EEL 4712 Name:

Midterm 1 — Spring 2012
VERSION 1
UFID:

IMPORTANT:

* Please be neat and write (or draw) carefully. If we cannot read it with a
reasonable effort, it is assumed wrong.

* As always, the best answer gets the most points.

COVER SHEET:

Problemit: Points

1 (14 points)

2 (14 points) Total:

3 (14 points)

4 (14 points)

5 (14 points)

6 (15 points)

7 (15 points)

Regrade Info:

ENTITY entity name IS

PORT (_ input name, input name : IN STD LOGIC;

__input vector name : IN STD LOGIC VECTOR(_ high downto _ low);
__bidir name, _ bidir name : INOUT STD LOGIC;

__output name, output name : OUT STD LOGIC) ;

END entity name;

ARCHITECTURE a OF entity name IS
SIGNAL signal name : STD LOGIC;
BEGIN

—-— Process Statement

-- Concurrent Signal Assignment

-- Conditional Signal Assignment
-- Selected Signal Assignment

-- Component Instantiation Statement
END a;

__instance name: _ component name PORT MAP (component port =>
___component port => connect port);

WITH expression SELECT

__signal <= _ expression WHEN _ constant value,
__expression WHEN _ constant value,
___expression WHEN _ constant value,
__expression WHEN _ constant value;

__signal <= expression WHEN _ boolean expression ELSE
__expression WHEN boolean expression ELSE
___expression;

IF expression THEN
___statement;
__statement;

ELSIF _ expression THEN
___statement;
___statement;

ELSE

___statement;
___statement;

END IF;

CASE expression IS
WHEN constant value =>
___statement;
___statement;
WHEN constant value =>
___statement;
__statement;
WHEN OTHERS =>
__statement;

statement;
END CASE;

<generate label>: FOR <loop id> IN <range> GENERATE
—-— Concurrent Statement (s)

END GENERATE;

type array type is array(_ upperbound downto _ lowerbound);

___connect port,

1) (14 points) Fill in the following beha

vioral VHDL to implement the inputt input2 . 43

illustrated circuit. Assume that clk and rst connect to every register. Also,
write the code so that only the lower half bits of the multiplier output is

saved in the register. All wires in the circuit are WIDTH bits.

library ieee;
use leee.std logic 1164.all;
use ieee.numeric_ std.all;

entity mult add is

generic (
width

port (
clk, rst : in
inputl, input2, input3 : in
output : out

end mult add;

architecture BHV of mult add is

begin -- BHV

process (clk, rst)

begin
if (rst = '1l') then

elsif (rising edge(clk)) then

end if;
end process;

end BHV;

‘ Reg | ‘ Reg |

output

positive := 16);

std logic;
std logic vector (width-1 downto 0);
std logic vector (width-1 downto 0));

2) (14 points) Draw the circuit that would be synthesized for the following code. Label all inputs,

outputs, and register outputs based on their signal names.
library ieee;
use ieee.std logic 1164.all;
use ieee.numeric_std.all;

entity example is

generic (
width : positive := 16);
port (
clk, rst : in std_logic;
inl, in2, in3, ind4 : in std logic vector (width-1 downto 0);
output : out std logic vector(width-1 downto 0));

end example;

architecture BHV of example is

signal addl out : std logic vector (width-1 downto 0);
signal add2 out : std logic vector (width-1 downto 0);
signal templ out : std logic vector (width-1 downto 0);
signal temp2 out : std logic vector (width-1 downto 0);
begin
process (clk, rst)
begin
if (rst = '1l') then

addl_out <= (others => '0");
add2 out <= (others => '0");
templ out <= (others => '0"');
temp2 out <= (others => '0"')

elsif (rising edge(clk)) then
addl out <= std logic vector (unsigned(inl)+unsigned(in2));
add2 out <= std logic vector (unsigned(in3)-+unsigned(ind));
templ out <= addl_out;
temp2 out <= add2 out;

end if;

end process;

’

output <= std logic vector (unsigned(templ out)+unsigned (temp2 out));

end BHV;

3) (14 points) Identify the violations (if any) of the synthesis coding guidelines for combinational logic,
and the effect on the synthesized circuit.

library ieee;
use ieee.std logic 11l64.all;
use leee.numeric std.all;

entity alu en is

generic (
width : positive := 16);
port (
en, sel : in std logic;
inputl, input2 : in std logic vector (width-1 downto 0);
output : out std logic vector (width-1 downto 0));

end alu en;

architecture BHV of alu en is
begin
process (inputl, input2, sel)
begin
case sel is
when '0' =>

if (en = '1l') then
output <= std logic vector (unsigned(inputl)+unsigned (input2));
end 1f;

when '1' =>

if (en = '1l'") then
output <= std logic vector (unsigned(inputl)-unsigned (input2));
end if;

when others => null;
end case;
end process;
end BHV;

4) (14 points) Circle the following architectures that will correctly simulate an adder with overflow:

entity ADD is

port (
inputl, input2 : in std logic_vector (15 downto 0);
output : out std logic vector (15 downto 0);
overflow : out std logic);
end ADD;

architecture BHV1 of ADD is
signal temp : unsigned(16 downto 0);

begin
process (inputl, input2)
begin
temp <= unsigned ("0"&inputl) + unsigned("0"&input2);

output <= std logic_vector (temp (15 downto 0));
overflow <= std _logic(temp(16));
end process;
end BHV1;

architecture BHV2 of ADD is
signal temp : unsigned (16 downto 0);

begin
process (inputl, input2)
begin
temp <= unsigned ("0"&inputl) + unsigned("0"&input2);

output <= std logic vector (temp (15 downto 0));
end process;

overflow <= std _logic(temp(16));
end BHV2;

architecture BHV3 of ADD is
signal temp : unsigned (16 downto 0);

begin
process (inputl, input2)
begin
temp <= unsigned ("0"&inputl) + unsigned("0"&input2);

end process;

output <= std logic vector (temp (15 downto 0));
overflow <= std logic(temp(16));

end BHV3;

architecture BHV4 of ADD is
begin
process (inputl, input2)
variable temp : unsigned (16 downto 0);
begin
temp := unsigned ("0"&inputl) + unsigned("0"&input2);
output <= std logic_vector (temp (15 downto 0));
overflow <= std logic(temp(16));
end process;
end BHV4;

architecture BHVS5 of ADD is
signal temp : unsigned (16 downto O0);
begin
temp <= unsigned ("0"&inputl) + unsigned("O0"&input2);
output <= std logic_vector (temp (15 downto 0));
overflow <= std logic(temp(16));
end BHV5;

5) (14 points) Fill in the code provided below to create a series of flip flops (FFs) to delay an input by a
fixed number of cycles. Assume you are given the shown FF component. The length of the series is
specified by the generic cycles. You must use a structural architecture with the provided generate
loop. The circuit should look like this:

output «{ FF | <« FF FF le— input

A

library ieee;
use ieee.std logic 1164.all;

entity delay is

generic (
cycles : positive := 8);
port (
clk, rst, input : in std logic;
output : out std logic);
end delay;

architecture STR of delay is

component ff

port (
clk, rst, input : in std logic;
output : out std logic);

end component;

begin

U DELAY : for 1 in 0 to cycles-1 generate

U FF : entity work.ff
port map (

);

end generate U DELAY;

end STR;

6) (15 points) Fill in the skeleton code to implement the following Moore finite state machine, using
the 2-process FSM model. Assume that if an edge does not have a corresponding condition, that
edge is always taken on a rising clock edge. Assume that INIT is the start state. Use the next page if
extra room is needed.

INIT COUNT1 COUNT2

library ieee;
use ieee.std logic 1164.all;

entity fsm is

port (
clk, rst, go : in std logic;
X : out std logic vector(l downto 0));
end fsm;

architecture PROC2 of fsm is

type STATE TYPE is (INIT, COUNT1, COUNTZ2, DONE) ;
signal state, next state : STATE TYPE;

begin

process (clk, rst)

begin
if (rst = '1l') then
elsif (clk'event and clk = '1l') then
end if;

end process;

process ()
begin

end process;
end PROC2;

7) a. (5 points) True/false. A hierarchical carry-lookahead adder reduces area overhead compared to a
single-level carry-lookahead adder without increasing propagation delay.

b. (5 points) Define the 4™ carry bit (c,) of a carry-lookahead adder in terms of each propagate bit
(pi), each generate bit (g;) and the carry in (co).

c. (5 points) What advantage does a ripple-carry adder have over a carry-lookahead adder?

