
Lab 1: Is Perfect Square Calculator
EEL 5721/4720 – Reconfigurable Computing

Objective:
The objective of this lab is to create an FSMD and FSM+D that determines if an integer is a perfect

square. It is also your responsibility to build your own testbench.

Required tools and parts:
Vivado, ModelSim-Altera Starter Edition (or equivalent simulator)

Lab requirements:
1. For this lab, the entity will determine if a provided number (n) is a perfect square. First, study the

following pseudo-code to make sure you understand the basic algorithm.

// Inputs: go, n (WIDTH bits)

// Outputs: output, done

// Reset values (add any others that you might need)

output = 0; done = 0;

while(1){

 // Wait for go to start circuit

while (go == 0);

done = 0;

// Register the n input (should happen in the cycle go is asserted)

 n_r = n;

 // Initialization

 k_r = 1;

 square_r = 0;

 while (square_r < n_r) {

 square_r = k_r * k_r;

 k_r++;

 }

 if (square_r == n_r)

 output = 1;

 else

 output = 0;

// should remained asserted until circuit is started again

done = 1;

}

2. IMPORTANT: The design has the following timing requirements:

• Done should be cleared 1 cycle af ter the assertion of go.

• Upon completion, done should remain asserted indef initely until go is asserted again.

• k_r should be WIDTH bits

• square_r should be 2*WIDTH bits

FSMD
3. Create a 1-process FSMD that implements the code shown above. Add the code to the FSMD

architecture within is_perfect_square.vhd.

Lab 1: Is Perfect Square Calculator
EEL 5721/4720 – Reconfigurable Computing

4. Feel f ree to use the provided is_perfect_square_crv_tb.sv to test your design. You’ll be writing your

own testbench in a later step.

5. Synthesize your FSMD in Vivado (for any FPGA) and take a screenshot showing no synthesis

warnings. Make sure that the default_arch architecture of is_perfect_square.vhd is using the

FSMD architecture. Save the screenshot to synthesis_fsmd.jpg.

FSM+D
6. Create the following datapath by f illing in the datapath.vhd f ile. You can create the datapath

structurally or behaviorally, but it must synthesize to this same structure. If you create a structural

architecture, make sure to add your extra entities to datapath.vhd to ensure that all
submissions have the same files.

7. Create a 2-process FSM controller that controls the datapath f rom the previous step to implement the
required functionality f rom the pseudo-code in part 1. Your controller should be implemented in the
fsm.vhd f ile.

8. Fill in the FSM_D architecture in is_perfect_square.vhd to instantiate and connect the datapath and

controller.

9. Synthesize your FSM_D architecture in Vivado (for any FPGA) and take a screenshot showing no

synthesis warnings. Make sure that the default_arch architecture of is_perfect_sqaure.vhd is

using the FSM_D architecture. Save the screenshot to synthesis_fsm_d.jpg.

10. Important: you will likely get these warnings (or something similar) for the FSM+D. These warnings

are f ine, but only if they occur at time 0. They are caused by a value that isn’t ‘0’ or ‘1’ reaching an

K_MUX

1

k_r

+

k_sel

k_en

1

*

SQ_MUX

0

square_r

square_sel

square_en n_r

n

n_en

==

output_routput_en

output

<

square_lt_n

Lab 1: Is Perfect Square Calculator
EEL 5721/4720 – Reconfigurable Computing

arithmetic operation. This is of ten unavoidable at time 0 because certain signals haven’t been
initialized yet depending on how the simulation orders the execution of processes.

** Warning: NUMERIC_STD."<=": metavalue detected, returning FALSE
Time: 0 ns Iteration: 0 Instance: /is_perfect_square_crv_tb/DUT/TOP/datapath_inst
** Warning: NUMERIC_STD."=": metavalue detected, returning FALSE

Time: 0 ns Iteration: 0 Instance /is_perfect_square_crv_tb/DUT/TOP/datapath_inst

Testbench

11. Create a testbench in is_perfect_square_tb.vhd that tests at least 3 dif ferent values of n. I would
highly suggest testing a large number of input values to ensure that your design is working. I will be
testing it with a very thorough testbench, which will likely catch errors your testbench might miss.

12. Your testbench should be used to test both the FSMD and FSM_D architectures. You can do this

either by manually changing the architecture that is used in the testbench, or by changing the

default_arch architecture in is_perfect_square.vhd. For this lab, do not create multiple testbench f iles.

13. Take a screenshot of your testbench running the FSMD and save it to a f ile testbench_fsmd.jpg.

14. Take a screenshot of your testbench running the FSM+D and save it to a f ile testbench_fsm_d.jpg.

15. An additional testbench is provided in is_perfect_square_crv_tb.vhd that uses a strategy called
constrained-random verif ication. It performs numerous random tests, while also verifying the timing of
the done signal. I would highly recommend using it in addition to your own testbench because the

graders will use something similar.

Turn in instructions:
Submit the following to Canvas as a single zip f ile where the f ile name is your UFID. e.g., for 12345678
your submission should be a single zip called 12345678.zip. Do not include any extra folders, do not

change the name of any f iles, do not use another compression format, etc. This specif ic structure is
intended to help automate grading.

• is_perfect_square.vhd

• fsm.vhd

• datapath.vhd

• is_perfect_square_tb.vhd

• synthesis_fsmd.jpg

• synthesis_fsm_d.jpg

• testbench_fsmd.jpg

• testbench_fsm_d.jpg

• README.txt - If any problems occurred that I should be aware of for grading, include them here.

