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Objective:  

In this lab, you will learn how to properly communicate across clock domains. If not 

handled correctly, signals that cross clock domains can become metastable, which if propagated 

through your circuit will likely cause errors. In this lab, you will learn how to create 

synchronizers that guarantee (with a high probability) that signals have stabilized before being 

used in the destination domain. In this lab, we will be looking at 3 types of synchronizers: dual-

flop, handshake, and FIFO synchronizers.   

You will again be working in groups of 2 on this project. Unless you are an EDGE student or 

have special permission from the instructor, you must work in a group of 2. Note that those in 

any overflow sections are not EDGE students, and must work in a group of 2. Please only 

submit once per group.  

EDGE INSTRUCTIONS:  

EDGE students must complete parts 1 and 3. Part 2 may be done for extra credit.    

Part 1 – Dual-flop synchronizers  

In the simplest case of clock domain crossing, a single bit must be synchronized. This 

commonly occurs for simple control signals, such as a go or enable. Many beginners assume 

that metastability will not be a problem for these signals, because even if the proper value isn’t 

used on the current cycle, it will eventually stabilize and be correctly seen. Although there may 

be situations where such assumptions can be valid, it is much safer to properly synchronize 

these signals and avoid unanticipated issues.  

In this part of the lab, you will see this problem. The provided code (see the part 1 directory) 

provides VHDL code for the ZedBoard that uses two domains. user_app.vhd is the top level. In 

the first domain, there is an entity that produces a memory-map-specified number of pulses on a 

signal that crosses the clock domains. The destination domain monitors this signal and counts 

the number of times that the pulse transitions from 0 to 1. The provided testbench 

user_app_tb.vhd shows that the provided implementation simulates without errors. However, 

there is C code provided that shows the VHDL does not work correctly on the board. The reason 

is that the pulse signal is not synchronized with the destination domain.  

 

For part 1), do the following steps:  

1) Simulate the provided VHDL with the provided testbench (user_app_tb.vhd). Note that 

there are no errors.  

2) Create a Vivado project using the provided accelerator dual_flop_1.0 IP core (see earlier 

labs).  

3) For one of the clock domains, we will use the AXI clock. To create another clock that is 

not derived from the AXI clock, we will instantiate a PLL, which we can do by adding 

more IP. Select Add IP and then select ‘Clocking Wizard’. Double click the clocking 

wizard in the block diagram to re-customize the IP. Select the “Output Clocks” tab and 

change the requested frequency to 70 MHz, then click OK. 

4) Run the connection automation, which will establish most of the connections. 

IMPORTANT: connect the clk_out1 output from the clocking wizard to clk2 on the 

dual_flop IP. Next, remove the connection from the reset of the clocking wizard (if 

there is one). We will leave it disconnected. Your resulting block diagram should look 

something like this: 
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5) Generate a bitfile and rename it to part1.bit.  

6) Upload the bitfile and provided C++ code to the class server. Compile the code and run 

it using:  

zed_schedule.py ./zed_app part1.bit  

6) Verify that the circuit does not work correctly. The C++ code will output the difference 

between the actual count provided by the circuit and the correct result. This difference 

will likely change every time you run the code.  

Save a screenshot of the output in part1_incorrect.jpg.  

7) Add a dual-flop synchronizer to the pulse signal and make any other necessary changes 

to the code.  

8) Simulate using the provided testbench until there are no errors (you may have 

introduced some).  

9) Update your IP in Vivado and repeat 5-6 to verify that your dual-flop synchronizer has 

fixed any metastability problems.  

Part 2 – Handshake synchronizers   

Unfortunately, the dual-flop synchronizer cannot reliably be used to transfer multiple-bit signals. 

To deal with multi-bit signals, one form of synchronization is a handshake. The source domain 

initially puts data into a register that crosses clock domains. However, the destination domain 

does not immediately use that data. Instead, the source domain sends a data valid signal to the 

destination domain, which is then acknowledged by the destination domain. These messages 

are single bits that can be properly synchronized using dual-flop synchronizers. After receiving 

the data valid message from the source domain, the destination domain can safely use the 

multi-bit data, because it should now be stable. After receiving the acknowledgement from the 

destination domain, the source domain can change the data in the register and start another 

transfer.  

The provided code in the handshake directory shows an incorrect implementation of a 

handshake synchronizer (user_app.vhd is the top level). In this example, there is an input block 
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RAM (in clock domain 1) that transfers data to a datapath (in clock domain 2). The datapath 

then sends outputs to an output block RAM (in clock domain 1). Like in the previous part of the 

lab, the provided code simulates perfectly, but does not work on the actual FPGA. You will fix 

the VHDL to properly handle the handshake.   

You have two options for your implementation. A level-sensitive handshake implements the 

send and acknowledge as being asserted at a particular level. Although this works, it requires 

two round-trips: assert send, wait for ack, deassert send, wait for ack to reset. A more efficient 

way is to use an implementation that is sensitive to transitions. See the papers provided on the 

class website for more information. You will receive full credit for either implementation. Note: 

the level-sensitive handshake is significantly easier (and is included in the provided code), so I 

would suggest getting this version working before trying the transition-sensitive version. For part 

2), repeat the process of part 1 for the handshake entity using the provided fifo_1.0 directory. 

Name your bitfile part2.bit.  

Part 3 – FIFO with multiple clock domains  

Although the handshake enables arbitrarily wide data to be transferred across clock domains, it 

can reduce throughput and complicates control. For example, the pipelined datapath in part 2 

never had more than one valid stage of data at a time because the source domain cannot 

transfer more data until the destination domain is ready (i.e., has acknowledged the previous 

data). One way of dealing with this problem is to add a buffer or FIFO that stores data in the 

destination domain so that the source can immediately start a new transfer. While this works, if 

we are going to use a FIFO, we can completely eliminate the handshake synchronizer.  

One common feature of a FIFO is to support different clock domains for reading and writing. 

Therefore, we can simplify the implementation in part 2, and greatly improve throughput by 

adding a FIFO between the input memory and datapath inputs, and between the datapath 

outputs and the output memory.  

One advantage of FIFOs is simplified control. Look at the provided VHDL and read the 

comments in the top-level user_app.vhd file. The input memory writes to the FIFO anytime it is 

has valid data and the FIFO isn’t full. The datapath always reads from the input FIFO, even 

when it is empty (the data is just marked as invalid). The datapath stalls anytime the output 

FIFO is full and writes data anytime its outputs are valid. The output memory reads from the 

output FIFO anytime it isn’t empty.   

To finish this part of the lab, you will need to create two FIFOs: one that is 32 bits wide 

(fifo32.vhd) and one that is 17 bits wide (fifo17.vhd). Creating a multiple-clock domain FIFO is 

not trivial. Fortunately, in this lab, you can use Xilinx Core Generator (CoreGen), which is 

included as part of Vivado’s IP catalog. Within the IP project, open the IP catalog, select 

“Memories and Storage Elements”->”FIFOs”->”FIFO Generator”. For both FIFOs, make sure 

you use the following settings: native interface, independent clocks block RAM for the 

implementation option, and first-word fall through for the read mode. The interface widths should 

be 17 or 32 depending on whether or not this is the output or input FIFO. The depth doesn’t 

really matter here, so make it small (e.g., 64). For the 32-bit FIFO, make sure to select the 

option for the almost_full flag (see comments in code for explanation). 

Before accepting the configuration settings for the FIFO core, go to IP Location at top of the 

window. Make sure the specified directory is the src/ folder within the IP folder. Sometimes 

Vivado will use a different folder outside of the IP folder, in which case you will get black-box 

errors when synthesizing in the main project.  
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After creating the FIFO cores, look at the generated instantiation template in Vivado to see how 

to use them. Then, create an instance of the corresponding cores within fifo32.vhd and 

fifo17.vhd. 

For part 3), repeat the process of part 1 for the handshake entity using the provided fifo_1.0 

core. There are two key differences for part 3. First, the provided VHDL should not simulate 

correctly until you change it. Second, because you are using pre-synthesized FIFO cores, you 

will have to run your simulations using Vivado’s simulator. To do this, add the provided 

testbench user_app_tb.vhd as a simulation source if it is not already included as one. Next, set 

the testbench as the top-level entity under simulation sources. Finally, click run simulation, 

which should open a waveform viewer and start the simulation. Make sure to select “Run all” to 

ensure that the simulation is complete.  

Make sure to name your bitfile part3.bit.   

SUBMISSION INSTRUCTIONS (One submission per group)  

Make sure all group member names are at the top of every file that you modify, in addition 

to the readme file!  

Create a directory with your UFID. Give it the following structure:  

  

UFID/ readme.txt  // Group members, and anything that the grader   

                                   // needs to be aware of  

part1/  

 part1.bit  // DON’T FORGET!!!!  

part1_incorrect.jpg  

dual_flop_1.0/  

part2/  

// IP core from repository for part 1 with this exact   

// name. Make sure all VHDL is included  

part2.bit  // DON’T FORGET!!!!  

handshake_1.0/  

part3/  

// IP core from repository for part 2 with this exact   

// name. Make sure all VHDL is included  

part3.bit  // DON’T FORGET!!!!  

fifo_1.0/  // IP core from repository for part 3 with this exact   

// name. Make sure all VHDL is included  
  

Zip the entire directory and submit the UFID.zip file. Note that you do not need to 
include any software code. The provided code will be used to test your submissions.   

COMMON PROBLEMS  

 You may receive the following warning in ModelSim and/or Vivado: “Case choice 

must be a locally static expression”. Allow in general you should avoid this 

warning, it is safe to ignore for this lab. The warning is caused by the use of a 

function when defining the constants used in the when statements. Most VHDL 

tools now ignore this issue.  

  


