EEL4712

Midterm 3 — Spring 2012

VERSION 1

Sign your name here if you would like for your test to be returned in class:

IMPORTANT:

* Please be neat and write (or draw) carefully. If we cannot read it with a
reasonable effort, it is assumed wrong.

* As always, the best answer gets the most points.

COVER SHEET:
Problem#: Points
1 (6 points)

2 (10 points)

3 (5 points)

Total:

4 (5 points)

5 (5 points)

6 (12 points)

7 (6 points)

8 (12 points)

9 (5 points)

10 (5 points)

11 (25 points)

12 (5 points)

Regrade Info:

ENTITY _entity_name IS

PORT(__input_name, __input_name : IN STD_LOGIC;
__input_vector_name : IN STD_LOGIC_VECTOR(__high downto __low);
__bidir_name, __bidir_name : INOUT STD_LOGIC;

__output_name, __ output_name : OUT STD_LOGIC);

END __entity_name;

ARCHITECTURE a OF __entity_name IS
SIGNAL __signal_name : STD_LOGIC;
BEGIN

-- Process Statement

-- Concurrent Signal Assignment

-- Conditional Signal Assignment

-- Selected Signal Assignment

-- Component Instantiation Statement
END a;

__instance_name: __component_name PORT MAP (__component_port => __connect_port,
__component_port => __connect_port);

WITH __expression SELECT

__signal <= __expression WHEN __constant_value,
__expression WHEN ___constant_value,
__expression WHEN ___constant_value,
__expression WHEN __ constant_value;

__signal <= __expression WHEN __boolean_expression ELSE
__expression WHEN __ boolean_expression ELSE
__expression;

IF __expression THEN
__statement;

__statement;

ELSIF _ expression THEN
__statement;

__statement;

ELSE

__statement;

__statement;

END IF;

CASE __expression IS
WHEN __ constant_value =>
__statement;

__statement;

WHEN __ constant_value =>
__statement;

__statement;

WHEN OTHERS =>
__statement;

__statement;

END CASE;

<generate_label>: FOR <loop_id> IN <range> GENERATE
-- Concurrent Statement(s)
END GENERATE;

1) (5 points) For a call instruction at address 0x30, show the state of the stack after the call but
before the corresponding return. You can omit any data that was on the stack prior to the call
instruction. Instead of showing an explicit address in the stack pointer, just point to the top of
the stack.

2) a. (5 points) For the following buses, show the synthesized circuit for an FPGA. Be sure to show
inputs and outputs for all entities connected to the bus.

A B C

v 1 v 1 1

b. (5 points) What potential problem will be identified during synthesis for the circuit in part a?

3) (5 points) True/False. A dual-flop synchronizer addresses metastability problems by waiting one
cycle to guarantee that the metastable output has stabilized.

4) (5 points) Name two situations where the input to a flip-flop may change during the setup and
hold window.

5) (5 points) In what unique situation can a dual-flop synchronizer be used to synchronize multiple
bits?

6) (12 points) Show where synchronizers should be used in the following schematic to handle all
communication across clock domains. Make sure to label the type of synchronizer. You do not
need to show how the synchronizer is implemented.

Address Generator > RAM CLOCK DOMAIN 1
go Input data (32 bits)
]
Controller Pipeline CLOCK DOMAIN 2
| g0 { Output data (32 bits)

CLOCK DOMAIN 3

A 4
o
>
<

Address Generator

7) (6 points) Briefly describe what will happen while simulating the following 2-process FSMD.
Identify the problematic line(s) of code, if any.

library ieee;
use ieee.std logic_1164.all;
use ieee.numeric std.all;

entity fsmd is

port(clk : in std logic;
rst : in std logic;
go : in std logic;
done : out std logic);
end fsmd;

architecture bhv of fsmd is

type STATE_TYPE is (S_START, S_COUNT, S_DONE) ;
signal state, next state : STATE TYPE;

signal count : unsigned (3 downto 0);
constant MAX COUNT VAL : natural := 10;
begin

process (clk, rst)

begin
if (rst = '1') then
state <= S START;
elsif (clk = '"1l' and clk'event) then
state <= next_state;
end if;

end process;

process (go, state, count)
begin

case state is
when S START =>

done <= '0';
count <= to unsigned(l, count'length);

if (go = '0') then

next state <= S START;
else

next state <= S_COUNT;
end 1if;

when S_COUNT =>

done <= '0';
count <= count + 1;

if (count = MAX COUNT_VAL) then
next_state <= S_DONE;

else
next state <= S COUNT;

end if;

when S_DONE =>
count <= to_unsigned(MAX COUNT VAL, count'length);
done <= '1l"';

next_ state <= S_DONE;

when others => null;
end case;

end process;
end bhv;

8) (12 points) Create a memory initialization file for the following assembly code. Add a comment
at the beginning of each instruction. You will likely need to break your answer up into two
columns to fit on the page.

INPORTO EQU SFFFE
OUTPORTO EQU SFFFE
BEGIN:

LDAA INPORTO
STAA COUNT
AGAIN:

LDAA VALUE
CLRC

RORC

STAA VALUE
LDAA COUNT
DECA

STAA COUNT
BNEA AGAIN
LDAA VALUE
STAA OUTPORTO

INFINITE LOOP:
CLRC
BCCA INFINITE LOOP

* Data Area
VALUE: dc.b SAA
COUNT: ds.b 1

END BEGIN

Depth 256;

Width 8;
Address_radix = hex;
Data radix = hex;

% Program RAM Data %
Content

Begin

[..00FF] : 00;
End;

9) (5 points) For the set of implementations shown below, circle the implementations that are
Pareto optimal. List any assumptions.

Execution d
Time

10) (5 points) Although loop unrolling (wide parallelism) and pipelining (deep parallelism) can
sometimes achieve the same performance, briefly explain why loop unrolling by itself might not
be Pareto optimal.

11) a. (20 points) For the following pseudo-code, create a non-pipelined implementation. List the
datapath resources and the corresponding schedule. You do not need to show all datapath
connections, just the computational resources. Assume all memory accesses take 1 cycle.
Assume all operations take 1 cycle, except for the divide, which takes 5 cycles. Show the
estimated execution time in cycles assuming the if branch is always taken. If your schedule is
non-obvious, make sure to explain.

float g val = gq[50];

float m val = m[50];

for (k=0; k < 10000; k++) }
float diff = g[k] - g val;
float diff3 = diff * diff * diff;
if (diff3 < 0) diff3 = diff3 * -1.0;
ali]l = m val*m[k]*diff / diff3;

}

Schedule: Datapath:

b. (5 points) Assume you are given a pipelined datapath that implements the loop in part a. The
pipeline has a latency of 32 cycles and does not use any unrolling. What is the execution time in
cycles when using this pipeline?

12) (5 points) Application design productivity using HDLs is an order of magnitude lower than
approaches for other devices (CPUs, GPUs). What is the name of the research area that aims to
enable FPGA design from high-level languages?

