
Lab 2: 8-bit Behavioral ALU
EEL 4712 – Spring 2011

 1

Objective:
The objective of this lab is to create an 8-bit ALU using behavioral VHDL, whose output is

shown on the two 7-segment LEDs. The data inputs to the ALU are connected to the two DIP
switches, and the select input is connected to the 4 buttons. In this lab, you will become familiar
with two arithmetic VHDL packages: numeric_std (recommended) and std_logic_arith. In
addition, you will get experience using test benches to verify the correct functionality of the
circuits you specify in VHDL.

Required tools and parts:
Quartus2 software package, ModelSim-Altera Starter Edition, UF-4712 board.

Pre-requisite:
You must be “up-to-speed” with Quartus before coming to lab. Perform Tutorials 1 and 3

(Appendices B and D) in the textbook if necessary. Also, download and read the UF-4712
documents before coming to lab. You should know how to map the I/O of the top level
VHDL entity onto the corresponding pins on the UF-4712 board.
Pre-lab requirements:
1. Design a decoder for the 7 segment display (call it decoder7seg.vhd). The entity must look

exactly like this:

entity decoder7seg is
 port (
 input : in std_logic_vector(3 downto 0);
 output : out std_logic_vector(6 downto 0));
end decoder7seg;

Any changes to this entity will cause the test benches used for grading to fail. Also, please
use the specified VHDL file name to simplify grading. Create the VHDL architecture to
implement the following functionality. Note that the outputs for the LED segments are active
low (i.e. a 0 causes the segment to turn on).

Input(i3-i0) Output (a-g)
0000 0000001
0001 1001111
0010 0010010
0011 0000110
0100 1001100
0101 0100100
0110 0100000
0111 0001111
1000 0000000
1001 0001100
1010 0001000
1011 1100000
1100 0110001
1101 1000010
1110 0110000
1111 0111000

Lab 2: 8-bit Behavioral ALU
EEL 4712 – Spring 2011

 2

Create a VHDL testbench entity (decoder7seg_tb) for the 7-segment decoder. Save the
entity in decoder7seg_tb.vhd. It is up to you to determine the thoroughness of the
testbench. It should test enough cases so you are positive that the architecture is correct.
Test your VHDL with the testbench using ModelSim-Altera Starter Edition. See the tutorial
linked off the lab website for an explanation on how to use the tool.

Turn in on e-learning: decoder7seg.vhd and decoder7seg_tb.vhd. The TAs will grade your
VHDL by running it using a testbench that I am providing. Therefore, it is critical you do not
change the entity declaration.

2. Create an 8-bit ALU using a behavioral architecture with the numeric_std package. The entity
and architecture must appear in a file called alu_ns.vhd and should have this exact
specification:
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity alu_ns is

 generic (
 WIDTH : positive := 16
);
 port (
 input1 : in std_logic_vector(WIDTH-1 downto 0);
 input2 : in std_logic_vector(WIDTH-1 downto 0);
 sel : in std_logic_vector(3 downto 0);
 output : out std_logic_vector(WIDTH-1 downto 0);
 overflow : out std_logic
);

end alu_ns;

Note that the width of the ALU is defined by a generic. Therefore, you must write the
architecture to work for any possible width (i.e., don’t assume the input is 16 bits). The
operation of the ALU is described below:

Sel Output Overflow
0000 input1+input2 ‘1’ if input1+input2 is bigger than the maximum

number that can be written to output, ‘0’ otherwise
0001 input1-input2 ‘0’
0010 input1*input2 (low half of the mult

result. e.g. multiplication of two 8-bit
numbers results in a 16-bit number.
The output should be the lower 8 bits)

‘1’ if input1*input2 is bigger than the maximum
number that can be written to output,
‘0’ otherwise

0011 Input1 and input2 ‘0’
0100 Input1 or input2 ‘0’
0101 Input1 xor input2 ‘0’
0110 Input1 nor input2 ‘0’
0111 Not input1 ‘0’
1000 Shift input1 left by 1 bit the high bit of input1 before the shift

Lab 2: 8-bit Behavioral ALU
EEL 4712 – Spring 2011

 3

1001 Shift input1 right by 1 bit ‘0’
1010 Swap the high-half bits of input1 with

the low-half bits of input1, write this to
output (clarified)

‘0’

1011 Reverse the bits in input1, write this to
output (clarified)

‘0’

1100 0 ‘0’
1101 0 ‘0’
1110 0 ‘0’
1111 0 ‘0’

Create a VHDL testbench entity (alu_ns_tb). Save the entity in alu_ns_tb.vhd. There is
small sample testbench on the lab website, but it is up to you to determine the
thoroughness of the testbench. It should test enough cases so you are positive that the
architecture is correct. Although the entity must be defined using numeric_std, you can
use any package you like for the testbench. Note that the provided sample does not use
numeric_std.

Turn in on e-learning: alu_ns.vhd and alu_ns_tb.vhd. The TAs will grade your VHDL by
running it using a testbench that I am providing. Therefore, it is critical you do not change
the entity declaration.

3. Design the same 8-bit ALU using std_logic_arith and std_logic_unsigned (instead of
numeric_std). The entity should be saved in alu_sla.vhd, along with a new testbench in
alu_sla_tb.vhd. Note that the exact same testbench code can be used. All you have to do is
change the name of the alu component that is instantiated. Make sure to use this exact entity
specification:
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

entity alu_sla is

 generic (
 WIDTH : positive := 16
);
 port (
 input1 : in std_logic_vector(WIDTH-1 downto 0);
 input2 : in std_logic_vector(WIDTH-1 downto 0);
 sel : in std_logic_vector(3 downto 0);
 output : out std_logic_vector(WIDTH-1 downto 0);
 overflow : out std_logic
);

end alu_sla;

Turn in on e-learning: alu_sla.vhd and alu_sla_tb.vhd. The TAs will grade your VHDL by
running it using a testbench that I am providing. Therefore, it is critical you do not change
the entity declaration.

Lab 2: 8-bit Behavioral ALU
EEL 4712 – Spring 2011

 4

4. Integrate your code with the top_level structural entity top_level.vhd (linked off the lab
website). Feel free to change the ALU component to use either the numeric_std or
std_logic_arith versions. The choice is yours.

Turn in on e-learning: A graphical illustration of how the provided VHDL connects the
components together. Save the illustration in whatever format is convenient (e.g., pdf,
jpeg).

In-lab procedure:
1. Using Quartus, assign pins to each of the top_level.vhd inputs/outputs such that the signals

are connected to the appropriate locations on the board.
2. Download your design to the board, and test it for different inputs and outputs. Demonstrate

for the TA at least one example for each possible select.
3. Be prepared to answer simple questions or to make simple extensions that your TA may

request. There is no need to memorize the different packages. If you have done the pre-lab
exercises, these questions should not be difficult.

Lab report: (In-lab part only)
• If you had any problems with portions of the lab that could not be resolved during lab,

please discuss them along with possible justifications and solutions. If you had no
problems, this report is not necessary.

Turn the lab report in on e-learning, if explanation is needed for partial credit. Make sure
to turn it in to the “lab” section and not the “pre-lab” section.

