EEL 4712 Midterm 1 – Spring 2013 VERSION 1		Name:	:					
VERSION 1		UFID:						
Sign your name here if you would like for your test to be returned in class:								
 IMPORTANT: Please be neat and write (or draw) carefully. If we cannot read it with a reasonable effort, it is assumed wrong. As always, the best answer gets the most points. 								
COVER SHEET:								
Problem#:	Points]						
1 (15 points)		_	Total:					
2 (12 points)			Total.					
3 (6 points)								
4 (6 points)								
5 (6 points)		-						
6 (6 points)		_						
7 (6 points)		-						
8 (12 points)		-						
9 (12 points)		-						
10 (15 points)								
11 (4 points)	4							
Regrade Info:								

```
ENTITY _entity_name IS
PORT( input_name, __input_name : IN STD_LOGIC;
__input_vector_name : IN STD_LOGIC_VECTOR(__high downto low);
__bidir_name, __bidir_name : INOUT STD_LOGIC;
 output name, output name : OUT STD LOGIC);
END __entity_name;
ARCHITECTURE a OF __entity_name IS
SIGNAL __signal_name : STD_LOGIC;
BEGIN
-- Process Statement
-- Concurrent Signal Assignment
-- Conditional Signal Assignment
-- Selected Signal Assignment
-- Component Instantiation Statement
END a;
__instance_name: __component_name PORT MAP (__component_port => __connect port,
__component_port => __connect_port);
WITH __expression SELECT
__signal <= __expression WHEN __constant_value,
__expression WHEN __constant_value,
expression WHEN __constant_value,
expression WHEN __constant_value;
 _signal <= _expression WHEN _boolean_expression ELSE _expression WHEN _boolean_expression ELSE
__expression;
IF expression THEN
 statement;
 statement;
ELSIF expression THEN
 statement;
 statement;
ELSE
__statement;
  statement;
END IF;
CASE __expression IS
WHEN __constant_value =>
__statement;
  statement;
WHEN constant value =>
__statement;
 statement;
WHEN OTHERS =>
__statement;
 statement;
END CASE;
<generate label>: FOR <loop id> IN <range> GENERATE
-- Concurrent Statement(s)
END GENERATE;
type array_type is array(__upperbound downto __lowerbound);
```

1) (15 points) Fill in the following behavioral VHDL to implement the illustrated circuit. Assume that clk and rst connect to every register. All wires and operations are *width* bits. Ignore overflow from the adders.

```
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
entity test1 is
  generic (
    width
                  : positive := 16);
  port (
   clk, rst : in std_logic;
in1, in2, in3 : in std_logic_vector(width-1 downto 0);
               : out std_logic_vector(width-1 downto 0));
    output
end test1;
architecture BHV of test1 is
begin
  process(clk, rst)
  begin
    if (rst = '1') then
    elsif (rising edge(clk)) then
    end if;
  end process;
```

end BHV;

2) (12 points) Identify the violations (if any) of the synthesis coding guidelines for sequential logic.

```
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
entity count is
  generic (
   width : positive := 16);
   clk : in std_logic;
   rst : in std_logic;
   en : in std_logic;
   input : in std_logic_vector(width-1 downto 0);
    zero : out std_logic);
end count;
architecture BHV of count is
  signal count : signed(width-1 downto 0);
begin
 process(clk, rst)
 begin
   if (count > 0) then
    count <= count - 1;
   end if;
   if (rst = '1') then
      count <= (others => '0');
   elsif (clk = '1' and clk'event) then
      if (en = '1') then
       count <= signed(input);</pre>
      end if;
      if (count = 0) then
       zero <= '1';
      else
       zero <= '0';
      end if;
    end if;
  end process;
end BHV;
```

3)	(6 points)When using sequential statements, when does a signal's value get updated?
4)	(6 points)When using sequential statements, when does a variable's value get updated?
5)	(6 points) For a behavioral architecture of a priority encoder, briefly explain if a <i>case</i> statement or an <i>if</i> statement is a more appropriate construct.
6)	(6 points) While implementing a behavioral architecture for an ALU, you get a warning during synthesis about a latch being inferred for output "overflow." What does this suggest is wrong with your VHDL code?
7)	(6 points) When defining a state machine with 100 states, you notice that a particular output x has a value of '0' in 95 of the states. What does this suggest that you should do to simplify your code?

8) (12 points) Fill in the provided code to create the illustrated structural architecture using a series of *A* components. Assume you are given the shown *A* entity, which has already been defined elsewhere. The length of the series is specified by the generic *width*.

end generate U LOOP;

9) (12 points) Fill in the code to implement the following Moore finite state machine, using the 2-process FSM model. Assume that if an edge does not have a corresponding condition, that edge is always taken on a rising clock edge. Assume that S0 is the start state. Use the next page if extra room is needed.


```
library ieee;
use ieee.std logic 1164.all;
entity fsm is
 port (
   clk, rst, go, x : in std logic;
                    : out std_logic_vector(1 downto 0));
    У
end fsm;
architecture PROC2 of fsm is
  type STATE_TYPE is (S0, S1, S2, S3);
  signal state, next_state : STATE_TYPE;
begin
  process(clk, rst)
 begin
   if (rst = '1') then
   elsif (clk'event and clk = '1') then
   end if;
  end process;
                                                )
  process (
  begin
```

10) a. (3 points) B	riefly describe the tradeoffs of ı	ipple-carry and carry-loo	kahead adders.
	Define the block propagate (BP) $nal(p_i)$ of each bit i .	output of a 4-bit carry-lo	okahead adder in terms of the
	On the graphs below, draw the a ry-lookahead adders. Assume the each curve.		
area		delay	
	width		width

11) 4 free points for having to take a test at 8:30am.