
Input Data Reuse in Compiling Window Operations onto 
Reconfigurable Hardware 

Zhi Guo 
Electrical Engineering 

University of California Riverside 

Betul Buyukkurt                    Walid Najjar 
Computer Science and Engineering 
University of California Riverside 

{zguo, abuyukku, najjar}@cs.ucr.edu 

      
ABSTRACT 
Balancing computation with I/O has been considered as a critical 
factor of the overall performance for embedded systems in general 
and reconfigurable computing systems in particular. Data I/O 
often dominates the overall computation performance for window 
operation, which are frequently used in image processing, image 
compression, pattern recognition and digital signal processing. 
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This problem is more acute in reconfigurable systems since the 

compiler must generate the data path and the sequence of 
operations. The challenge is to intelligently exploit data reuse on 
the reconfigurable fabric (FPGA) to minimize the required 
memory or I/O bandwidth while maximizing parallelism.   

In this paper, we present a compile-time approach to reuse 
data in window-based codes. The compiler, called ROCCC, first 
analyzes and optimizes the window operation in C. It then 
computes the size of the hardware buffer and defines three sets of 
data values for each window: the window set, the managed set and 
the killed set. This compile-time analysis simplifies the HDL code 
generation and improves the resulting hardware performance. We 
also discuss in-place window operations. 

Categories and Subject Descriptors 
D.3.4 [Processors]: Retargetable Compilers; B.5.2 [Register-
Transfer-Level Implementation]: Design Aids; J.6 [Computer-
aided Engineering]: Computer-aided design (CAD) 

General Terms 
Design, Performance, Experimentation, Languages 

Keywords 
Reconfigurable computing, Reuse Analysis, High-level Synthesis, 
Compilation, VHDL 

1. INTRODUCTION 
Signal, image, and video processing are among the primary target 
applications of reconfigurable computing. Window operators are  

frequently used in these applications. Examples include FIR 
(finite impulse response) filters in signal processing [1], edge 
detectors, erosion/dilation operators, texture measures, and 
spectral operations in image/video processing [2][3]. All these 
window operators have similar calculation patterns — a loop or a 
loop nest operates on a window of data (in other word, a pixel and 
its neighbors), while the window slides over an array, as shown in 
Figure 1. Figure 2 shows a five-tap FIR filter example code in C. 
FIR filters are one of the most basic building blocks used in 
digital signal processing. B[i] is the filter’s output and A[i], the 
input. C0 … C4 are the filter’s constant coefficients. If the 
reconfigurable computing compiler performs a straightforward 
hardware generation, the functional unit would need to access all 
five input data values in the current window. This would require a 
large amount of memory bandwidth and involve pipeline bubbles 
in the data path.  

Balancing computation with I/O has been considered as a 
critical factor of the overall performance for quite some time [4]. 
When a high-density computation is performed on a large amount  
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(a) (b)  
Figure 1 - Window Operations 

(a) The Window Operation in An FIR Filter 
            (b) The Window Operation in An Image 

    for (i = 0; i < N; i = i + 1) 
    { 
           B[i] = C0 * A[i] + C1 * A[i+1] + C2 * A[i+2] 

     + C3 * A[i+3] + C4 * A[i+4] ; 
    } 

 
Figure 2 - An FIR Filter Example Code In C 
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of input data, as the case in window operations, data I/O often 
dominates the overall computation performance. For instance, for 
the window operations reported in [5], the memory load ratios of 
reconfigurable computing system over general-purpose processors 
range from 64 to 112. In other words, the general purpose CPU 
performed 64 to 112 more load operations than a hand-crafted 
circuit on an FPGA. Therefore, in order to get high performance, 
a reconfigurable computing compiler needs to generate smart 
hardware in HDL (hardware description language) to reduce the 
memory bandwidth pressure by exploiting data reuse when 
possible. Note that hardware designers routinely do that when 
handcrafting circuits. The objective of this paper is to automate 
this process. The challenge is that on FPGAs there is no data path 
and no pre-designed register files. The compiler must instantiate 
the data buffer(s) and schedule their accesses, reads and writes. 
This flexibility is the main reason behind the large reduction in 
memory operations reported in [5].  

However, a reconfigurable computing compiler can’t 
perform an HDL code generation in the way a hardware engineer 
writes HDL code. For the compiler, the challenge is to be able to 
intelligently exploit the possibility of data reuse in window 
operations and automatically generate efficient HDL code tailored 
for the given input C source code. 

The rest of this paper is organized as follows. We introduce 
ROCCC (Riverside Optimizing Configurable Computing 
Compiler) system in section two. Related work is introduced in 
section three. In section four, we present the analysis and 
optimization on the window operator’s C input and the overall 
hardware architecture as well. Section five gives out our data 
reuse scheme and the corresponding VHDL code generation. 
Section six reports on the experimental result. Section seven 
discusses in-place window operations and section eight concludes 
the paper.  

2. OVERVIEW OF ROCCC 
ROCCC compile system, as shown in Figure 3, takes codes written 
in high level languages, such as C or Fortran, as input and generates 
HDL code for reconfigurable devices.  

The primary target platforms of ROCCC are Configurable 
Systems-on-a-Chip. CSoC are platforms that consist of an FPGA 
chip with one or more embedded microprocessors on the chip; both 
the FPGA fabric, as well as the embedded microprocessors, are 
essentially programmed using software. The earliest example is that 

of the Triscend E5 followed by the Triscend A7 [7], the Xilinx 
Virtex II Pro [8], and the Altera Excalibur [9]. The capabilities of 
these platforms span a wide range. At the low end, the Triscend A7 
consists of a 60 MHz ARM CPU with about 20,000 programmable 
gates. At the high end, the Xilinx Virtex II Pro 2VP125 consists of 
about 10 million gates, four PowerPC 405 CPUs each running at 
400 MHz, 10 Mbits of BlockRAM, 556 18x18-bit multipliers and 
3.125 Gbps off-chip bandwidth. 

ROCCC’s objective is not to compile the whole program, 
rather to compile the most frequently executing code kernels to 
FPGAs. It relies on our profiling tool to identify these kernels [6]. 
The profiling tool uses gcc to obtain a program's basic block counts 
and identifies, after execution, the most frequently executed loops 
that form the computation kernel 

 ROCCC is built on the SUIF2[10][11] and Machine-
SUIF[12][13] platforms. The information about loops and memory 
access is visible in the SUIF’s IRs. Therefore, most loop level 
analysis and optimizations are done at this level. Most of the 
information needed to design high-level components, such as 
controllers and address generators is extracted from this level’s IRs. 

Machine-SUIF is an infrastructure for constructing the back 
end of a compiler. Machine-SUIF optimizations and analyses do not 
use machine-specific information directly. Instead, all the machine-
specific information is retrieved by calling functions provided by 
machine-specific libraries. We modify Machine-SUIF's virtual 
machine (SUIFvm) IR [14] to build our data flow. All arithmetic 
opcodes in SUIFvm have corresponding functionality in IEEE 
1076.3 VHDL with the exception of division. Machine-SUIF's 
existing passes, like the Control Flow Graph (CFG) library [15], 
Data Flow Analysis library [16] and Static Single Assignment 
library [17] provide useful optimization and analysis tools for our 
compilation system. 

A compilation system might be a lifelong project. One 
emphasis of both SUIF2 and Machine-SUIF is to maximize code 
reuse. SUIF2 and Machine-SUIF provide frameworks for 
developing new compiler passes and generating new IRs. They also 
provide an environment that allows different IRs and different 
analyses (passes) to be easily combined. 

We constrain the source code that will be translated to 
hardware as follows: no pointer, no floating point, no break or 
continue statements. 

We have modified SUIF2 and Machine-SUIF and have added 
new analysis and optimization passes. This group of passes target 
CSoC devices, analyze and optimize the IRs that come from SUIF2 
and Machine-SUIF, and then generate VHDL code. Specifically, 
taking SUIF2 front end IRs as input, our compiler detects and 
optimizes memory access. Meanwhile, the compiler also takes 
Machine-SUIF back end IRs as input and generates the data flow. 
The array access pattern information, which is obtained through 
memory reference analysis, combined with the pipeline information, 
which is created during data flow generation, is fed into the 
controller generation pass to generate controllers in VHDL. One of 
the passes, the Graph Editor and Annotation pass, is used to 
visualize the data flow graph and provide a platform for users to edit 
the IR directly. As of now, we mainly use this unit to visualize data 
flow parallelism and to annotate the bitwidth of signals in the data. 

In order to efficiently use the available area and memory 
bandwidth of the reconfigurable devices, our compiler performs 
regular loop unrolling and strip-mining transformations on loop 
nests. Another important loop optimization technique when 
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targeting an FPGA is loop fusion. Combining adjacent loops helps 
decrease the execution time of the application. It also, particularly 
for reconfigurable computing implementations, enhances the reuse 
of data values fetched from memory. Evidently, it also cuts down by 
half the required memory bandwidth. An automatic loop 
unrolling/strip-mining optimizations require compiler time area 
estimation. The work in [28] shows that compile time area 
estimation can be done within 5% accuracy and in less than one 
millisecond. In [30] a compiler algorithm determining unroll factors 
is presented. 

We rely on commercial tools, such as Synplicity [18], to 
synthesize the VHDL code generated by our compiler. 

3. RELATED WORK 
Several projects have employed various approaches to translate HLL 
(high level language) into hardware. SystemC [19] is designed to 
provide roughly the same expressive functionality of VHDL or 
Verilog and is suitable to designing software-hardware synchronized 
systems. Handle-C [20], as a low level hardware/software 
construction with C syntax, supports behavioral descriptions and 
uses CSP-style (Communicating Sequential Processes) controlling 
model. The Nimble [21] compiler targets a general-purpose 
processor with a dynamically reconfigurable data path. 

SA-C [22][23] is a single-assignment high-level language for 
mapping image processing applications to FPGAs. Because of 
special constructs specific to SA-C (such as window constructs)and 
its functional nature, its compiler can easily exploit data reuse for 
window operations. SA-C compiler performs VHDL code 
generation by using pre-existing parameterized VHDL library codes. 
There are a number of control signals between the VHDL 
components, such as the circular buffers. These control signals, 
including some feedback control signals, require extra clock cycles 
and reduce the circuit’s performance. Our compiler avoids spending 
clock cycles on handshaking by doing more compile-time analysis. 
It takes a subset of C as input and does not involve any non-C 
syntax. 

Streams-C [24] follows the CSP model. Streams-C can meet 
relatively high-density control requirements. It supports multiple 
input data streams but doesn’t access two-dimension arrays in the 
way of sliding window. For one-dimension input data vector, such 
as a one-dimension FIR filter, Streams-C doesn’t automatically 

reuse input data. Programmers manually write data reuse in the 
input C code.  

GARP’s [25] compiler is designed for the GARP 
reconfigurable architecture. The compiler generates GARP 
configuration file instead of standard VHDL. GARP's memory 
interface consists of three configurable queues. The starting and 
ending addresses of the queues are configurable. The queues' 
reading actions can be stalled. GARP compiler doesn’t do loop 
unrolling and the corresponding input data reuse. 

In [31] the authors present an algorithm to map GTM 
(generalized template matching) operations onto reconfigurable 
computers. The input representations of the mapping process 
includes VHDL FPGA component library of the operators and the 
GTM operation specification. One of the assumptions is the 
permutability of the operations. ROCCC takes C as input and 
detects whether the loop nest is permutable. ROCCC generates the 
VHDL codes of data path and on-chip buffer automatically. 

SPARK [26] is another C to VHDL compiler. SPARK takes a 
subset of C as input and output synthesizable VHDL. Its pre-
synthesis transformations include loop unrolling/fusion, common 
sub-expression elimination, copy propagation, dead code 
elimination and transformations such as loop-invariant code motion 
etc. However, SPARK does not support two-dimension array 
accesses.  

4. CODE ANALYSIS AND OPTIMIZATION 
In [27] Wolf and Lam presented a loop nest representation and an 
efficient algorithm to maximize the parallelism of a loop nest for 
parallel machines. We use a similar representation, however, our 
compiler is designed for generating VHDL codes specifically 
targeting reconfigurable devices. In this paper our focus is on 
analyzing and optimizing window operation loop nests. Therefore, if 
the compiler can successfully optimize the window operation loop 
nests it generates correct hardware. Otherwise, the compiler treats 
the loop nest as common loop nest and exploits other forms of 
parallelism if available. 

4.1 Window Operation Pattern Checking 
In most window-based operation, the input and output arrays (or 
streams) are separate and therefore there are no loop carried 
dependencies on a single array. We therefore assume separate input 
and output data buffers on the FPGA. In section seven we discuss 
in-situ array update.  

An example C code is shown in Figure 4. This algorithm is 
used to detect the edges in an image. It’s a common window 
operation, whose 3×3 window slides on the image. The read buffer 
is array P and write buffer, array B, as shown in Figure 4. The 
compiler walks through all the memory references in the SUIF IR 
and confirms that there is no arrays being both read and written. The 
compiler also checks the following constraints. 

1. Loop counters are assigned and updated only in the loop 
statements. 

2. Each loop counter determines the memory address 
calculation in only one dimension.  

4.2 Scalar Replacement and Data Path 
Figure 5 shows the code from Figure 4 after scalar replacement. 
The Machine-SUIF passes take the highlighted region in Figure 5 

for(i = 1; i<= N - 2; i++) { 
 for(j = 1; j<=N - 2 ; j++) { 
    MASKv = (P[i-1][j+1] - P[i-1][j-1]) +  
          (P[i][j+1] - P[i][j-1]) +  (P[i+1][j+1] - P[i+1][j-
1]); 
    MASKh =  (P[i+1][j-1] - P[i-1][j-1]) +  
          (P[i+1][j] - P[i-1][j]) + (P[i+1][j+1] - P[i-1][j+1]); 
    B[i][j] = ( MASKv*MASKv + MASKh*MASKh ); 
 } 
} 

Figure 4 - The Edge Detection Algorithm in C Code 
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as input and exploit instruction level parallelism, synchronize 
alternative branches, and eventually, generate the fully pipelined 
data path in VHDL. The details of the data path code generation 
are beyond the scope of this paper.   

4.3 The Hardware Architecture 
One of the most important characteristics of window operations is 
that the compiler can decouple the memory accesses from the 
computations and thereby can maximize data reuse. This feature 
was shown to heavily influence reconfigurable computing 
systems’ speedup over general-purpose processors [5].   A 
schematic of hardware architecture for the code in Figure 5 is 
shown in Figure 6. The input address generator generates 
memory load addresses and feeds the addresses to the on-chip 
block memory. The smart buffer gets the input data stream from 
on-chip memory, exploits the data reuse and makes the window 
data available to the data path. By window data we mean the data 
covered by the sliding window on an array or a stream of data for 
a given iteration or set of iterations (when the loop is fully or 
partially unrolled). The write buffer collects the results from the 
data path and presents it to the output memory. The output 
address generator generates memory store addresses. In the 
general case, we assume that the size of input data does not match 
that of the output data (in bits) and therefore the two address 
generators operate at different rates.   

5. CODE GENERATION  
In this section we present our compiler’s methods to generate 
efficient VHDL code. The goal is to minimizing run-time control 
calculation and maximizing input data reuse by utilizing compile 
time understanding on the loop nest and the compiler’s awareness 
on the resulting circuit at the clock cycle level. 

5.1 The Address Generation 
Window operations have one or multiple windows sliding on one 
or multiple arrays. Both the read and the write array access 
addresses are known are compile time. At the same time, on-chip 
memory’s access time in terms of clock cycle is known as well. It 
is possible to generate efficient read/write units for window 
operations by the compiler.  

Take the source code in Figure 4 as an example. According 
to the memory load references in Figure 5 and the loop 
optimization parameters, the following parameters are known at 
compile time. 

1. Stating and ending addresses 

2. The number of clock cycles between two sequential 
memory accesses 

3. The unrolled window’s size 

4. The unrolled window’s sliding strides at each direction 

5. The array’s row size 

6. The starting address-difference between two adjacent outer 
iterations. 

We have designed a parameterized FSM (finite state 
machine) in the VHDL library to be used as the address generator. 
All the parameters above are the FSM’s inputs. Notice that these 
parameters are redundant. For example, parameter 6 can be 
deduced from others. If we unroll twice the outer loop of the code 
in Figure 5, the array reference addresses are generated in the 
order shown in Figure 7. The compiler parameterizes the input 
and output address generators and exports the corresponding 
memory access units. The compiler also needs to take care of the 
fact that the output array’s size is a little bit smaller than the input 
array size. The generated memory access units does not waste any 
cycle on rewinding address in either column direction or row 
direction, which is the performance advantage of handcraft 
VHDL. 

5.2 The Smart Buffer Generation 
Essentially elements of an array are stored linearly in memory. For 
window operations, the data elements are fetched sequentially in 
the order of, for example, shown in Figure 7. In order to reuse the 
input data, the compiler needs to design a buffer, which has the 
ability to intelligently fulfill the following tasks: 

for(i = 0; i<= N - 2; i++) { 
  for(j = 0; j<=N - 2 ; j=j+1)  { 
    P_im1_jm1 = P[i-1][j-1];    P_im1_j = P[i-1][j];           
    P_im1_jp1 = P[i-1][j+1];    P_i_jm1   = P[i][j-1];     
    P_i_jp1   = P[i][j+1];          P_ip1_jm1 = P[i+1][j-1];       
    P_ip1_j = P[i+1][j];            P_ip1_jp1 = P[i+1][j+1]; 
    MASKv = (P_im1_jp1 - P_im1_jm1) + (P_i_jp1 - 
P_i_jm1) + (P_ip1_jp1 - P_ip1_jm1); 
    MASKh = (P_ip1_jm1 - P_im1_jm1) + (P_ip1_j - 
P_im1_j) + (P_ip1_jp1 - P_im1_jp1); 
    B_i_j = MASKv*MASKv + MASKh*MASKh; 
    B[i][j] = B_i_j; 
  } 
} 

Figure 5 - The Edge Detection Code After Scalar 
Replacement 
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• Buffering the input data stream and exporting, to the 
data path, a complete data window once it becomes 
available.  

• Managing the storage utilization of the buffer by 
keeping live data and clearing unused data. 

Our compiler relies on the six parameters of Section 5.1 to 
generate the smart buffer. The smart buffer is not implemented as 
a circular shift register where the valid data is presented in the 
same location every cycle. Instead, the compilers embodies the 
control signals in the FSM to export the set of valid data every 
cycle without having data being shifted. 

5.2.1 The Buffer 
The smart buffer has the same number of rows as the window in 
the unrolled inner loop. The number of columns should satisfy the 
following conditions. 

 

 memwindowbuffer

membuffer

hbuffer

WordLengthColumnColumn
0  h WordLengtmod Column

0  Stride mod Column

+>
=

=
 

where 

Columnbuffer : the number of columns of the smart buffer,  

Strideh : the stride of the sliding window in horizontal direction in 
both Figure 7 and Figure 8.  

WordLengthmem : the width of memory I/O. 

Columnwindow : the number of columns of one window. 

The unit of all the parameters is the number of pixels. The 
first condition ensures that the leftmost column in the smart buffer 
is always the start of the next stride of window. The second 
condition ensures that input data can be directly stored into a set 
of bundled buffer elements. Tokens are used to indicate current 
open locations to the new input data. We will introduce the tokens 
later on. The third condition makes sure that new input data does 
not overwrite live buffered data. 

Figure 8 shows the smart buffer of the edge detection code 
(inner loop is unrolled twice) in Figure 5. In this figure, we 
assume that the memory I/O bus is 16 bits wide (a word) and each 
pixel is 8 bits. According to the reading order in Figure 7, the 
smart buffer get the number 0 ellipse (word), which has two 
pixels, then the number 1 ellipse and so on. The number 12 ellipse 
overwrites the number 0 ellipse.  

We use tokens in the buffer to have the circuit automatically 
determine the location of new coming input data. At the very 
beginning, only the two elements in the number 0 ellipse have 
tokens. Once these two elements get and store the input data, the 
tokens are passed to the next ellipse, number 1 ellipse, at the same 
time. The number 11 ellipse passes the tokens to number 0 ellipse.  

5.2.2 The Sliding Windows 
The Boolean signal token of each buffer element indicates if the 
next new input data should be stored into the corresponding 
element. Each buffer element also has another signal, live, to 
indicate if the data in the element is valid or not. It is set when 
new data is stored . 

Based on the window’s size and sliding strides, the compiler 
determines the elements that form a window. For instance, in 
Figure 8, the elements in ellipse 0, 1, 2, and the left elements in 
ellipse 4, 5, 6 belong to window 0. These nine elements comprise 
the managed set of window 0. Notice that the managed set of 
window 11 covers three element of the rightmost column and six 
elements of the two leftmost columns. Once the circuit detects that 
within one managed set, all the elements’ live signals are set, 

these elements are exported to the buffer’s output ports. Thus, this 
window’s availability is asserted and the data is fed into the data 
path. Note that the order of the window’s availability is know at 
compile time. 

Each window in Figure 8 also has a kill set, which consists of 
the elements that are not needed (dead) once this window’s data 
has been used. For example, window 0’s kill set consists of only 
the left element of ellipse 0, while window 11’s kill set consists of 
the right three elements of ellipse 9, 10, 11. Once a window is 
asserted available, the live signals of the elements in the kill set 
are reset. 
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        The compiler first does all this analysis and generates the 
managed set and the kill set. Then, the VHDL code generation is 
performed based on this analysis. The VHDL code, by itself, 
doesn’t need to have the concepts of the windows and sets. The 
VHDL code only describes the logical and sequential relationship 
between signals/registers.  

The compiler reduces handshaking signals between 
components, and therefore, saves clock cycles spent on doing 
Boolean calculation on the handshaking signals. In other words, 
this approach’s compile time analyses on the result circuits, such 
as the windows and the sets, shift run time control burden to 
compiler.  

6. EXPERIMENTAL RESULTS 
We use three window operations as benchmarks: FIR filter, edge 
detection and wavelet transform. FIR (finite impulse response) 
filter is a one-dimension window operator, whose window size is 
1×n, where n is the number of data used in one iteration. The edge 
detection code is shown in Figure 4. The wavelet transform is also 
a two-dimension window operator, whose window size is 5×5 and 
strides are two in both X and Y direction. 

For each benchmarks, the compiler generates the smart 
buffers and the data path in VHDL, as the architecture shown in 
Figure 6.  The compiler also gives the parameters for the 
parameterized address generators. 

Table 1 - Experimental Results of the Smart Buffers 

Stride 
Benchmark Window 

Size 
X Y 

Buffer 
Size 

# of 
Slice 

# of Clock 
Cycle 

Pipeline 
Latency

FIR 1×5 N/A 1 8 263 128 5 

Edge 
Detection 3×3 1 1 36 1,355 48384 6 

Wavelet 
Trans. 5×5 2 2 88 2,612 43648 5 

In all these three benchmarks, I/O width is 16-bit and data 
width is 8-bit. The input of FIR is a vector of 256 8-bit data. The 
input image of both edge detection and wavelet transform 
examples is a 256×256 8-bit array. We unroll the inner loop four 

times. In Table 1, the second column shows the original window 
size before loop unrolling. The third and fourth columns list the 
strides of the sliding window in both X and Y directions. The 
number of registers in the smart buffer is shown in the fifth 
column. The sixth column gives out device utilization as the 
number of slices used for the buffer on a Xilinx Virtex xcv2000E 
chip, which account for 1%~13% of the whole chip. Notice that 
xcv2000E is just a mid-sized FPGA at present. The seventh 
column list the numbers of clock cycles to read and buffer the 
input data. Because the data path is fully pipelined and free of 
bubbles, the number of clock cycles for the entire calculation is 
equal to the number of clock cycles for memory access plus the 
pipeline latency, which is listed in the last column.  

We have compared our results to another C to VHDL 
compiler: SPARK [26] but only for the FIR case. SPARK does 
not support two-dimensional arrays. SPARK’s resulting VHDL 
code requires 1765 clock cycles to compute on the same size of 
input data set. ROCCC gets 13.8 (1765÷128) times speedup. If we 
factor out the input bus width difference (ROCCC is 16-bit while 
SPARK is 8-bit), the speedup is 6.9. ROCCC compiler’s analysis 
and optimizations are aware of the bus and data widths and 
exploit this information to maximize parallelism. This same 
feature is also in Streams-C. The essential reason of the speedup is 
that ROCCC tailors the optimizations according to the C source 
code’s characteristic and therefore utilizes the potential 
parallelism of window operations, while SPARK treats the input 
code as a general one. For instance, SPARK doesn’t reuse the 
input data. The number of clock cycles of SPARK’s resulting 
VHDL code varies according to the FIR’s number of taps, while 
our compiler’s resulting VHDL code doesn’t spend more cycles 
even if we increase the number of taps since our resulting circuit 
reuses the data in the input stream. 

7. DISCUSSION 
This paper mainly reports our compiler’s approaches and 
performance of dealing with the situation that the window 
operators read input data from one array and write the output to 
other array. But the ROCCC compiler doesn’t exclude window 
operations updating array in place if there is potential parallelism. 
ROCCC follows the approaches in [27]. 

Figure 9 shows an example code of bubble sort. Every 
innermost iteration works on a 1 × 2 window in place and the 
window slides on the one-dimension array to be sorted. A[j] = 
f{A[j], A[j+1]} gives rise to distance vectors (1, 0) and (1, -1) 
and, A[j+1] = f{A[j], A[j+1]} gives rise to distance vectors (0, 1) 
and (1, 0). Therefore, the original code’s distance vectors are 









−

=
101

110
D . 

Using skewing and waveform transformations we change the 
original distance vectors to 









==′

110
121

TDD , 

where 







=
















=

01
12

11
01

01
11

T . 

for (i=0; i<7; i=i+1) 
  for(j=0; j<7; j=j+1) 
    if (A[j]<A[j+1]) 
      { 
      temp = A[j]; 
      A[j]=A[j+1]; 
      A[j+1] = temp; 
      } 

Figure 9 - A 
Bubble Sort Code 

in C 

for (i=0; i<=18; i=i+1) 
  for(j=max(0,(i-6)/2); j<=min(6,i/2); j=j+1)
    if (A[i-2j]<A[2-2j+1]) 
      { 
      temp = A[i-2j]; 
      A[i-2j]=A[i-2j+1]; 
      A[i-2j+1] = temp; 
      } 

Figure 10 - The bubble Sort Code After 
Loop Transformations 

254



Matrix T consists of two transformations: 







11
01

 skews the 

shape of the iteration space and 







01
11

 performs a frontwave 

transformation to obtain one degree of parallelism. 
The transformed loop nest is shown in Figure 10. We 

observe that there is no data dependence between any innermost 
loops. Therefore, in each outermost loop, the address generator in 
Figure 6 can keep on feeding reading addresses to the memory 
without any pipeline bubble. Notice that this time, the reading 
memory and writing memory are the same bank of dual-port 
memory. The legality of the loop transformations and the 
compiler’s awareness of the data path at clock cycle level ensure 
that the dual-port memory is free of accessing hazard. 

8. CONCLUSION 
Reconfigurable computing is an emerging and promising 
technology that allows part of a computation to be mapped onto a 
reconfigurable fabric such as an FPGA. The most challenging 
aspect of reconfigurable computing is the compilation of high-
level language programs to HDL. So far, hand-crafted VHDL 
code is twice as fast as most compiler generated ones [5][29]. 

In this paper, we present our reconfigurable computing 
compiler system, ROCCC. ROCCC, an open framework built on 
the SUIF platform, takes high-level languages, such as C/Fortran, 
as input and generated VHDL codes for reconfigurable devices. 

We have identified the reuse of data elements that are fetched 
from memory to the FPGA as one area where hand-crafted VHDL 
codes perform much better. This paper presents a new approach to 
the reuse of data when compiling window operations. We describe 
the compiler’s analysis and optimization on the memory accesses 
of the C input codes. We propose a compile-time scheme that 
generates a smart buffer for storing all the fetched data elements 
based on window size, stride, data size, memory access size etc.  
The smart buffer design does not rely on shifting data or circular 
buffers. Instead, a controller keeps track of the managed set and 
the kill set of data in every iteration. The newly fetched data 
replaces the kill set. 

The experimental results show that our scheme does not 
imply any extra idle cycles. In other words, the computation 
requires exactly as many cycles as fetching the data from memory 
does. This paper also discusses the situations of window 
operations working on an array in-situ. 
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