) Briefly describe the tradeoffs of ripple-carry and carry-lookahead adders.

b. (3 points) Define the block propagate (BP) output of a 4-bit carry-lookahead adder in terms of the
propagate signal (p;) of each bit i.

c. (8 points) On the graphs below, draw the area and delay as a function of width for both ripple-
carry and carry-lookahead adders. Assume the carry-lookahead adder has the ideal delay. Make
sure to label each curve.

area delay

width width

11) 4 free points for having to take a test at 8:30am.

