EEL 4712 — Digital Design
Test 1 — Spring Semester 2009 Name

IMPORTANT:

e Please be neat and write (or draw) carefully. If we cannot read it with a reasonable effort, it is
assumed wrong.

o As always, the best answer gets the most points.

COVER SHEET:

Problem: Points:

L (18pts) Total

2 (18 pts)

3 (12 pts)

4 (24 pts)

5 (18 pts)

6. (10 pts)

Re-Grade Information:

EEL 4712 — Digital Design
Test 1 — Spring Semester 2009 Name

1. VHDL Analysis (circuit synthesis)
Given the following VHDL specification, draw the corresponding circuit.
ENTITY T1Probl IS
PORT (sysClk: IN STD_LOGIC;
D :IN STD_LOGIC;
z : OUT STD_LOGIC_VECTOR (4 DOWNTO 0));
END T1Prob1;

ARCHITECTURE Prob1Arch OF T1Probl IS

SIGNAL tempZ : STD_LOGIC;
SIGNAL g, x: STD_LOGIC_VECTOR(3 DOWNTO 0);

COMPONENT altROM

PORT (addr - IN STD_LOGIC_VECTOR (0 TO 3);
CS,outEn :IN STD_LOGIC;
outData : OUT STD_LOGIC_VECTOR (3 DOWNTO 0));
END COMPONENT;
BEGIN
PROCESS

BEGIN
Wait Until (sysClk'event AND sysClk ='1");
loopl: FORIiIN O TO 2 loop
loop2: FOR jIN O to 2 loop
q(i+1) <= q(i);
end loop;
end loop;
q(0) <= D;
X <= (others =>'0");
if g = x then
tempZ <="1"
else
tempZ <="0"
end if;
END PROCESS;

altROM PORT MAP (q, tempZ,’l’, Z(4 DOWNTO 1));
Z(0) <= tempZ;

END Prob1Arch;

EEL 4712 — Digital Design
Test 1 — Spring Semester 2009

18 pts.

1. (continued) Put answer for Problem 1 here:

2. VHDL specification

Prob2Circuit

Name

ParityChecker (PD)

ShiftRegister (SR)

XOR— D
LD LD Q
CLR
CLR N
IN
CLK > Din
>

Q31

Q30

s

Qo0

> PAR

Put your answer for Probem 2 on the next page.
PD is a D flip-flop (and XOR gate) with synchronous LD and CLR. CLR has priority over LD.
SR is a 32-bit shift register: If SHF = 1, it will synchronously shift right, else “hold”.

Note: A
“bubble”
indicates
an active
low signal.

EEL 4712 — Digital Design
Test 1 — Spring Semester 2009 Name

2. (continued) Complete the following VHDL code to define the above circuit. All your code in

18 pts. the architecture must be inside the one PROCESS statement.

ENTITY Prob2Circuit IS
PORT(LD, CLR, IN, CLK, SHF : IN STD_LOGIC;

PAR, Z : OUT STD_LOGIC);
END Prob4cCircuit;

ARCHITECTURE behaviorArch OF Prob4Circuit
SIGNAL

BEGIN

PROCESS () -- All your code must be inside this one PROCESS statement.
-- The best answer gets the most points.

END PROCESS
END behaviorArch;

EEL 4712 — Digital Design
Test 1 — Spring Semester 2009 Name

3. Using the GENERIC feature of VHDL, complete the following code that will define a

12 pts. “generic” component named genMUXDff shown in Figure 3(a). The generic component has

“N” slices, each of which contains a D flip-flop and a 2-to-1 MUX as shown in Figure 3(b).
Also, the output ZFlag is true when all the D flip-flops contain ‘0.

genMUXDff
N .
% 7z b~ X(i))—0 D Q Z()
—1Y Y(i)— >
ZFlag — .
—1S S(i)
> Figure 3(b)
Figure 3(a)

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_unsigned.all;

ENTITY genMUXDff IS
GENERIC (N: INTEGER :=8)

END genMUXDff;
ARCHITECTURE genArch OF genMUXDff IS
SIGNAL
BEGIN
PROCESS () -- All code should be inside a single

-- PROCESS block

END PROCESS;
END genArch; 5

EEL 4712 — Digital Design
Test 1 — Spring Semester 2009

Name

4. Based on on the VHDL code on the next page, complete the following timing

24 pis. diagrams.
(a) Complete the following timing diagram for X = ‘0’. Please show delays and go as far as
you can. (12 pts.)
0 ps EDD.ID ns 4EH1|I} ns Erl}l}.ll} ns EH}D.ID ns 1.|}I us
1 g Clock
[RHesetn |
= oo UV Uy T Tty
Specify » puuutepeebe O Sy P AN 7R N [N T NP S PR FRPR T S FRN A PN N7 RN g Ty
countOut | Eo countOut
in binary jeeteeleebutiipiapuputs b fufuls afulr Sutel St shuput Nt spupe upuper uput yure s s Sl Ul gl St apuye) Ayt i s
@l z i
s v bl
@l w b
(a) Complete the following timing diagram for X = ‘1". Please show delays and go as far as you
can. (12 pts.)
0 ps 2000 ns 4000 ns 600.0 ns 800.0 ns 10us
[Clock |
[Hesetn |
e I
Specify] e eetiet e e e e e] el e e R s s e e G el e e e s s
countOut | o countOut
in binary jeeteeleieiuiiuipiapuputs b fupuls uuls Sufult St st gt spupe upuper uyupe Mute s s Sl Gl g S syl I S e
=l _z i
= v b
] w_ b

EEL 4712 — Digital Design
Test 1 — Spring Semester 2009 Name

Code used for Problem 4:

ENTITY T1Prob4 IS

PORT (Clock, Resetn, X ‘IN STD_LOGIC;
countOut :OUT STD_LOGIC_Vector (1 DOWNTO 0);
Y,Z,W :OUT STD_LOGIC);

END T1Prob4 ;

ARCHITECTURE Behavior OF T1Prob4 IS
SIGNAL count : STD_LOGIC_Vector (1 DOWNTO 0);
BEGIN
WITH count SELECT
W <="'1"WHEN "00",
'"1' WHEN "01",
'0' WHEN OTHERS;

PROCESS (Resetn, Clock)

BEGIN
IF Resetn ='0' THEN
count <="01";
ELSIF (Clock'EVENT AND Clock ='1") THEN
Z <="0"
CASE count IS
WHEN "10" =>
IF X="0"THEN
count <="00";
Z<="1"
ELSE count<="11";
END IF ;
WHEN "11" =>
count <="01";
Z<="1,
WHEN "01" =>
IF X ='0' THEN count <="10";
ELSE count <="00";
END IF ;
WHEN "00" =>
count <="10"
Z<="1"
WHEN OTHERS =>
count <="10"
END CASE ;
END IF;

END PROCESS ;

PROCESS (count, X)
BEGIN
CASE count IS
WHEN "10" => Y <="1"
WHEN "11"=>IF X ="1'THEN Y <="1";
ELSE Y <="0"
END IF;
WHEN OTHERS =>Y <="'0"
END CASE;
countOut <= count;

END PROCESS;
END Behavior ;

EEL 4712 — Digital Design

Test 1 — Spring Semester 2009 Name
18 pts. 5. 3-bit LCA Adder Ica3gen
e}
—P Cip —— Some useful equations:
G Cuz —— Su1= A XOR B; XOR C;
—Pin Co | Ci-1 = Al AND B; OR (A OR B;) AND C;
— {Gin s G = A; AND B,
——{Pu2 BP —— Pi=AORB,
—{Giz BG ——

Show above is a 3-bit look-ahead carry LCA generator (Ica3gen). It functions exactly like the
Ica2gen you designed in Lab 3, except it is a 3-bit slice.

(a) Give the necessary equations for Ica3gen (in the form of sum-of-product and as a
function of only the inputs (Ci, Pi, Gi, Pi+1, Gi+1, Pi+2, and Gi+2). (5 pts.)

(b) Using 8 of the following full adder components, any number of Ica3gen, and any
additional gates, draw the circuit diagram of an 8-bit adder with carry lookahead (on_the
next page). (13 pts.)

G sl Full adder,
] Pr— withPand G
Cout G I

e The circuit diagram should show exactly how the components are connected.
However, you can use labels when appropriate, instead of drawing the connections.

EEL 4712 — Digital Design
Test 1 — Spring Semester 2009 Name

EEL 4712 — Digital Design
Test 1 — Spring Semester 2009 Name

6. EEL4712 Trivia.

10 pts. (a) The following is the VHDL file given in the SignalTap Il tutorial. Draw the corresponding

cirucuit. Note that RISING_EDGE(CLOCK_50) is equivalent to (CLOCK_50'EVENT AND
CLOCK_50="1") (3 pts.)

ENTITY switches IS Put circuit for Part (a) here.
PORT (CLOCK_50: IN STD_LOGIC,;
SW :IN STD_LOGIC_VECTOR(7 DOWNTO 0);
LEDR : OUT STD_LOGIC_VECTOR(7 DOWNTO 0));
END switches;

ARCHITECTURE Behavior OF switches IS
BEGIN
PROCESS (CLOCK_50)
BEGIN
IF(RISING_EDGE(CLOCK _50)) THEN
LEDR <= SW;
END IF;
END PROCESS;
END Behavior;

(b) In the SignalTap Il tutorial, you were instructed to select:
e SWI[7..0] as the nodes to probe
e CLOCK_50 as clock to run the SignalTap module
o SWI[0] as the trigger condition and select “high” for it

After you downloaded the design onto the board, briefly explain how the SignalTap works
when the analysis is run. (3 pts.)

(c) In performance point of view, for combinatorial circuits, is it better to use a Process block
or concurrent statements (e.g., WITH SELECT)? For credit, please explain. (2 pts.)

(d) In performance point of view, for sequential circuits (e.g., registers), is it better to use a
Process block or concurrent statements? For credit, please explain. (2 pts.)

10

EEL 4712 — Digital Design

Test 1 — Spring Semester 2009 Name
ENTITY __entity name IS
PORT(__input_name, __input_name :IN STD_LOGIC;
__input_vector_name :IN STD_LOGIC_VECTOR(__high downto __low);
__bidir_name, __bidir_name : INOUT STD_LOGIC;
__output_name, _ output name : OUT STD_LOGIC);

END __entity name;

ARCHITECTURE a OF __entity_name IS
SIGNAL __signal_name : STD_LOGIC;
SIGNAL __signal_name : STD_LOGIC;

BEGIN

-- Process Statement

-- Concurrent Signal Assignment

-- Conditional Signal Assignment

-- Selected Signal Assignment

-- Component Instantiation Statement
END a;

SIGNAL __signal_name : __type _name;

__instance_name: __component_name PORT MAP (__component_port => __ connect_port,
__component_port => __connect_port);

WITH __expression SELECT
__signal <= __expression WHEN __constant_value,
__expression WHEN __constant_value,
__expression WHEN __constant_value,
__expression WHEN __constant_value;

__signal <= __expression WHEN __boolean_expression ELSE
__expression WHEN __boolean_expression ELSE
__expression;

IF __expression THEN
__statement;
__statement;

ELSIF __ expression THEN
__statement;
__statement;

ELSE
__statement;
__statement;

END IF;

WAIT UNTIL __expression;

CASE ___expression IS

WHEN __ constant_value =>
__statement;
__statement;

WHEN __ constant_value =>
__statement;
__statement;

WHEN OTHERS =>
__statement;
__statement;

END CASE;

11

