
 1

Performance Analysis with High-Level Languages for

High-Performance Reconfigurable Computing

John Curreri, Seth Koehler, Brian Holland, and Alan D. George

NSF Center for High-Performance Reconfigurable Computing (CHREC)

ECE Department, University of Florida

{curreri, koehler, holland, george}@chrec.org

Abstract

High-Level Languages (HLLs) for FPGAs (Field-

Programmable Gate Arrays) facilitate the use of

reconfigurable computing resources for application

developers by using familiar, higher-level syntax,

semantics, and abstractions, typically enabling faster

development times than with traditional Hardware

Description Languages (HDLs). However, this

abstraction is typically accompanied by some loss of

performance as well as reduced transparency of

application behavior, making it difficult to understand

and improve application performance. While runtime

tools for performance analysis are often featured in

development with traditional HLLs for serial and

parallel programming, HLL-based applications for

FPGAs have an equal or greater need yet lack these

tools. This paper presents a novel and portable

framework for runtime performance analysis of HLL

applications for FPGAs, including a prototype tool for

performance analysis with Impulse C, a commercial

HLL for FPGAs. As a case study, this tool is used to

locate performance bottlenecks in a molecular dynamics

application.

Keywords: Performance analysis, profile, trace,

reconfigurable computing, FPGA, high-level language,

application mapper, Impulse C, Carte

1. Introduction

Today’s application mappers (i.e. compilers that

translate High-Level Languages (HLLs) to hardware

configurations on FPGAs, such as Impulse C [1] or

Carte [2]) simplify software developers’ transition to

reconfigurable computing and its performance

advantages without the steep learning curve associated

with traditional Hardware Description Languages

(HDLs). While HDL developers have become

accustomed to debugging their code via simulators,

software developers typically rely heavily upon

debugging and performance analysis tools. In order to

accommodate the typical software development process,

application mappers support debug of HLL source code

on a traditional microprocessor rather than relying upon

HDL simulators and logic analyzers. However, current

commercial application mappers provide few (if any)

runtime tools to debug or analyze application

performance at the HLL source-code level while

executing on one or more FPGAs. While methods and

tools for debugging FPGAs have been well researched

and even developed, such as for the Sea Cucumber HLL

which has tool support for runtime debugging [3],

research is currently lacking in runtime performance

analysis tools for FPGAs, especially when HLLs are

featured.

Without performance tools to assist in analyzing

application behavior on the FPGA, potential

performance gains of reconfigurable computing may be

lost. A major advantage of reconfigurable computing is

performance increase obtained from application-specific

hardware optimizations. Application mappers attempt to

create optimized hardware by extracting parallelism out

of amenable HLL statements (e.g. performing the

iterations of a loop in parallel or in a pipeline if

possible). However, the amount of parallelism

extracted, and the overall structure of the design in

hardware, can depend heavily upon the way in which the

algorithm is expressed as well as the techniques used by

the application mapper to translate source code to

hardware.

Runtime performance analysis (hereafter the

“runtime” is assumed) allows the application developer

to better understand application behavior in terms of

both computation and communication, aiding the

developer in locating and removing performance

bottlenecks in each. Complex or dynamic data

dependencies during computation, shared

communication channels, and load balancing among

parallelized components can be very difficult to predict

 2

and yet significantly affect performance. Performance

analysis tools for HLL codes must allow the developer

to monitor these types of areas while presenting analysis

from the perspective of the HLL source code.

Unfortunately, many well-researched debugging

techniques may not be suited for runtime performance

analysis. For example, halting an FPGA to read back its

state may not be viable due to the unacceptable level of

disturbance caused to the application’s behavior and

timing since the FPGA will be temporarily inaccessible

to the CPU, causing performance problems that did not

exist before.

Alternatively, performance can be analyzed through

simulation. However, cycle-accurate simulations of

complex designs on an FPGA are slow and increase in

complexity as additional system components are added

to the simulation. Most (if not all) cycle-accurate

simulators for FPGAs focus upon signal analysis and do

not present the results at the HLL source-code level for a

software developer.

This paper focuses upon performance analysis of an

HLL application on a reconfigurable system by

monitoring the application at runtime. We have gained

the majority of our insight about performance analysis

with application mappers from a prototype performance

analysis tool that we have developed in this research for

Impulse C. Impulse C, a product of Impulse Accelerated

Technologies, maps a reduced set of C statements to

HDL for use on a variety of platforms. In addition,

examination here of Carte, a product of SRC Computers,

provides an alternate example of how C code can be

mapped to an FPGA along with initial ramifications

found for a performance analysis tool supporting Carte.

The remainder of this paper is organized as follows.

Section 2 discusses related work while Section 3

provides background information in runtime

performance analysis. Next, Section 4 covers the

challenges of performance analysis for HLLs targeting

FPGAs. Section 5 then presents a case study using a

molecular dynamics application written in Impulse C.

Finally, Section 6 concludes and presents ideas for

future work.

2. Related Work

To the best of our knowledge from a comprehensive

literature search, little previous work exists concerning

performance analysis for FPGAs. Hardware

performance measurement modules have been integrated

into FPGAs before; however, they were designed

specifically for monitoring the execution of soft-core

processors [4]. The Owl framework, which provides

performance analysis of system interconnects, uses

FPGAs for performance analysis, but does not actually

monitor the performance of hardware inside the FPGA

itself [5]. This paper significantly extends our previous

work on performance analysis for HDL applications [6],

which discusses a framework for monitoring

performance inside the FPGA called the Hardware

Measurement Module (HMM), by expanding this

framework to support the challenges of HLL mappers.

Figure 1. Performance Analysis Steps

3. Background

Performance analysis can be divided into six steps

(derived from Maloney’s work on the TAU performance

analysis framework for traditional processors [7]) whose

end goal is to produce an optimized application. These

steps are Instrument, Measure, Execute, Analyze,

Present, and Optimize (see Figure 1). The

instrumentation step inserts the necessary code (i.e. for

additional hardware in the FPGA’s case) to access and

record application data at runtime, such as variables or

signals to capture performance indicators. Measurement

is the process of recording and storing the performance

data at runtime while the application is executing. After

execution, analysis of performance data to identify

potential bottlenecks can be performed in one of two

ways. Some tools can automatically analyze the

measured data, while other tools rely solely upon the

developer to analyze the results. In either case, data is

typically presented to the user via text, charts, or other

visualizations to allow for further analysis. Finally,

optimization is performed by modifying the

application’s code based upon insights gained via the

previous steps. Since automated optimization is an open

area of research, optimization at present is typically a

manual process. Finally, these steps may be repeated as

Original Application

Instrument

Execute

Measure

Analyze

(Automatically)Present

Optimize

Measured Data File

Execution

Environment

Visualizations

Instrumented Application

Potential Bottlenecks

Analyze

(Manually)

Modified Application

Optimized Application

 3

many times as the developer deems necessary, resulting

in an optimized application. This methodology is

employed by a number of existing tools for parallel

performance analysis including TAU [7], PPW [8]

KOJAK [9] and HPCToolkit [10].

4. HLL Performance Analysis Challenges

While all stages of performance analysis mentioned

above are of interest for application mappers, we limit

our discussion to the challenges of instrumentation,

measurement, and analysis for the remainder of this

paper. The challenges associated with presenting

optimal visualizations for application mappers will be

saved for future work. Thus, Section 4.1 covers the

challenges of instrumenting an application, Section 4.2

explains the challenges associated with measuring

performance data from an application, and Section 4.3

discusses the challenges of analyzing that performance

data.

4.1. HLL Instrumentation Challenges

Instrumentation enables access to application data at

runtime. For application mappers, this step raises two

key issues: at what level of abstraction should

modifications be made, and how to best select what

should be accessed to gain a clear yet unobtrusive view

of the application’s performance. Tradeoffs concerning

the level of abstraction are discussed in Section 4.1.1,

while the selection of what to monitor is covered in

Section 4.1.2.

4.1.1. Instrumentation Levels. Instrumentation can be

added to an application at several levels ranging from

HLL source code down to FPGA bitstreams. Each

instrumentation level offers advantages to a performance

analysis tool for HLL-based applications.

The most obvious choice for instrumentation is to

directly modify the HLL source code. The main

advantage of this method is simplicity; code is added to

record data at runtime, and this data can be easily

correlated with the source line that was modified.

Unfortunately, application mappers typically lack

generic hardware timing functions, severely limiting the

accuracy of any performance data obtained as the CPU

clock must now be used to measure events on the FPGA

across the interconnect. Carte is an exception in that it

allows the developer to manually control and retrieve

cycle counters, which, along with the FPGA’s clock

frequency and some adjustment for skew, provides

accurate timing information between the CPU and

FPGA.

Instrumentation can also be inserted after the

application has been mapped from HLL to HDL.

Instrumentation of VHDL or Verilog provides the most

flexibility since measurement hardware can be fully

customized to the application’s needs, rather than

depending upon built-in HLL timing functions.

However, using instrumentation below the HLL source

level does require additional effort to map information

gathered at the HDL level back to the source level. This

process is problematic due to the diversity of mapping

schemes and translation techniques employed by various

application mappers and even among different versions

of the same mapper. For example, if a performance tool

relies upon HLL variables and HDL signals being

textually related, then the performance tool would fail if

this naming scheme was modified in a subsequent

release of the application mapper.

Instrumentation can also be added at the bitstream

level after place and route, as discussed at length in

Graham et al. [11]. Instrumentation at the bitstream

level can be inserted, manipulated, and reinserted in

seconds to minutes. In contrast, HLL and HDL

instrumentation requires a new place and route of the

application which can take hours to days. Beyond the

obvious time savings, bitstream-level instrumentation

permits the application developer to include minimal

performance hardware, knowing that it can be modified

in minutes if necessary. However, the instrumentation

must now be aware of the target FPGA type. In

addition, some flexibility is lost as the design is mostly

fixed after place and route, making some signals

inefficient to access or inaccessible due to the current

routing plan.

Other intermediate levels exist between the HLL

source level and the bitstream level. Some HLL

mappers have intermediate levels during translation

between the HLL and HDL levels. Still more

intermediate levels exist between the various stages used

to generate bitstreams for Altera and Xilinx FPGAs.

However, as [11] concludes, these levels suffer from

insufficient documentation or inadequate tool support

for modifying the design at that level, and thus are

beyond the scope of this paper.

We choose to insert instrumentation at the HDL

level for its flexibility, since it is not limited by available

HLL functions. HDL is also portable across FPGAs,

making our prototype performance analysis tool useful

on a broader range of platforms.

4.1.2. Instrumentation Selection. Application

performance can generally be considered in terms of

communication and computation. Many application

mappers, such as Impulse C and Carte, provide built-in

functions for communication. Communication functions

normally have associated status signals at the HDL level

 4

that can be instrumented to determine usage statistics

such as transfer rate or idle time. Instrumenting

computation is more complex due to the various ways

that computation can be mapped to hardware. Impulse

C maps computation onto (possibly multi-level) state

machines, and thus monitoring these state machines is

crucial to understanding computational performance. As

an example, the CO PIPELINE pragma is used in

Impulse C to pipeline computation within a loop. When

this function is invoked, Impulse C generates a state

machine to control the pipeline that can be in one of four

states: idle, initialize, run, or flush. Initialize and flush

states indicate pipelining overhead and thus can provide

indicators of lost performance. For Carte, computation

is represented as a dataflow graph connecting hardware

units. Thus, monitoring the status signals of these units,

such as completion signals, can provide insight into how

computation progresses in the application.

In general, the HDL structure and hardware

statements generated by an application mapper will need

to be analyzed in order to find state machines, status

signals, or other information that can be instrumented to

provide relevant performance data. By finding the

specific performance indicators for HDL code generated

by an application mapper, automated instrumentation is

feasible. It may also be beneficial to monitor application

data directly (i.e., an HLL variable) to gain a better

understanding of application performance and behavior.

However, selection of an application variable is, in

general, not automatable due to the need for high-level,

application-specific knowledge to understand the

variable’s purpose and expected value.

4.2. HLL Measurement Challenges

After instrumentation has been inserted into the

developer’s application, monitored values must be

recorded (measured) and sent back to the host processor.

Section 4.2.1 presents standard techniques for measuring

application data, Section 4.2.2 then describes the

hardware used to make these measurements, and finally

Section 4.2.3 addresses how the measurement hardware

communicates performance data to software.

4.2.1. Measurement Techniques. The two common

modes for measuring performance data are profiling and

tracing. Profiling records the number of times that an

event has occurred, often using simple counters. To

conserve the logic resources of an FPGA, it is possible

to store a larger number of counters in block RAM if it

can be guaranteed that only one counter within a block

RAM will be updated each cycle (e.g., this technique is

useful for large state machines, since they can only be in

one state at any given clock cycle). Profiling data can be

collected either when the program is finished (post-

mortem) or sampled (collected periodically) during

execution. At the cost of communication overhead,

sampling can provide snapshots of profile data at various

stages of execution that would otherwise be lost by a

post-mortem retrieval of performance data.

In contrast, tracing records timestamps indicating

when individual events occurred and, optionally, any

data associated with each event. Due to the potential for

generating large amounts of data, trace records typically

require a buffer for temporary storage until they can be

offloaded to a larger memory, such as the host

processor’s main memory. To complicate matters, an

HLL communication function may have built-in

buffering as well. Assuming no built-in buffering exists,

block RAMs can be used to temporarily store trace data

on-chip. While logic resources on the FPGA can also be

used for trace data storage, this resource is scarce and of

lower density than block RAM, making logic resources

ill-suited for general trace data. If available, other

memory resources such as larger, preferably on-board

SRAM or DRAM can be used to store trace data as well

before it is sent to the host processor. Tracing does

provide a more complete picture of application behavior,

capturing the sequence and timing of events. Thus,

when needed, tracing can be justified despite the often

high memory and communication overhead.

4.2.2. Measurement Hardware. Due to the limitations

of hardware timing functions in many application

mappers, as discussed in Section 4.1.1, customized

hardware with profiling and tracing capabilities is

critical in obtaining accurate performance data. For this

reason, we extend the Hardware Measurement Module

(see Figure 2), or HMM, presented in [6].

...

M
e
m
o
ry

M
o
d
u
le

Figure 2. Hardware Measurement Module

The HMM allows HDL signals to be used in

arbitrary expressions that define events such as “buffer

is full” or “component is idle.” These events are used to

 5

trigger custom profile counters or trace buffers

depending upon the type and level of detail of

performance data required. A cycle counter is also

provided for synchronization and timing information.

The module control provides the interface to software

for transferring data back to the host processor at

runtime as well as clearing or stopping the module

during execution.

4.2.3. Measurement Data Transfer. In order to transfer

measurement data from the FPGA to the host processor,

a communication interface must be connected to the

HMM. Fortunately, many HLL mappers have built-in

communication functions, making the addition of a

logical communication channel trivial. However, the

process of connecting this communication interface to

the HMM is not as straightforward, since the HMM is

written in VHDL. To address this problem, a temporary

loopback communication channel and hardware are

inserted into the HLL source code of the application

(dark arrows in Figure 3). Once the application is

mapped to an HDL, the loopback HDL code is removed

(cross-hatched arrow in Figure 3) and replaced by the

HMM. Instrumentation now progresses as it would for

an HDL application; application signals are brought out

and connected to the HMM for measurement (thin black

arrow in Figure 3), completing the process. This

technique has been used with our case study in Impulse

C, and has also shown promise for Carte.

Application

(Software)

Measurement

Extraction

Process / Thread

Hardware

Measurement

Module

Host Processor(s)

FPGA(s)

Instrumented

Signals

HLL Hardware Wrapper

HLL API Wrapper

Application

(Hardware)

X

Figure 3. HLL communication loopback is
added. The function’s HDL is replaced by the

HMM, which monitors the application’s signals.

Communication overhead can depend upon several

factors. One major factor concerns how much data is

generated. Profile counters and trace buffers should be

sized according to the number of events expected (with

some margin of safety). Events should also be defined

frugally to minimize the amount of data recorded while

still obtaining the information needed to analyze

performance. For example, while it may be ideal to

monitor the exact time and number of cycles for all

writes, it may be sufficient to know the number of writes

exceeding a certain number of cycles.

Another source of overhead comes from the

application mapper’s communication interface, as the

HMM is designed to work best with high-throughput

channels. The bandwidth of streaming and memory-

mapped communication interfaces can vary significantly

between application mappers as well as between FPGA

platforms using the same application mapper, depending

upon implementation. Therefore, it is important for

performance analysis tools to support as many

communication interfaces as possible to provide

flexibility and achieve the lowest overhead.

4.3. HLL Analysis Challenges

While analysis has historically been very difficult to

automate, automatic analysis can improve developer

productivity by quickly locating performance

bottlenecks. Automatic analysis typically focuses upon

recognizing common performance problems such as

potentially slow communication functions or idle

hardware. For example, replicated functions can be

monitored to determine which are idle and for what

length of time, giving pertinent load-balancing

information to the developer. Application mappers can

also pipeline sections of code, either automatically (e.g.

Carte) or explicitly via directed pragmas (e.g. Impulse

C). In this case, automatic analysis determines how

many cycles in the pipeline were unproductive and the

cause of these problems (e.g., data not available,

flushing of pipeline, etc.).

Performance analysis can also be useful in

determining communication characteristics that may

cause bottlenecks, such as the rate or change in rate of

communication. For example, streams that receive

communication bursts may require larger buffers, or an

application may be ill-suited for a specific platform due

to lack of bandwidth. The timing of communication can

also be important; shared communication resources such

as SRAMs often experience contention and should, in

general, be monitored. Monitoring for these

communication characteristics can aid in the design of a

network that keeps pipelines at peak performance.

5. Molecular-Dynamics Case Study

To demonstrate the benefits of HLL performance

analysis and explore its associated overhead, we analyze

a Molecular-Dynamics (MD) application written in

 6

Impulse C. MD simulates interactions between atoms

and molecules over discrete time intervals. The

simulation takes into account standard physics, Van Der

Walls forces, and other interactions to calculate the

movement of molecules over time. The simulation

keeps track of 16,384 molecules, each of which uses 36

bytes (4 bytes to store its position, velocity and

acceleration in each of the X, Y and Z directions).

Alam et al. [12] provides a more in depth overview of

MD simulations.

We obtained serial MD code optimized for

traditional processors from Oak Ridge National Lab

(ORNL). We redesigned the MD code in Impulse C

2.20 using an XD1000 as the target platform. The

XD1000 is a reconfigurable system from Xtreme Data

Inc. containing a dual-processor motherboard with an

Altera Stratix-II EP2S180 FPGA on a module in one of

the two Opteron sockets. The HyperTransport

interconnect provides a sustained bandwidth of about

500 MB/s between the FPGA and host processor with

Impulse-C. Using this platform, a speedup of 6.2 times

was obtained versus the serial baseline running on the

2.2 GHz Opteron processor in the XD1000 server.

Using our prototype performance analysis tool, we

analyzed the performance of our MD code to determine

if further speedup could be obtained.

The Impulse C compiler translates our MD code

into a Quartus-II HDL design tailored for the XD1000.

Impulse C relies upon state machines in the HDL code

generated to preserve the structure of the original C

code. The state machine structure is primarily

determined by statements that represent a branch in

execution, such as if, while, for, etc. Impulse C handles

C statements within a branch by placing them either in a

single state or in multiple sequential states depending

upon their aggregated delay. However, a loop that is

pipelined is always represented as one state within the

state machine. After viewing the performance of a

hardware subroutine via its state machine, more detailed

analysis can be performed via tracing and profiling of

application variables or other Impulse C constructs.

To present the data gathered by the HMM in a more

intuitive fashion, the HDL code is reverse-mapped to

HLL source code via variable name-matching (since

similar names are used in both C and the generated

HDL) and by observing scope and other patterns implicit

in the HLL-to-HDL mapping. Overcoming this

challenge allows performance data to be obtained and

correlated directly to the HLL source code, removing the

need for the application developer to understand HDL

source code. While data from our performance analysis

tool is currently exported in CSV (comma-separated

values) format, this data could be integrated into

visualizations from existing performance analysis tools

to aid the developer in quickly locating performance

bottlenecks.

Inp
ut
 M
em
or
y A
cc
es
s

SRAM

Storage

Output Memory Access
Collector

Output Stream 1 Ou
tp
ut
 S
tea
m
16

MD kernel 16

Input Stream
 16

MD kernel 1

In
pu
t S
te
am
 1

Distributor

Figure 4. MD Hardware Subroutine

There are three hardware functions defined in the

MD hardware subroutine (see Figure 4). The two

functions named Collector and Distributor are used to

transfer data to and from SRAM, respectively, in order

to provide a stream of data running through the third

function, MD kernel. MD kernel calculates the

position, velocity, and acceleration values of molecules

and is pipelined using Impulse C pragmas. The function

is then replicated 16 times, so that FPGA resources are

nearly exhausted, so as to increase performance.

void MD_kernal (co_stream in, co_stream out)

{

…
for(t=0;t<16384;t++){

co_stream_read(in, &x, …);

co_stream_read(in, &y, …);

co_stream_read(in, &z, …);

…
for(i=0;i<1024;i++)

{//Perform MD calculations

#pragma CO PIPELINE

…
}

co_stream_write(out, &x, …);

co_stream_write(out, &y, …);

co_stream_write(out, &z, …);

}

…
}

51.67%

0.09%

0.26%

47.98%

Percent

Runtime

(not shown)

Figure 5. Profiling the MD Kernel

 We instrumented and analyzed the MD application,

with a focus on understanding the behavior of the state

machine inside each MD kernel. The number of cycles

spent in each state was recorded by the HMM and sent

 7

back to the host processor post-mortem. Upon

examination, three groups of states in the main loop of

the MD kernel hardware function were of particular

interest. The first group keeps track of the total number

of cycles used by the input stream (arrows pointing to
MD kernels in Figure 4) of the MD kernel. The second

group of states keeps track of the total number of cycles

used by the pipeline inside of the MD kernel. Finally,

the third group of states keeps track of the total number

of cycles used by the output stream (arrows pointing to

the Collector in Figure 4) in the MD kernel. Tracing

was used to find the start and stop times of the FPGA

and all MD kernels. The cycle counts from these three

groups were then converted into a percentage of MD

Kernel runtime (Figure 5) by dividing by the total

number of cycles used by the MD hardware subroutine

(i.e. FPGA runtime). Since the state groups vary by less

than a third of a percent when compared across all 16

MD kernels, we only present data from one kernel.

MD Kernal Runtime

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

128 256 512 1024 2048 4096

Stream buffer size (bytes)

F
P

G
A

 r
u

n
ti

m
e

 (
s

e
c

o
n

d
s

)

Other

Output stream

Pipeline

Figure 6. MD Kernel Runtime

Our performance analysis tool successfully

identified a bottleneck in the MD hardware subroutine.

In the MD kernels, almost half of the execution time

was used by the output stream to send data to the

Collector hardware function (Figure 5). An optimal

communication network would allow the pipeline

performing molecular dynamics operations to execute

for nearly 100% of the FPGA runtime minimizing the

number of cycles spent blocking for a transfer to

complete. This trait is an indicator that the stream

buffers which hold 32-bit integers are becoming full and

causing the pipeline to stall. Increasing the buffer size

of the streams by 32 times (Figure 6) only required a

change of one constant in the program. The larger

stream buffers reduced the number of idle cycles

generated by the output stream while the pipeline’s

runtime remained the same thus reducing the FPGA

runtime. This simple change increased the speedup of

the application from 6.2 to 7.8 versus the serial baseline.

EP2S180 Original Modified Difference

Logic used

(143520)

126252

(87.97%)

131851

(91.87%)

+5599

(+3.90%)

Comb. ALUT

(143520)

100344

(69.92%)

104262

(72.65%)

+3918

(+2.73%)

Registers

(143520)

104882

(73.08%)

110188

(76.78%)

+5306

(+3.70%)

Block memory

(9383040 bits)

3437568

(36.64%)

3557376

(37.91%)

+119808

(+1.27%)

Frequency

(MHz)

80.57 78.44

-2.13

(-2.64%)

Table 1. Performance Analysis Overhead

The overhead caused by instrumentation and

measurement of the MD kernel with a stream buffer
size of 4096 bytes on the XD1000 is shown in Table 1.

Instrumentation and measurement hardware increased

FPGA logic utilization by 3.90%. Profile counters and

timers used an additional 3.70% of the FPGA’s logic

registers, whereas tracing buffers required 1.27%

additional block memory implementation bits. An

additional 2.73% of combinational Adaptive Look-Up

Tables (ALUT) was also needed. Finally, the FPGA

experienced a slight frequency reduction of 2.64% due

to instrumentation. Overall, the overhead for

performance analysis was found to be quite modest.

6. Conclusions

Many of the challenges for performance analysis of

HLL-based FPGA applications have been identified in

this paper. Instrumentation at the HDL level was chosen

for its portability between application mappers and

platforms, while communication was instrumented at the

HLL level to leverage the simplicity of using HLL

communication channels. We also discussed

instrumenting common HLL structures such as pipelines

and communication channels, which could provide

automated instrumentation as well as application-

independent performance data. In addition, we

employed techniques to map HDL performance data

back to HLL source code for Impulse C, greatly

reducing the effort and knowledge needed by the

application developer. We also commented on the use

of measured performance data for automatic bottleneck

detection at the HLL source-code level to increase

developer productivity.

A case study was presented to demonstrate the

utility of profiling and tracing application behavior in

hardware, allowing the developer to gain an

understanding of where time was spent on the

 8

reconfigurable processor. We also observed low

overhead (in terms of FPGA resources) when adding

instrumentation and measurement hardware,

demonstrating the ability to analyze applications that use

a large portion of the FPGA. In addition, we noted that

a slight reduction in frequency (less than 3%) resulted

from instrumentation. Since data was gathered after

execution completed, there was no communication

overhead.

Although instrumentation is currently added

manually, it is planned in the future to automate this

process via Perl scripts. Additional future work includes

presenting performance data to the developer by

leveraging existing visualization techniques from

traditional (i.e. non-FPGA) performance analysis tools

and expanding the performance analysis tool to support

Carte.

7. Acknowledgments

This work was supported in part by the I/UCRC

Program of the National Science Foundation under

Grant No. EEC-0642422. The authors also gratefully

acknowledge vendor equipment and/or tools provided by

Impulse Accelerated Technologies, Altera, XtremeData,

SRC Computers, and Aldec.

8. References

[1] D. Pellerin and S. Thibault, Practical FPGA

Programming in C, Prentice Hall PTR, 2005.

[2] D. S. Poznanovic, “Application Development on the SRC

Computers, Inc. Systems,” Proc. 19th IEEE International

Parallel and Distributed Processing Symposium (IPDPS),

Denver, CO, April 2005, pp. 78a.

[3] K. S. Hemmert, J. L. Tripp, B. L. Hutchings, and P. A.

Jackson. “Source Level Debugger for the Sea Cucumber

Synthesizing Compiler,” Proc. IEEE Symposium on

Field-Programmable Custom Computing Machines

(FCCM), Napa, CA, April 2003, pp. 228-237.

[4] J. G. Tong and Mohammed A. S. Khalid, “A Comparison

of Profiling Tools for FPGA-Based Embedded Systems,”

Proc. Canadian Conference on Electrical and Computer

Engineering (CCECE), Vancouver, British Columbia,

Canada, April 2007, pp. 1687-1690.

[5] M. Schulz, B. S. White, S. A. McKee, H. S. Lee, and J.

Jeitner. “Owl: next generation system monitoring,” Proc.

2nd Conference on Computing frontiers (CF), ACM

Press, New York, NY, May 2005, pp. 116-124.

[6] S. Koehler, J. Curreri, and Alan D. George, “Challenges

for Performance Analysis in High-Performance

Reconfigurable Computing,” Proc. Reconfigurable

Systems Summer Institute (RSSI), Urbana, IL, July 2007.

[7] S. Shende and A. D. Malony. “The Tau Parallel

Performance System,” International Journal of High-

Performance Computing Applications, SAGE

Publications, May 2006, 20(2):287–311.

[8] H. Su, M. Billingsley, and A. George, "Parallel

Performance Wizard: A Performance Analysis Tool for

Partitioned Global-Address-Space Programming," 9th

IEEE International Workshop on Parallel & Distributed

Scientific and Engineering Computing (PDSEC) of

IPDPS 2008, Miami, FL, Apr. 14-15, 2008.

[9] B. Mohr and F. Wolf. “KOJAK – a tool set for automatic

performance analysis of parallel applications”. European

Conference on Parallel Computing (EuroPar),pages 1301–

1304, Klagenfurt, Austria, LNCS 2790, August 26–29,

2003.

[10] J. Mellor-Crummey, R. J. Fowler, G. Marin, and N.

Tallent. “HPCVIEW: A tool for top-down analysis of

node performance”. The Journal of Supercomputing,

23(1):81–104, August 2002.

[11] P. Graham, B. Nelson, and B. Hutchings, “Instrumenting

bitstreams for debugging FPGA circuits,” Proc. IEEE

Symposium on Field-Programmable Custom Computing

Machines (FCCM), IEEE Computer Society, Rohnert

Park, CA, April 2001, pp. 41-50.

[12] S. R. Alam, J. S. Vetter, P. K. Agarwal, and Al Geist,

“Performance characterization of molecular dynamics

techniques for biomolecular simulations,” Proc. 11th

ACM SIGPLAN symposium on Principles and Practice of

Parallel Programming (PPoPP), ACM Press, New York,

NY, 2006, pp. 59-68.

