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ABSTRACT | Today’s field programmable gate array (FPGA)

architectures, like Xilinx’s Virtex-II series, enable partial

and dynamic run-time self-reconfiguration. This feature

allows the substitution of parts of a hardware design

implemented on this reconfigurable hardware, and therefore,

a system can be adapted to the actual demands of applications

running on the chip. Exploiting this possibility enables the

development of adaptive hardware for a huge variety of

applications. A novel method for communication interfaces

using look up table (LUT)-based communication primitives

enables an exact separation of reconfigurable parts and a

fast and intelligent bus-system. A new adaptive software/

hardware reconfigurable system is presented in this paper,

using a real application in the automotive domain imple-

mented on a Xilinx Virtex-II 3000 FPGA to present results.

KEYWORDS | Automotive electronic systems; dynamic partial

reconfiguration; high-level FPGA design flow; on-demand

adaptivity

I . INTRODUCTION

Self-reconfiguration and adaptivity are the keywords of a
new design methodology for reconfigurable hardware. One

of the benefits provided by using this feature is a reduction

of power dissipation by storing functionality to external

memory. This means that a smaller field programmable

gate array (FPGA) can be used to run an application by

configuring parts of the chip as idle applications, which are

substituted on demand by the functions that are actually

needed at any given point. For this to be achieved, a system

that controls these processes, for example saving actual

variables and states of a hardware function or initiating

self-reconfiguration, is necessary [18]. The advantage

gained from this is the exploitation of parallel working

tasks (functions) on the hardware in comparison to the
sequential workflow of microprocessors. The high perfor-

mance of reconfigurable hardware and the possibility of

real hardware parallelism help to overcome increasing

problems regarding data processing using traditional

microcontrollers and microprocessors [2].

Reconfigurable architectures, such as Xilinx Virtex-II

FPGAs, can be used to build systems with adaptive

network-on-chip architectures [9]. Changing demands
for data processing during run-time requires an adaption

of both bandwidth for communication and suitable

network topology. Thus for filter-based applications, such

as an Moving Picture Experts Group (MPEG) application, a

torus topology for dataflow is preferred. While the system

is in process, a controller application requires a star

topology with high bandwidth for data transfer, so that the

system can provide the necessary topology to maintain the
required performance for communication [12]. This

adaptivity is not only important for high-performance

data transfer and communication, but also for innovative

systems, making use of adaptive reconfigurable systems in

real-time applications a relevant issue. Meeting the real-

time constraints in critical applications, for example in

automotive applications, is a crucial factor for their

encouragement in industrial systems.
Another advantage of using reconfigurable hardware is

the use of soft-core processors to build up a mixed software

and hardware reconfigurable system. Dataflow-oriented

applications can be implemented effectively in optimized

RISC processors, such as Xilinx MicroBlaze or PicoBlaze

soft-core processors, and configured on the FPGA [20]. A

new parallel software-reconfigurable processor system on
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the FPGA enables hardware/software partitioning on chip
during run-time. A software/hardware reconfigurable

system likewise provides the possibility of task migration

from software to hardware and vice versa. One example

application for such a system is found in the automotive

domain. A user task running on a high-performance

hardware resource can be substituted by a high-priority

task (e.g., brake control) and extruded as a software task

with lower performance. A run-time system negotiates the
qality of service with the application and provides the

available alternatives for execution.

The industry has already reacted to these demands

and scenarios of application [13]; for example, new

FPGAs like Xilinx Virtex-Pro contain up to four Power PC

hard-wired cores to build up these hardware/software

(HW/SW)-systems. This architecture leads to the keyword

system-on-chip which is the final stage of such HW/SW-
reconfigurable systems [3].

In the following sections, a dynamic and partially

reconfigurable system will be described. Section II starts

with a motivation for introducing reconfigurable systems

in automotive applications. Section III begins with

architectural information concerning FPGA and the basics

of dynamic and partial reconfiguration. Section IV gives an

overview of an implemented hardware reconfigurable
system. Section V describes the reconfigurable system in

the automotive domain. In Section VI, the area–time

dependency of the reconfigurable system will be intro-

duced. The paper is closed in Section VII with conclusions

and future work.

II . MOTIVATION

In the automotive industry, the percentage of mechanical

parts in the vehicle added value is constantly decreasing.

Currently, about 35% of the value of a fully equipped

luxury car is determined by electric, electronic, and

mechatronic systems. This percentage will increase to

about 50% in the coming years. Even in low- and mid-

range cars, electronic systems like power window control,

air conditioning, and navigation are mostly standard. Fig. 1
shows that the market volume for electronics in cars in

Europe will be about 100 billion Euros in the year 2010.

This dramatically increasing importance of electronic

systems can no longer be managed by the use of con-

ventional technologies. In the past, the growing func-

tionality has directly led to a growing number of

electronic control units (ECUs) in the cars. But the total

number of ECUs in a car is on one hand limited by the
complexity of the networked system and on the other

hand by the power consumption of the whole electrics

system including mechatronic devices like sensors and

actuators. This leads to a strong demand for reducing the

number of ECUs in future cars by combining different

application functions, which are currently developed by

different suppliers, on a smaller number of ECUs. These

ECUs have to be more powerful, and, as a result of this,

they are becoming more complex than today. One attempt

to manage this complexity is currently being made by the

AUTOSAR consortium [22]. Leading car manufacturers

and their suppliers are jointly designing a common system

architecture based on state-of-the-art microcontrollers. In
this paper, a different approach is presented, where the

microcontroller as the central component of an ECU is

replaced by an FPGA which is dynamically and partially

reconfigured.

III . ARCHITECTURE OF XILINX
VIRTEX-II FPGA S

The SRAM-based Xilinx FPGAs of the Virtex-II series
consist of configurable components, such as configurable

logic blocks (CLBs), block RAM, hardware multiplier,

input–output (I/O) elements, and switch matrixes for the

connection of routing resources. In comparison to the

coarse grained reconfigurable architecture described in

[8], [15], and [17], this fine grained architecture allows

path width down to one bit. Changing the content of the

SRAM implies changes to the architecture, which repre-
sents the actual configuration (function) of the hardware.

A detailed overview of reconfigurable hardware and the

related methodologies is described in [25] and [26].

Design tools, such as Xilinx Integrated System Environ-

ment, enable the generation of the actual data needed to

program such components, for example, from a Very High

Speed Integrated Circuit Hardware Description Language

(VHDL) description after synthesis, translation, mapping,
and place and route processes. These programming data

can be downloaded as bitstream to the FPGA which is then

configured. After configuration, the designed architecture

starts working immediately. All configurable elements of a

Virtex-II FPGA are organized in columns. Fig. 2 shows a

schematic view of several components of the FPGA. Xilinx

Fig. 1. Importance of electronics on vehicle added value.
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Virtex-II FPGAs allow for the reconfiguring of parts of the
configuration memory at run-time. The idea of dynamic

and partial reconfiguration describes the possibility to

change parts of hardware on the configurable device while

all other parts stay unaffected and operative. This is done

by programming the respective cells of the SRAM while

other memory areas stay unaffected. The memory of these

FPGAs is also organized into columns, meaning that

writing is therefore only possible in complete columns.
The smallest changeable unit is a column with a width of

one bit, a so-called frame, which therefore contains the

configuration information of a complete column. The

complete configuration information, for example, for one

CLB column, consists of 22 frames. Segmentation of

resources within the FPGA leads to the architecture that is

described in the following sections. The transmission of

reconfiguration data can be achieved, courtesy of a Joint
Test Action Group (JTAG) interface, an external parallel

interface (SelectMap), or an internal reconfiguration

access port (ICAP). The first named JTAG interface, in

comparison to SelectMap and ICAP, is bit-serial, while the

faster eight-bit parallel interfaces are used for fast

reconfiguration. The ICAP interface, in particular, is very

interesting for dynamic and partial self-reconfiguration.

This interface is accessible from the components within
the FPGA and instantiating it as a component in VHDL

enables access to the SRAM for configuration. More

information can be found in [4].

The introduced term of self-reconfiguration has its

meaning from the fact that the architecture integrated on

the FPGA is able to control the configuration port during
run-time. The system decides to load configuration data

from external memory on demand and initiates the re-

configuration process by using the ICAP port. This feature

is used to transmit partial reconfiguration data in the re-

configurable hardware system, which is described in

Section IV.

IV. HARDWARE RECONFIGURABLE
SYSTEM

During the past three years, a cooperative research project

with the automotive industry, concerning the usage of

dynamic and partially reconfigurable hardware for auto-

motive applications, has been in progress at Karlsruhe,

Germany. The motivation is to reduce the high number of

control systems necessary for cabin functions. In a modern
car, this number reaches up to 70 microprocessor systems

in one car. In Fig. 3, only a fraction of all available func-

tionalities within a car are presented. A dynamic and par-

tially reconfigurable system was presented in March 2005

[21], which is able to provide cabin functions on demand

(Fig. 4).

This system consists of a run-time module controller,

implemented on a MicroBlaze soft-core processor from
Xilinx. The controller is connected to an arbiter that con-

trols the data communication on a bus macro, connecting

all four reconfigurable module slots. The controller is

also connected to a decompressor unit for loading con-

figuration data from an external flash-memory. The

system is connected to its environment via a controller

area network (CAN) bus, which is a well established

method in the automotive domain [5]. During run-time,
a request (command) for an application is received by

the CAN controller within the FPGA. The CAN con-

troller is connected directly to the MicroBlaze controller

as IP core and the command is processed by the run-time

module controller and its run-time system. If this func-

tion is already configured to one of the four module slots,

the command is transferred via the arbiter to the cor-

responding module. Response from the modules is also
transferred via the bus system and provided to the run-

time controller by the arbiter. Messages can now be sent

via the CAN controller to the peripheral devices. It is

possible for an application to be requested, but for it not

to be configured to one module slot. In this case, the run-

time controller sends a command to the decompressor

system.

Within the external flash-memory, all necessary cabin
functions are stored as compressed bitstream and after

sending the decompressor module the start address for

the function needed, a start command runs the decom-

pression process within this module. The decompression

runs parallel to all other hardware on the chip. Therefore,

other functions will not stop their execution while

decompression and reconfiguration takes place. DuringFig. 2. Column-based organization of Virtex-II FPGA.
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Fig. 3. Different cabin functions of a modern car.

Fig. 4. Reconfigurable system for automotive applications.
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decompression, the configuration data are written directly

to the ICAP of the FPGA. Other functions and the bus

communication are not disturbed by this process.

Fig. 5 shows a schematic view of the decompressor

implementation. The decompression algorithm used is
based on LZSS from Lempel and Ziv. More detailed in-

formation can be found in [10]. The use of this decom-

pressor saves up to 50% of external memory so that costs

can be reduced. After successful decompression, an inter-

rupt signals to the run-time controller that the function

now is ready for use. Before this module can process data,

status information and variables have to be restored to

enable a restart at the state of last use. This so called
context load process has to be done on every new start of a

function. The run-time module controller allocates the

memory for these context data and after reloading the

context data to the module, messages (commands) can be

processed by the function within the module slot.

If all module slots are occupied by functions, the run-

time system within the controller has to check whether a

module is in an idle, unused state. These modules are
detected and the eldest, unused, idle module will be sub-

stituted. Before substitution, the system requests the

context data for storage on the FPGA internal memory.

These data are then transferred back, if the function is

reused later.

The tasks of the run-time system are as follows.

• Communication Management:

• delivering messages to the functions;
• delivering messages from the functions;

• storing messages;

• Reconfiguration Management:

• finding an available module slot;

• saving current state;

• sending instruction block;

• restoring state (by sending data);

• Resource Management:
• keeping record of busy/idle modules;

• managing the message buffer of each function;

• storing the variables defining the states.

The run-time system (complete system) has to work

within the borders of given real-time constraints, which

can be fully met by this system. Response times are smaller

than 10 ms and have their lower limits caused by the

external memory access time. Furthermore, messages
must be transferred in the right order to the respective

module and to the external devices via the CAN bus. This

has to be ensured by the scheduling of the run-time system

within the controlling element.

The usage of such a system enables the saving of power

dissipation by using a smaller FPGA device and by

outsourcing configuration data [1]. Fig. 6 shows an ex-

ample of the reduction in power dissipation by outsourcing
functions. The measurement data of Fig. 6 includes the

power dissipation of the FPGA. Power consumption of

external memory is not included. With a special measure-

ment system, the amount of current for the FPGA during

reconfiguration was measured. The used XCV2000E FPGA

needs two power supplies: 1.8 V for core and 3.3 V supply

for I/O elements. Fig. 7 shows the measurement system.

The measurement system consists of a PC with the control
software, a Tektronix oscilloscope (Type TDS 220) con-

nected to the PC’s RS232 interface. The core and 3.3-V

supply current is measured with a shunt resistor connected

to an opened jumper bridge on the rapid prototyping

board. By starting the measurement, the control software

initializes the oscilloscope and preconfigures the FPGA.

The next step is to start the measurement and transmit the

second configuration to the board. The oscilloscope
samples the voltage over the shunt resistor and stores

the data into its memory. Then the measure cycle is

stopped and the data is read back from the oscilloscope

memory into the PC and saved into a file. This file is the

basis for further calculations. This cycle is iterated n-times

(n is given by the user). With the measurement system, the

core voltage and the 3.3-V power supply were sampled to

calculate the complete power dissipation.
The total power thus can be fragmented in PCORE and

PVCC. The power was calculated with the formulas de-

scribed below (Formula 1 and 2). The measurement results

Fig. 5. Schematic of decompressor unit.
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show that the power consumption for processing the

partial configuration data leads to an additional power

consumption of 95 mW, as described in Fig. 6. The value of

1797.5 mW is below the power consumption of 2133.8 mW

with all automotive functions configured on the chip. This

small example shows the high potential for reducing power

consumption if configuration on demand exploiting dyna-

mic and partial reconfiguration is used in adaptive systems.

Fig. 6. Reduction of power dissipation by outsourcing of functions.

Fig. 7. Power measurement system.

Becker et al. : Dynamic and Partial FPGA Exploitation

Vol. 95, No. 2, February 2007 | Proceedings of the IEEE 443

Authorized licensed use limited to: University of Florida. Downloaded on December 10, 2008 at 08:27 from IEEE Xplore.  Restrictions apply.



Formula 1: Average core power dissipation during

reconfiguration:

PCORE ¼

RTstartþTREC

Tstart

PCOREðtÞ � dt

TREC
:

Formula 2: Average I/O power dissipation during

reconfiguration:

PVCC ¼

RTstartþTREC

Tstart

PVCCðtÞ � dt

TREC
:

The high performance of an FPGA exploits the real-

time parallel processing of tasks and enables the substi-

tution of more than 12 control units for cabin functions

with one system, when using the new reconfigurable

method. Extrapolation and real tests show that a high-

performance conventional processor has to be used to run

all of these functions in quasi-parallel execution mode.
However, these chips are expensive and have high-power

dissipation. In addition, the increased portability of the

functions, which are described as hardware implementa-

tion (VHDL), has advantages for industrial usage since

functions can be treated as IP core and reused with FPGAs

of a different size and even from other manufacturers.

In cooperation with the Forschungszentrum Informa-

tik,1 a tool called JVHDLgen has been developed. This tool

enables the development of applications with Matlab

Simulink-Stateflow from The Mathworks which is well

established in the automotive industry. More information

about the Simulink tool and Control Design can be found

in [14]. The automotive cabin functions are modeled with
Matlab Simulink-Stateflow, which allows for the simula-

tion of a function and therefore a fast and safe inspection

of the correct behavior is possible, before implementation

occurs. At this point, a software generation in C with

Matlab Staflow Coder is possible. The tool JVHDLgen

allows for the generation of a VHDL code from the

Stateflow description in Matlab. Fig. 8 shows the design-

flow with the tool JVHDLgen. The basis for the designflow
is a State-Chart which is shown in Fig. 9 exemplarily. The

diagram shows the counter for a window-lift for checking

the position of the window.

It is important that the model description for VHDL is

equal to the model for C code generation in the abstraction

layer of Matlab Stateflow. This allows the generation of

C� and VHDL codes for the functionalities for integrating

either in software or hardware. In later steps, this will be
used for HW/SW reconfigurable systems, which are able to

run tasks in both software and hardware. This enables a

hardware/software partitioning at design time and in new

approaches, with task-migration techniques during run-

time. The tool JVHDLgen is a further development of

Bsf2vhd[ from Kevin Camera [6], which has now been

Fig. 8. Designflow for generating VHDL code from Stateflow description with Matlab.

1Available: http://www.fzi.de/
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developed as a Java tool and is, therefore, easy to adapt to

changing versions of Matlab Stateflow. Establishing a

description in a high abstraction level is important for

bringing new design methodologies and architectures into
industrial processes and development sections, to ensure

their acceptance by developers. Programming complex

functions in VHDL is complicated and has a high risk of

hidden failures. However, this risk can be reduced by

using established tools, such as Matlab Stateflow and the

possibility of simulation at an early stage of design.

Fig. 10 shows the physical implementation of the

described system in a Virtex-II FPGA (XC2V3000).
The rapid prototyping platform used and the physics

of the chip force the segmentation into a static and, for

this example application, four reconfigurable blocks. On

the right side, the static block with the run-time con-

troller, the decompression module, the arbiter, and the

CAN controller can be seen. This block will not be

changed during run-time. The ICAP interface can also be

found in the lower right area of this block. During run-
time, these parts of the system must not be substituted or

overwritten by other logic. In Fig. 10, four reconfigurable

areas (module slots) can be found. These slots are

connected via a bus macro which is static implemented

on a fixed position for each module. This is the basis for

an undisturbed communication during reconfiguration.

One approach for optimized communication macros has

been developed. More information can be found in [11].
These macros allow the fast and safe development of

reconfigurable systems. To test this system in a real-world

scenario, the tool Canoe from Vector Informatik is used

[19]. Fig. 11 shows a test workbench. The Canoe system is

connected to the CAN interface of the reconfigurable

system. All implemented cabin functions were imple-

mented as virtual devices with real behavior. This test

equipment makes tests without a real car or part of an
automotive system possible. However, the reconfigurable

system is currently being implanted in a real car for

running the system in a real-world scenario with real

functional devices.

A. Bus Macro Structure
For faultless data communication, it is necessary to

implement a structure with fixed signal lines. Fig. 12
shows the schematic of an implementation of several

modules without any interfaces between the reconfig-

urable areas. Signal lines may be open or two output

ports of a module may even be connected together. This

causes damage to the chip, and therefore, communication

elements with fixed connection points and wiring are

necessary. Fig. 13 shows a system with generalized com-

munication interfaces. As mentioned, fixed connection
points for each module are now established. The router

connects while the system is processed, all signals on a

defined position. Generalizing these interfaces also

enables the interchange of modules between their po-

sitions. For an undisturbed data transfer, it is not enough

to simply fix the connection points in a reconfigurable

system. While this is important, it is also necessary to fix

the physical signal lines that are used in each reconfig-
urable area. During reconfiguration, other modules run in

parallel and may communicate via the bus.

A change of routing can cause a glitch or even a loss of

information during reconfiguration. A variety of tests were

Fig. 9. State diagram modeled with Matlab-Stateflow.
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realized replacing functionality with reconfiguration. Bus-

macros are a combination of communication interfaces

and fixed signal lines. Fig. 14 shows a macro which is used

for the hardware reconfigurable system. Reference [11]

describes the functionality of this interface/signal wiring

macro and its method of development.

V. REAL-TIME RUN-TIME SYSTEM FOR
AUTOMOTIVE DOMAIN

A real-time run-time system for the automotive domain,

using new reconfigurable technologies and their benefits,

combined with intelligent mechanisms for scheduling

tasks on the hardware, is the goal of this work. The

reduction of power dissipation by adapting the hardware to
the actual demand of the application is possible with

reconfigurable hardware. The outsourcing of functionality

to external memory, and therefore, the possibility of using

a smaller FPGA enables savings in power dissipation. In

the presented system for automotive inner-cabin func-

tions, the power dissipation changes with the value of

around 6.2 mW within the time frame of 3 ms while the

reconfiguration process. The integration of all inner-cabin

functions of the demonstration system to a suitable FPGA,

would require a Virtex-II 4000 FPGA which has an
increased power dissipation of around 10 mW. These

values where calculated by real measurement and the tool

XPower which is provided by the Xilinx toolset. Addition-

ally, dynamic power consumption by the usage of the

increased chip size also leads to an increased power

dissipation which is obvious in this scenario. An intelligent

scheduling mechanism within the run-time system loading

functions on demand to the reconfigurable platform
(FPGA) helps reduce the number of different control

systems within a car. The need and benefit of using

FPGAs is that the number of parallel tasks increases by

Fig. 10. Implemented system on XC2V3000 Xilinx Virtex-II FPGA (displayed with Xilinx FPGA Editor).
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implementing a variety of functions in one chip. State-of-

the-art processors in the automotive domain do not have

the performance to run these tasks quasi-parallel. FPGAs

are able to run all these tasks of scheduling, communi-

cation interfaces, and data transfer between the functions

on high-performance hardware in parallel. The system

Fig. 11. Testbench for automotive functions.

Fig. 12. Necessity of Bus Macro. Fig. 13. System with communication interfaces.
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described here is able to fulfill all real-time constraints for

the given applications and has the capacity for further

fields of application in the automotive domain.
The further possibilities for adaptation, such as

changing topologies for data transfer, clock gating tech-

niques for optimizing power dissipation, and the sched-

uling of tasks which can be analyzed during run-time by

the run-time system, enables the optimization of the com-

plete system to the actual status and demand.

Fig. 15 shows an example of a reconfigurable sys-

tem designed with Xilinx Embedded Development Kit
(EDK, [20]). Via the On-Chip-Peripheral Bus (OPB-Bus),

the parameterizable IP-Cores are connected to the micro-

processor (MicroBlaze). Using the graphical abstraction

layer of a hardware/software development system, like

EDK, allows the system designer the combination of spe-

cific components on an abstraction level without time

consuming VHDL coding. As an example for automotive

applications, here the different car models and series will
be named; e.g., a convertible has as the special function of

the folding roof included in the ECU. By drag and drop,

the functionality is integrated into the design and can be

handled during run-time. An important issue is the para-

meterization of the IP-Cores during design time. Different

car models have for example different parameters within

their window lifter. Because of differing construction

parameters, the way between the upper and lower bound
of the windows also differs. Through parameterization, the

functionalities of the window-lifter can be adapted to the

requirements for this car model by adjusting the drive-way

of the window. This easy method for adjusting different

parameters is also a benefit during the testing phase of

newly developed functionalities and allows an easy and

time-saving turn-around time for rapid prototyping. A first

approach for this design-flow is described in [23].

VI. AREA-TIME DEPENDENCY AND
SYSTEM MODEL

Fig. 16 shows the dependency between reconfiguration,

area, and time. During run-time, reconfiguration might be

initiated if a request via the bus interface arrives at the run-

time system. In the given example, the user starts with the
request of a window-lift which is immediately configured

into module-slot 3. Later, the seat control is requested and

integrated on-demand into module-slot 3. This example

shows the dependency of the available configuration area

and functionality. More and more the configuration area is
occupied with tasks during run-time until all module-slots

are utilized. Different from a fixed configuration depen-

dency graph, e.g., for a fixed schedule of tasks to be in-

tegrated to the reconfigurable system, the requested

function during operation time cannot be foreseen. The

requested functionality on chip depends on the actual

requirements of the user and has no fixed schedule. There-

fore, idle tasks need to be substituted by actual recom-
mended functions. One criterion for substitution is

certainly the available reconfigurable area and, therefore,

one of the most important factors for modeling the recon-

figurable system. Tasks were not substituted until all

reconfigurable areas are utilized. Idle tasks, which are not

used at the moment, are candidates for substitution with

an actual requested function if all module-slots are

occupied with tasks. By introduction of priorities related
to different functionalities, another criterion for the sys-

tem model is given; e.g., a windshield-wiper can be more

important than a window-lift. It has to be considered that

these priorities also have run-time related values. While

driving, controlling a rear-mirror is very important for the

secureness of the passengers and has a higher priority.

When the car is in standby, this functionality gets a lower

priority and so forth. These examples show that the
configuration process and the decision adapting the system

are a multidimensional optimization process during run-

time, handled and finally decided by the run-time system.

Additionally the criteria quality of service, real-time

constraints, and power consumption needs to be consid-

ered by analysis of the dependencies between the different

functionalities while run-time. This can be achieved by

introducing of a dynamic configuration dependency graph
(DCDG) which can be used as a basis for further optimi-

zation algorithms.

As described above, the sequence for configuring the

module-slots cannot be foreseen. Internal parameters, e.g.,

power-consumption or resource allocation, as well as

external requests influencing the sequence and utilization

of the hardware have to be faced. As a basis for the

reconfiguration and substitution process during run-time,
the example of the substitution graph for automotive

function will be introduced.

Fig. 14. Bus Macro connecting four modules.
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Fig. 17 shows an example of a substitution graph for
automotive inner cabin functions. The arrows between

the different functions assign that these functions can

substitute each other. The easiest example can be shown

with the alarm function. The alarm function is not used if

the driver requires the window-lift function. Certainly the

door-lock function needs to be available if the alarm is

active to open the car from the outside by the user,

therefore, no arrow connects these functions within the
graph.

It is clear that this graph also is run-time-dependent

since, e.g., the alarm function can definitely be substituted

while the car is in motion. The complexity of the

relationship described in the substitution graph depends

on the parameters which have to be processed within the
reconfigurable system. The substitution graph which is

designed statically, influences directly the configuration

process and leads, therefore, to the introduction of the

DCDG which describes the dependencies and influencing

factors for the run-time adaptive system.

VII. CONCLUSION AND FUTURE WORK

This paper presents the system and design methodology

of dynamic and partially reconfigurable systems for usage

in the automotive domain. The proof of concept has

shown that FPGAs, with the feature of dynamic and

partial reconfiguration, can be exploited to reduce power

Fig. 15. Graphical view to embedded system in Xilinx EDK.
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dissipation and increase the adaptivity of embedded sys-

tems. Intelligent mechanisms within a run-time system

can optimize the performance, and therefore, the power

dissipation depending on the actual status of a system. To

overcome performance problems for systems with high
data throughput, reconfigurable computing will be the

trend for future high-performance systems [2]. Increased

data throughput caused by novel high-performance com-

munication systems (e.g., FlexRay [7]) can be handled

efficiently by parallel working reconfigurable hardware

where traditional microprocessor solutions need to work

with a high clocking rate. The benefit here is to reduce

power consumption by parallelization as described in [16].
Future work is to develop systems, which can be used

in other areas of application using the benefits of dynamic

and partial reconfiguration. The goal is to use intelligent

Fig. 16. Time-area dependency while run-time.

Fig. 17. Example substitution graph for automotive inner cabin functions.
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run-time systems, which access all parameters given by the
hardware and the architecture for optimizing systems

during run time. Additionally, new methodologies for ac-

cessing the reconfiguration area will be developed. In

future it will be possible to use algorithms for dynamic

synthesis, mapping, placement, and routing on chip, to

utilize rectangular areas on the chip area during run-time.

This enables the saving of external memory and adaptation

of the shape of areas for functions on the FPGA during
run-time. This increases the cost effectiveness for such

systems by moving closer to an ideal utilization of config-

urable elements [24]. The development of such systems is

only possible using the presented LUT-based communica-
tion elements, since dedicated connection points avoid

routing across the borders of a rectangular shaped recon-

figurable area. In addition, the new Xilinx FPGA, like

Spartan-III does not include TBUF (Tristate Buffer) ele-

ments which were used in previous approaches to establish

a macro as a communication interface. Therefore, using

the presented approach, other Xilinx FPGA series can be

used. Also new low-cost, low-power architectures for
integration as automotive FPGA-based ECUs have to be

evaluated since costs and power consumption are tremen-

dous factors in this field of application. h
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Michael Hübner (Student Member, IEEE) is

working toward the Ph.D. degree in electrical

engineering and information technology at the

Institute for Information Processing Technology

(ITIV), Universität Karlsruhe (TH), Germany, where

he has been since 2003. He received the diploma

degree in electrical engineering and information

technology in 2003 from the same University.

His research interests are in reconfigurable

computing, and particularly new technologies for

adaptive FPGA run-time reconfiguration and on-chip network structures

with application in automotive systems, including their integration into

high-level design and programming environments.

Gerhard Hettich received the degree in electron-

ics from the University of Applied Science,

Esslingen, Germany, in 1970, and the Masters

degree in physics and the Ph.D. degree in solid

state physics, both from the University of Stuttgart,

Germany, in 1979.

He is Director of Electric/Electronic Systems

and Components at DaimlerChrysler AG Research

and Technology, Germany, where he has been

since 1999. From 1980 to 1989 he was Manager of

Development at the Robert Bosch GmbH, and before joining the

DaimlerChrysler AG, he was Chief Engineer for the Temic Telefunken

Microelectronic GmbH.

Rainer Constapel received the diploma degree in

electrical engineering from the University of

Duisburg, Germany, in 1986, and the Dr.-Ing.

degree in the field of numerical simulation tech-

niques from the Fraunhofer Institute of Micro-

electronic Circuits and Systems, Duisburg,

Germany, in 1991.

He is Head of the Electric/Electronic Comfort

and Systems Department within Mercedes-Benz

passenger car development. His research interests

are electronic control unit (ECU) design, vehicle networking, and

communication systems.

Joachim Eisenmann received the electrical engi-

neering degree in 1985 at the Technical University

of Stuttgart, Germany.

He is a Manager in the Laboratory of Electric/

Electronic Components and Systems in Daimler-

Chrysler Research and Technology, Germany. In

1991, he joined the Research Department of the

former Daimler-Benz AG. After working in several

projects, he is has been responsible for Electric/

Electronic Topologies in research and predevel-

opment since 2001.

Jürgen Luka studied mechatronics at the Univer-

sity of Heilbronn.

He is a Manager at DaimlerChrysler Research

and Technology and is responsible for new

electric/electronic systems within the cabin area.

He joined DaimlerChrysler in 1985, where he

developed Electronic Control Units for passenger

cars and commercial vehicles. In 1992, he entered

the Research and Technology Division as a project

leader for on–off and mobile diagnosis based on

expert systems. Since 2001, he has been responsible for research

projects which aim to produce scalable electronic control units, utilizing

reconfigurable hardware elements. He is a member of the program

committee of the international conference Reconfigurable Architectures

Workshop RAW.

Becker et al.: Dynamic and Partial FPGA Exploitation

452 Proceedings of the IEEE | Vol. 95, No. 2, February 2007

Authorized licensed use limited to: University of Florida. Downloaded on December 10, 2008 at 08:27 from IEEE Xplore.  Restrictions apply.


