EEL 4712 Name:

Midterm 1 —Spring 2011
VERSION 1
UFID:

IMPORTANT:

* Please be neat and write (or draw) carefully. If we cannot read it with a
reasonable effort, it is assumed wrong.

* As always, the best answer gets the most points.

COVER SHEET:

Problem#: Points

1 (5 points)

2 (5 points) Total:

3 (12 points)

4 (12 points)

5 (16 points)

6 (16 points)

7 (16 points)

8 (15 points)

9 (3 points) 3

Regrade Info:

ENTITY entity name IS
PORT (__input name, input name : IN STD LOGIC;
__input vector name : IN STD LOGIC VECTOR(_ high downto low);
__bidir name, bidir name : INOUT STD LOGIC;
output name, output name : OUT STD LOGIC) ;
END AienEityinaﬁg; B a

ARCHITECTURE a OF entity name IS
SIGNAL signal name : STD LOGIC;
BEGIN

—-— Process Statement

-- Concurrent Signal Assignment

-- Conditional Signal Assignment

—-- Selected Signal Assignment

-- Component Instantiation Statement
END a;

__instance name: _ component name PORT MAP (_ component port =>
__component port => connect port);

WITH expression SELECT

__signal <= expression WHEN _ constant value,
__expression WHEN _ constant value,
__expression WHEN _ constant value,
__expression WHEN _ constant value;

__signal <= expression WHEN boolean expression ELSE
__expression WHEN boolean expression ELSE
__expression;

IF expression THEN
___statement;
___statement;
ELSIF _ expression THEN
___statement;
___statement;
ELSE
___statement;

statement;
END IF;

CASE expression IS
WHEN constant value =>
___statement;
___statement;
WHEN constant value =>
___statement;
___statement;
WHEN OTHERS =>
___statement;

statement;
END CASE;

<generate label>: FOR <loop id> IN <range> GENERATE
—-—- Concurrent Statement (s)

END GENERATE;

type array type is array(upperbound downto lowerbound);

__connect port,

1) (5 points) Given the following ALU entity:

library ieee;
use leee.std logic 1164.all;

entity ALU is

generic (
WIDTH : positive := 106);
port (
inputl, input2 : in std logic vector (WIDTH-1 downto 0);
sel : in std logic _vector (3 downto 0);
output : out std logic vector (WIDTH-1 downto 0));
end ALU;

show the corresponding value of the width generic next to each of the following instantiations:

UUT : alu
generic map (width => 8)
ort ma ()
’ input? => inputl, Width =
input2 => input2,
sel => sel,
output => output) ;
UuT2 : alu
port map (
inputl => input3,
input?2 => input4, Width =
sel => sel2,
output => output2);

2) (5 points) True/false. If an entity doesn’t specify a default value for a generic, and an instantiation of
the entity does not use a generic map, then the generic defaults to 32.

3) (12 points) Identify the violation of the synthesis coding guidelines for combinational logic discussed
in class (there is only one), and the effect on the synthesized circuit.

process (state, go)
begin
next state <= state;

case state is
when STATE 0 =>

done <= '0"';
output <= "00";
if (go = '1l'") then

next state <= STATE 1;
end 1if;

when STATE 1 =>

output <= "01";
if (go = '1l') then

next state <= STATE 2;
end 1if;

when STATE 2 =>

output = "10";
if (go = '1l'") then

next state <= STATE 3;
end if;

when STATE 3 =>

done <= '1";
output <= "11";
if (go = '1l') then

next state <= STATE 0;
end if;

when others => null;
end case;
end process;

4) (12 points) For the following entity, fill in the waveform for “output” of each architecture assuming

the values shown are in decimal format:

entity ADD is
port (

inputl, input2 : in std logic vector (15 downto 0);

output
overflow
end ADD;

out std logic vector (15 downto 0);
out std logic);

architecture BHV1 of ADD is

signal temp
begin

unsigned (16 downto 0);

process (inputl, input2)

begin
temp
output

<= unsigned ("0"&inputl)
<= std logic vector (temp (15 downto 0));

overflow <= std logic(temp(16));

end process;

end BHV1;

architecture BHV2 of ADD is

begin

process (inputl, input2)

variable temp

begin
temp
output

unsigned (16 downto 0);

:= unsigned ("0"&inputl) + unsigned("0"&input2);
<= std logic vector (temp (15 downto 0));

overflow <= std logic(temp(16));

end process;

end BHVZ2;

architecture BHV3 of ADD is

signal temp
begin

temp <=

output <=

overflow <=
end BHV3;

Inputl

Input2

Output (BHV1)

Output (BHV2)

Output (BHV3)

unsigned (16 downto 0);

unsigned ("0"&inputl) + unsigned("0"&input2);
std logic vector (temp (15 downto 0));
std logic(temp(16));

+ unsigned ("0"&input2) ;

100

5) (16 points) Fill in the code provided below to create a ripple carry adder with generic width. You
must use a structural architecture with the provided generate loop that connects together the full-
adder (FA) components. The circuit should look like this:

x(WIDTH-1) y(WIDTH-1) x(1)y(1) x(0)y(0)
vY Vv

L2 /
Cout «— FA |[g— &« FA || FA |e—cin
v v v
s(WIDTH-1) s(1) s(0)
entity adder is
generic (
WIDTH : positive := 8);
port (
X, Yy : in std logic vector (WIDTH-1 downto O0);
cin : in std logic;
s : out std logic vector (WIDTH-1 downto 0);
cout : out std logic);

end adder;
architecture RIPPLE CARRY of adder is

component fa

port (
X, Y, cin : in std logic;
s, cout : out std logic);

end component;

Begin
U ADD : for i in 0 to WIDTH-1 generate

U FA : fa port map (

);

end generate U ADD;

end RIPPLE CARRY;

6) (16 points) Draw a schematic for the register-transfer-level (RTL) circuit that will be synthesized from
the following VHDL code. Clearly label all inputs, outputs, and show the corresponding location of
internal signals.

library ieee;
use ieee.std logic 1164.all;
use ieee.numeric_ std.all;

entity bhv_ test is

port (
clk, rst : in std logic;
inputl, input2 : in std logic vector (7 downto O0);
input3, input4 : in std logic vector (7 downto 0);
inputb : in std logic vector (7 downto O0);
output : out std logic vector (7 downto 0));

end bhv_ test;
architecture BHV of bhv test is

signal addl, add2, add3 : std logic vector (7 downto O0);

signal delayl, delay2 : std logic vector (7 downto 0);
begin
process (clk, rst)
begin
if (rst = '1') then

addl <= (others => '0"'");

add?2 <= (others => '0"'");

add3 <= (others => '0"'");

delayl <= (others => '0'");

a")

delay2 <= (others => " ;

elsif (clk'event and clk = '1l') then
addl <= std logic vector (unsigned (inputl)+unsigned (input2));
add?2 <= std logic vector (unsigned (input3)+unsigned (input4));
add3 <= std logic vector (unsigned(addl)+unsigned(add2)) ;
delayl <= input5;
delay?2 <= delayl;

end if;

end process;

output <= std logic vector (unsigned(add3)+unsigned(delay2));

end BHV;

7) (16 points) Fill in the skeleton code to implement the following Moore finite state machine, using
the 2-process FSM model. Use the next page if extra room is needed.

STATEO STATE1
up_an =

STATE2

entity fsm is

port (
clk, rst, up dn : in std logic;
X : out std logic vector (1l downto 0));
end fsm;

architecture TWO PROC of fsm is

signal state, next state : STATE TYPE;
begin

process (clk, rst)
begin

end process;

process ()
begin

end process;

end TWO PROC;

8) a. (5 points) Define the logic for the generate and propagate bits for a single bit i of a carry-
lookahead adder in terms of the x and y inputs.

b. (5 points) Define the block propagate and block generate for a 4-bit CLA, assuming p; is the
propagate of a single bit and g; is the generate of a single bit.

c. (5 points) Describe the tradeoffs between a ripple-carry adder and a carry-lookahead adder.

d. (3 extra credit points) What realistic limitation prevents a carry-lookahead adder from achieving a
constant delay for any width?

9) (3 free points) Why do | try to avoid multiple choice questions on tests?
a) because they are confusing
b) because there are multiple possible answers
c) because there are too many choices
d) because there are multiple possible answers
e)a+b
flb+c
gla+b+c
h)b+c+d
iJa+b+c+d
j) all of the above
k) some of the above
[) b xor c nand h
m) true
n) false
o) neither

