
Lab 3: Ripple-Carry and Carry-Lookahead Adders
EEL 4712 – Spring 2012

 1

Objective:

The objective of this lab is to create a ripple-carry adder with generic width, a carry-
lookahead adder (CLA) with generic width, and a hierarchical CLA that supports widths that are
a power of 2. You will learn how to use the VHDL generate statement, in addition to how to use
configurations to select different architecture possibilities.

Required tools and parts:

Quartus2, ModelSim-Altera Starter Edition, UF-4712 board, oscilloscope

Pre-requisite:

You must be “up-to-speed” with Quartus, ModelSim, and the board before coming to lab.

Pre-lab requirements:

Ripple-carry Adder

1. Design a full adder entity in VHDL (fa.vhd). A full adder adds two 1-bit inputs with a carry in,
and produces a 1-bit sum and a carry out. You can reuse code from previous labs for the full
adder. Next, design a ripple-carry adder using a structural architecture consisting of a chain
of full adders (as discussed in lecture). The ripple-carry adder architecture must be able to
support any width. The ripple carry architecture must be placed in the RIPPLE_CARRY
architecture of the adder.vhd file, which is provided on the lab website. Do not change any
part of the adder entity, otherwise the testbench used for grading will not work. The
testbench used for grading is provided on the website.

Hierarchical CLA

2. Design a 2-bit carry-lookahead adder (CLA) (cla2.vhd) using a behavioral architecture. The
entity should have two 2-bit inputs (X and Y), a carry in (Cin), a 2-bit sum (S), a carry out
(Cout), a block propagate (BP), and a block generate (BG). See lecture notes and 5.4 in your
text book for a description of BP and BG.

3. Design a carry generator (cgen2.vhd) entity that calculates carries (Ci+1 and Ci+2), block
generate (BG), and block propagate (BP) for 2 instances of the 2-bit CLA (see next step for
clarification). The lectures notes will describe the exact purpose of this block, but it will be
used to hierarchically define CLAs. Use a behavioral architecture. Note that the block
propagate and generate are a function of the P and G of each 2-bit CLA, but it is up to you to
figure out the exact logic.

CLA2

X[1..0]

Y[1..0]

Lab 3: Ripple-Carry and Carry-Lookahead Adders
EEL 4712 – Spring 2012

 2

4. Create a 4-bit hierarchical CLA (cla4.vhd) entity with a structural architecture that connects 2
of the 2-bit CLAs with one of the carry generators. It is up to you to determine the exact
connections. See lecture notes and section 5.4.

5. Fill in the HIERARCHICAL architecture in adder.vhd with an 8-bit hierarchical CLA using a
structural description that connects two of the 4-bit CLAs with one carry generator. This will
be very similar to the previous step.

CLA2 CLA2

CGEN2

CGEN2

CLA4

CLA2 CLA2

CGEN2

CLA4

CLA2 CLA2

CGEN2

CLA4

“HIERARCHICAL” architecture of adder entity

CGEN2

Lab 3: Ripple-Carry and Carry-Lookahead Adders
EEL 4712 – Spring 2012

 3

6. (Extra credit) Create another adder architecture that extends the hierarchical CLA to the
width specified by the generic WIDTH. Hint: the architecture will need to instantiate instances
of itself. You only need to support widths that are a power of 2. I don’t expect many people to
get this working, so email your TA so they know to look for it.

Generic, one-level CLA

7. Fill in the CARRY_LOOKAHEAD architecture in adder.vhd with a generic behavioral
description of a carry-lookahead adder (i.e., it must support any possible width). Skeleton
code has been provided to get you started. See 5.4 in your text book for clues.

8. The provided adder.vhd file include a complete description of a generic carry-lookahead
adder in the CARRY_LOOKAHEAD_BAD_SYNTHESIS architecture. As the name suggests,
this architecture does not actually synthesize to a carry-lookahead adder, despite following all
of my guidelines. To see why, use the RTL viewer in Quartus to compare the circuit for
CARRY_LOOKAHEAD and for CARRY_LOOKAHEAD_BAD_SYNTHESIS. Take a
screenshot of each.

9. Use the provided test bench to test all three architectures. Notice that the test bench assigns
a particular architecture to each adder instance using a configuration statement. The same
test bench will be used for grading. When you simulate in ModelSim, make sure you
select the configuration tb_config and not the entity adder_tb.

Turn in on e-learning: All vhd files (fa.vhd, cla2.vhd, cgen2.vhd, cla4.vhd, adder.vhd). The
TAs will grade your adder implementations by using a testbench for the adder entity.
Therefore, it is critical you do not change the entity declaration or the names of the
architectures. Also, include the screenshots from step 8), while also include a brief
explanation of the different circuits.

In-lab procedure (prepare steps 1 and 2 ahead of time):

1. Include top_level.vhd with the rest of your VHDL. Note that there is a configuration statement
that specifies which architecture the U_ADDER instance uses. The provided code uses the
RIPPLE_CARRY architecture. Also, include the 7-segment decoder from the previous lab.

2. Using Quartus, assign pins to each of the top_level.vhd inputs/outputs such that the signals
are connected to the appropriate locations on the board. The sum output should be
connected to the 2 7-segment LEDs, and the inputs should be connected to the DIP
switches. Carry in is connected to one of the buttons (your choice). The carry out is
connected to the decimal point (dp on the top_level entity) on the 7-seg LED.

3. Download your design to the board, and test it for different inputs and outputs. Demonstrate
the correct functionality for the TA.

4. Using the oscilloscope, you are to measure the propagation delays in the following way:

 Design a test fixture that will allow you to perform the measurement. Hint: Changes in the
desired signals are most easily seen using the test equipment. For example, if two fixed
numbers are used to drive the “A” and “B” inputs of the adder, a change on Cin can be
seen as a change on the Cout pin. In your lab report, describe exactly how you performed
the measurements.

Lab 3: Ripple-Carry and Carry-Lookahead Adders
EEL 4712 – Spring 2012

 4

 Use a setting on the oscilloscope which allows an accurate measurement of the
propagation delay from Cin to Cout.

 Record the propagation delay from Cin to Cout.

 Make a drawing of the signals (or take a picture using a camera, save a screenshot, etc.)
seen on the oscilloscope.

 Performing a timing simulation in ModelSim and record the corresponding propagation
delay. Use the provided timing testbench (timing_tb.vhd) and new top-level file
(adder_top.vhd), while still using the /UUT label. All you need to do is change the
configuration in adder_top.vhd to the architecture that you want to use. Synthesize
adder_top in Quartus, add the .vho file to your ModelSim project, select the timing_tb
testbench for simulation, add the .sdo file and apply it to region /UUT, and everything
should work. Important: the timing simulation does not have to be demoed during
lab, but will be needed in the lab report.

5. Change the configuration statement in top_level.vhd to use the CARRY_LOOKAHEAD
architecture, download it to the board, and repeat step 4.

6. Change the configuration statement in top_level.vhd to use the HIERARCHICAL architecture,
download it to the board, and repeat step 4.

7. Be prepared to answer simple questions or to make simple extensions that your TA
may request. There is no need to memorize the different packages. If you have done
the pre-lab exercises, these questions should not be difficult.

Lab report: (In-lab part only)

 Create a brief report explaining how you performed the measurements and include the
image or drawing of the oscilloscope output. Then, show a table comparing the measured
propagation delays and simulated delays (from ModelSim) for each of the three adder
architectures. Include a very brief explanation of the different delays.

Turn the lab report in on e-learning. Make sure to turn it in to the “lab” section and not the
“pre-lab” section.

