
 T
oday’s SOC (system-on-chip) designs have dozens
of clocks, many of which are asynchronous. This
design approach facilitates the convergence of dig-
ital-audio, video, wireless, and networking applica-
tions in a single chip. CDCs (clock-domain cross-
ings) can cause difficult-to-detect functional fail-

ures in SOCs involving multiple asynchronous clocks. Simula-
tion and static-timing analysis often do not detect issues such
as metastability and the coherency of correlated signals’ CDCs;
as a result, these issues often end up as bugs in silicon. Unfortu-
nately, most relevant literature does not adequately cover some
of these critical CDC issues, and designers learn about them
only after making costly mistakes. Two of the most common
and critical issues involving CDCs are improper sequencing of
data/enable in enable-based synchronization and data coher-
ency due to the convergence of signals.

Enable-based synchronization
A receiver flip-flop output can become metastable if it vio-

lates the data/reset setup-and-hold times. This scenario can
arise when the transmitter—the source of data—and the re-
ceiver flip-flop are in asynchronous-clock domains. To avoid
such issues, designers use synchronizers that isolate metasta-
bility and deliver a clean signal to the downstream logic. A

synchronizer can be a simple double flip-flop. Designers com-
monly use this technique for a control signal’s CDCs. In a data
transfer across clock domains, the data is first set up; then, a
control signal that synchronizes with the destination domain
travels to the destination to enable data capture. Although
this data-transfer technique across clock domains is a common
and proven technique, it involves pitfalls that require special
attention. This technique relies on data to be stable when you
assert an enable (Figure 1).

Having too low a margin between the data you are set-
ting up and the enable you are asserting may corrupt the data
transfer. A good way to prevent such problems is to design a
full handshake when you set up the data. In this approach, you
assert and synchronize the request in the destination domain
and adequately assert an acknowledge to let the next data load
occur. This approach might add a few cycles of latency, but it
avoids functional failures.

Glitches are other sources of worry across clock domains.
Typically, any combinational logic may be subject to short-
lived glitches. These issues are generally harmless because
they resolve themselves when you activate the next clock
edge. Although these issues are not problematic for synchro-
nous transfers, a glitch may occur with asynchronous cross-
ings if you activate a destination clock. The design may there-
fore receive a glitch as a pulse, causing a functional failure.
For this reason, it is important to avoid using any combi-
national logic that may cause glitches on a CDC path. You

by shaker Sarwary and Saurabh Verma • Atrenta Inc

Critical clock-domain-
crossing bugs
Awareness of CDC issues, along with the use
of good design practices and proven EDA tools
for CDC verification, can avoid costly silicon
re-spins and significantly improve time to market.

STEVE EDN080320MS4271 FIGURE 1

ADEQUATE
MARGIN:

DATA WILL
BE PROPERLY

CAPTURED

SHORT OR
NO MARGIN:

DATA MAY
GET LOST

INCORRECT
DATA/ENABLE
SEQUENCING

PROPER
DATA/ENABLE
SEQUENCING

D

E

E

CLOCK 2CLOCK 1

CLOCK 1

D

E

CLOCK 2

Figure 1 In a data transfer across clock domains, the data must be stable
when enable is asserted. Too short of a margin between data setup and
enable assertion can result in data corruption.

april 3, 2008 | EDN 55

STEVE EDN080320MS4271 FIGURE 2

DO NOT COMBINE
LOGIC ON

CONTROL PATH

AVOID
COMBINING
LOGIC ON
DATAPATH

CLOCK 2

CLOCK 1

CLOCK 1

Figure 2 A good design practice is to avoid using any
logic, except the recirculation-multiplexer logic, which is
part of the enable flip-flop, on the datapath CDCs.

should perform any computation either before crossing clock
domains or after the destination domain captures the signals.

Glitches may affect both control and data CDCs. In a data
transfer, a glitch may affect the enable line or the data line;
both present risks affecting safe data transfer. You must syn-
chronize the enable logic in the destination domain and avoid
using combinational logic after synchronization. Glitches on
the datapath may be harmful, too. A good design practice is to
avoid using any logic, except the recirculation-multiplexer log-
ic, which is part of the enable flip-flop, on the datapath CDCs
(Figure 2).

Although this data-synchronization scheme is the most
common, many variations of enabled-data crossing involve an
enable signal with combinational logic. Occasionally, design-

ers use an enabled AND instead of a multiplexer or combine
the multiplexer with other combinational logic on the data-
path. They rely on the enable signal to ensure that data syn-
chronously transfers to the destination and that glitches do
not occur. As designers become more creative and use extra
logic in enabled-data crossings, they expose their designs to
glitch risks that are difficult to detect. To comprehend these
risks, consider a simple example of a glitch-free multiplexer;
you can implement this multiplexer so that it can create a
glitch. Downstream tools, such as synthesis, optimization, and
technology mapping, can transform the circuit and introduce
logic that can cause a glitch and thus cause a functional fail-
ure. You can map a simple, glitch-free multiplexer with AND
and OR gates that can create glitches (Figure 3).

56 EDN | april 3, 2008

STEVE EDN080320MS4271 FIGURE 3

Q

D

E

D
Q
E
D

D

Q
E

E

(b)(a)

REDUNDANCY

1
1
0

1
1
0

1

0 0

Figure 3 You can map a simple, glitch-free
multiplexer (a) with AND and OR gates
that can create glitches (b).

STEVE EDN080320MS4271 FIGURE 4

CLOCK 2
CLOCK 1

CLOCK 2
CLOCK 1AVOID COMBINATIONAL

LOGIC ON THE
CLOCK-DOMAIN

CROSSINGS

AVOID ANY LOGIC
ON THE CROSSING

OR BETWEEN
SYNCHRONIZING FLIP-FLOPS

Figure 4 Any glitch in the Gray encoder may cause a functional failure in the design.

Although this transformation may
seem unlikely with a stand-alone mul-
tiplexer, it may well occur if you intro-
duce more logic on the datapath. Syn-
thesis and optimization tools may iden-
tify opportunities to increase timing
performance, reduce area, or decrease
power consumption by combining mul-
tiplexer logic with other logic on the
path; however, these tools may also
create a final implementation prone to
glitches. To avoid such problems, you
should control the use of these tools to
avoid such transformations. Unfortu-
nately, designers often fail to consider these details when cre-
ating and implementing a design. Furthermore, a glitch is not
an easily predictable event; simulation or static-timing veri-
fication cannot detect a glitch on an asynchronous crossing.
Once the symptom appears in silicon, it is difficult to perform
a root-cause analysis. It takes significant effort and time to
link silicon failures to a glitch on a CDC. Static-CDC analysis
is better for systematically catching and reporting such issues
and avoiding costly silicon re-spins.

Data coherency
Another critical issue involving asynchronous clocks is the

coherency problem due to convergence of independently syn-
chronized signals. CDCs introduce latency and cycle-level un-

certainty, even with synchronized cross-
ings. Although synchronizers isolate
metastability and ensure that a “clean”
signal travels to downstream logic, they
cannot prevent latency. Coherency
problems occur when two correlated,
separately synchronized signals cross
clock domains; each synchronizer intro-
duces a different latency factor due to
the CDC. If one of the signals captures
a transition, metastability settles to the
correct value in the first cycle, where-
as the other signal captures a transition
in the next cycle. That is, metastabil-

ity settles to an incorrect value, and you must wait for the next
clock cycle to capture the transition. Then, you will observe an
incorrect set of values at the destination for at least one cycle.
If the signals represent a state variable, then you will observe an
unknown or unwanted state at the destination. This unknown
state causes a functional failure in the design.

This problem is one of the most common in CDC, and it is
becoming more important as designs become larger. Design re-
use and IP (intellectual-property) integration may create con-
vergences of which designers may be unaware. To avoid coher-
ency problems—assuming that you know the convergences—
you should use correlated signals so that they change values
at different times. You must use Gray encoding to correlate
signals that are CDCs. This scenario occurs when FIFO point-

58 EDN | april 3, 2008

STEVE EDN080320MS4271 FIGURE 5

BAD GRAY CODE
IF COUNT

GOES TO FIVE

GOOD GRAY CODE
IF COUNT

GOES TO SEVEN

BINARY
COUNT

GRAY
COUNT

0000 000
0011 001
0102 011
0113 010
1004 110
1015 111
1106 101
1117 100

Figure 5 A Gray encoder targeting counting
from zero to seven for a full 3-bit counter will
fail when the pointer moves from five to zero.

ers cross clock domains to compute empty and full
flags. You Gray-encode the binary counters, trans-
fer to the other domain, and then convert the
counters back to binary before using them. Occa-
sionally, designers access pointers in a FIFO block
to do empty/almost-empty or full/almost-full flag
calculations. This practice may create CDCs, con-
vergences, or both that a designer may overlook.
Adopting standard practices prevents the intro-
duction of CDC bugs into the design.

Gray-encoding circuitry seems simple; however, errors can
easily slip into a design. You must Gray-encode and register
the signals before crossing clock domains. Sending Gray-en-
coded signals directly to the destination domain defies the
purpose. Furthermore, any glitch in the Gray encoder may
cause a functional failure in the design (Figure 4).

Another subtle issue is mismatch between Gray-encoding
assumptions and the binary-counter range. Designs some-
times fail when a designer expects a Gray counter targeting
the full range of a 4-bit counter to count to lower counts and
loop back to zero. For example, a designer can build the write
pointer of a six-layer-deep FIFO to count from zero to five and
loop back to address zero. A Gray encoder targeting counting
from zero to seven for a full 3-bit counter will fail when the
pointer moves from five to zero (Figure 5).

Designing a Gray encoder may give a false sense of secu-
rity if you fail to account for these details. Both junior and
experienced designers may face such issues. There are a large

number of corner-case problems in CDC, and it
is difficult for any designer to pay attention to all
the details, especially when under tight schedule
pressure. The best way to catch these issues is to
approach them with a systematic methodology
that has concise metrics. Static-CDC verification
has recently emerged as an accepted approach to
achieve this goal. This approach targets metasta-
bility, convergence, and other CDC issues that

traditional verification tools, such as simulation and static-
timing verification, do not cover. Static-CDC verification suc-
cessfully targets corner cases that designers may overlook. Fur-
thermore, it provides a systematic-verification approach that
can fit into any design flow as part of the verification-sign-off
tool suite.EDN

Auth or s’ b i og raph i e s
Shaker Sarwary is technology director at Atrenta (San Jose, CA).
He has a doctorate from Paris University (France), and he has
performed postdoctorate work at the University of California—
Berkeley. He has held senior engineering positions in the areas of
synthesis and verification at Lattice Semiconductor, Get2Chip, and
Cadence. You can reach him at shaker@atrenta.com.

Saurabh Verma is an engineering manager at Atrenta. He has a
bachelor’s degree from Indian Institute of Technology Kanpur. He
has rich experience in formal technology and rule-based-design veri-
fication. You can reach him at saurabhv@noida.atrenta.com.

60 EDN | april 3, 2008

MORE AT EDN.COM

MORE AT EDN.COM

 Go to www.edn.
com/ms4271 and
click on Feedback
Loop to post a com-
ment on this article.

+

