
Input Data Reuse in Compiling Window Operations onto
Reconfigurable Hardware

Zhi Guo
Electrical Engineering

University of California Riverside

Betul Buyukkurt Walid Najjar
Computer Science and Engineering
University of California Riverside

{zguo, abuyukku, najjar}@cs.ucr.edu

ABSTRACT
Balancing computation with I/O has been considered as a critical
factor of the overall performance for embedded systems in general
and reconfigurable computing systems in particular. Data I/O
often dominates the overall computation performance for window
operation, which are frequently used in image processing, image
compression, pattern recognition and digital signal processing.

* * *

* * *

* * *

*

*

*

*

*

*
* * * *
This problem is more acute in reconfigurable systems since the

compiler must generate the data path and the sequence of
operations. The challenge is to intelligently exploit data reuse on
the reconfigurable fabric (FPGA) to minimize the required
memory or I/O bandwidth while maximizing parallelism.

In this paper, we present a compile-time approach to reuse
data in window-based codes. The compiler, called ROCCC, first
analyzes and optimizes the window operation in C. It then
computes the size of the hardware buffer and defines three sets of
data values for each window: the window set, the managed set and
the killed set. This compile-time analysis simplifies the HDL code
generation and improves the resulting hardware performance. We
also discuss in-place window operations.

Categories and Subject Descriptors
D.3.4 [Processors]: Retargetable Compilers; B.5.2 [Register-
Transfer-Level Implementation]: Design Aids; J.6 [Computer-
aided Engineering]: Computer-aided design (CAD)

General Terms
Design, Performance, Experimentation, Languages

Keywords
Reconfigurable computing, Reuse Analysis, High-level Synthesis,
Compilation, VHDL

1. INTRODUCTION
Signal, image, and video processing are among the primary target
applications of reconfigurable computing. Window operators are

frequently used in these applications. Examples include FIR
(finite impulse response) filters in signal processing [1], edge
detectors, erosion/dilation operators, texture measures, and
spectral operations in image/video processing [2][3]. All these
window operators have similar calculation patterns — a loop or a
loop nest operates on a window of data (in other word, a pixel and
its neighbors), while the window slides over an array, as shown in
Figure 1. Figure 2 shows a five-tap FIR filter example code in C.
FIR filters are one of the most basic building blocks used in
digital signal processing. B[i] is the filter’s output and A[i], the
input. C0 … C4 are the filter’s constant coefficients. If the
reconfigurable computing compiler performs a straightforward
hardware generation, the functional unit would need to access all
five input data values in the current window. This would require a
large amount of memory bandwidth and involve pipeline bubbles
in the data path.

Balancing computation with I/O has been considered as a
critical factor of the overall performance for quite some time [4].
When a high-density computation is performed on a large amount

* * * * *

(a) (b)
Figure 1 - Window Operations

(a) The Window Operation in An FIR Filter
 (b) The Window Operation in An Image

 for (i = 0; i < N; i = i + 1)
 {
 B[i] = C0 * A[i] + C1 * A[i+1] + C2 * A[i+2]

 + C3 * A[i+3] + C4 * A[i+4] ;
 }

Figure 2 - An FIR Filter Example Code In C

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
LCTES’04, June 11–13, 2004, Washington, DC, USA.
Copyright 2004 ACM 1-58113-806-7/04/0006...$5.00.

249

walid najjar
ACM Symp. On Languages, Compilers and Tools for Embedded Systems (LCTES 2004), Washington DC, June 2004.

of input data, as the case in window operations, data I/O often
dominates the overall computation performance. For instance, for
the window operations reported in [5], the memory load ratios of
reconfigurable computing system over general-purpose processors
range from 64 to 112. In other words, the general purpose CPU
performed 64 to 112 more load operations than a hand-crafted
circuit on an FPGA. Therefore, in order to get high performance,
a reconfigurable computing compiler needs to generate smart
hardware in HDL (hardware description language) to reduce the
memory bandwidth pressure by exploiting data reuse when
possible. Note that hardware designers routinely do that when
handcrafting circuits. The objective of this paper is to automate
this process. The challenge is that on FPGAs there is no data path
and no pre-designed register files. The compiler must instantiate
the data buffer(s) and schedule their accesses, reads and writes.
This flexibility is the main reason behind the large reduction in
memory operations reported in [5].

However, a reconfigurable computing compiler can’t
perform an HDL code generation in the way a hardware engineer
writes HDL code. For the compiler, the challenge is to be able to
intelligently exploit the possibility of data reuse in window
operations and automatically generate efficient HDL code tailored
for the given input C source code.

The rest of this paper is organized as follows. We introduce
ROCCC (Riverside Optimizing Configurable Computing
Compiler) system in section two. Related work is introduced in
section three. In section four, we present the analysis and
optimization on the window operator’s C input and the overall
hardware architecture as well. Section five gives out our data
reuse scheme and the corresponding VHDL code generation.
Section six reports on the experimental result. Section seven
discusses in-place window operations and section eight concludes
the paper.

2. OVERVIEW OF ROCCC
ROCCC compile system, as shown in Figure 3, takes codes written
in high level languages, such as C or Fortran, as input and generates
HDL code for reconfigurable devices.

The primary target platforms of ROCCC are Configurable
Systems-on-a-Chip. CSoC are platforms that consist of an FPGA
chip with one or more embedded microprocessors on the chip; both
the FPGA fabric, as well as the embedded microprocessors, are
essentially programmed using software. The earliest example is that

of the Triscend E5 followed by the Triscend A7 [7], the Xilinx
Virtex II Pro [8], and the Altera Excalibur [9]. The capabilities of
these platforms span a wide range. At the low end, the Triscend A7
consists of a 60 MHz ARM CPU with about 20,000 programmable
gates. At the high end, the Xilinx Virtex II Pro 2VP125 consists of
about 10 million gates, four PowerPC 405 CPUs each running at
400 MHz, 10 Mbits of BlockRAM, 556 18x18-bit multipliers and
3.125 Gbps off-chip bandwidth.

ROCCC’s objective is not to compile the whole program,
rather to compile the most frequently executing code kernels to
FPGAs. It relies on our profiling tool to identify these kernels [6].
The profiling tool uses gcc to obtain a program's basic block counts
and identifies, after execution, the most frequently executed loops
that form the computation kernel

 ROCCC is built on the SUIF2[10][11] and Machine-
SUIF[12][13] platforms. The information about loops and memory
access is visible in the SUIF’s IRs. Therefore, most loop level
analysis and optimizations are done at this level. Most of the
information needed to design high-level components, such as
controllers and address generators is extracted from this level’s IRs.

Machine-SUIF is an infrastructure for constructing the back
end of a compiler. Machine-SUIF optimizations and analyses do not
use machine-specific information directly. Instead, all the machine-
specific information is retrieved by calling functions provided by
machine-specific libraries. We modify Machine-SUIF's virtual
machine (SUIFvm) IR [14] to build our data flow. All arithmetic
opcodes in SUIFvm have corresponding functionality in IEEE
1076.3 VHDL with the exception of division. Machine-SUIF's
existing passes, like the Control Flow Graph (CFG) library [15],
Data Flow Analysis library [16] and Static Single Assignment
library [17] provide useful optimization and analysis tools for our
compilation system.

A compilation system might be a lifelong project. One
emphasis of both SUIF2 and Machine-SUIF is to maximize code
reuse. SUIF2 and Machine-SUIF provide frameworks for
developing new compiler passes and generating new IRs. They also
provide an environment that allows different IRs and different
analyses (passes) to be easily combined.

We constrain the source code that will be translated to
hardware as follows: no pointer, no floating point, no break or
continue statements.

We have modified SUIF2 and Machine-SUIF and have added
new analysis and optimization passes. This group of passes target
CSoC devices, analyze and optimize the IRs that come from SUIF2
and Machine-SUIF, and then generate VHDL code. Specifically,
taking SUIF2 front end IRs as input, our compiler detects and
optimizes memory access. Meanwhile, the compiler also takes
Machine-SUIF back end IRs as input and generates the data flow.
The array access pattern information, which is obtained through
memory reference analysis, combined with the pipeline information,
which is created during data flow generation, is fed into the
controller generation pass to generate controllers in VHDL. One of
the passes, the Graph Editor and Annotation pass, is used to
visualize the data flow graph and provide a platform for users to edit
the IR directly. As of now, we mainly use this unit to visualize data
flow parallelism and to annotate the bitwidth of signals in the data.

In order to efficiently use the available area and memory
bandwidth of the reconfigurable devices, our compiler performs
regular loop unrolling and strip-mining transformations on loop
nests. Another important loop optimization technique when

Loop
Optimization

SUIF2

Machine
SUIF

Controller
Generation

Data Path
Generation

Graph Editor
+ Annotation

CAD
tools

VHDL Code
Generator

Bit
Stream

ROCCC System

C /C++
Fortran
Java…

…
Code Pr

of
ili

ng

Host
Executable

General
Compiler

Estimation
� Area
� Delay
� Power

Figure 3 - ROCCC System Overview

250

targeting an FPGA is loop fusion. Combining adjacent loops helps
decrease the execution time of the application. It also, particularly
for reconfigurable computing implementations, enhances the reuse
of data values fetched from memory. Evidently, it also cuts down by
half the required memory bandwidth. An automatic loop
unrolling/strip-mining optimizations require compiler time area
estimation. The work in [28] shows that compile time area
estimation can be done within 5% accuracy and in less than one
millisecond. In [30] a compiler algorithm determining unroll factors
is presented.

We rely on commercial tools, such as Synplicity [18], to
synthesize the VHDL code generated by our compiler.

3. RELATED WORK
Several projects have employed various approaches to translate HLL
(high level language) into hardware. SystemC [19] is designed to
provide roughly the same expressive functionality of VHDL or
Verilog and is suitable to designing software-hardware synchronized
systems. Handle-C [20], as a low level hardware/software
construction with C syntax, supports behavioral descriptions and
uses CSP-style (Communicating Sequential Processes) controlling
model. The Nimble [21] compiler targets a general-purpose
processor with a dynamically reconfigurable data path.

SA-C [22][23] is a single-assignment high-level language for
mapping image processing applications to FPGAs. Because of
special constructs specific to SA-C (such as window constructs)and
its functional nature, its compiler can easily exploit data reuse for
window operations. SA-C compiler performs VHDL code
generation by using pre-existing parameterized VHDL library codes.
There are a number of control signals between the VHDL
components, such as the circular buffers. These control signals,
including some feedback control signals, require extra clock cycles
and reduce the circuit’s performance. Our compiler avoids spending
clock cycles on handshaking by doing more compile-time analysis.
It takes a subset of C as input and does not involve any non-C
syntax.

Streams-C [24] follows the CSP model. Streams-C can meet
relatively high-density control requirements. It supports multiple
input data streams but doesn’t access two-dimension arrays in the
way of sliding window. For one-dimension input data vector, such
as a one-dimension FIR filter, Streams-C doesn’t automatically

reuse input data. Programmers manually write data reuse in the
input C code.

GARP’s [25] compiler is designed for the GARP
reconfigurable architecture. The compiler generates GARP
configuration file instead of standard VHDL. GARP's memory
interface consists of three configurable queues. The starting and
ending addresses of the queues are configurable. The queues'
reading actions can be stalled. GARP compiler doesn’t do loop
unrolling and the corresponding input data reuse.

In [31] the authors present an algorithm to map GTM
(generalized template matching) operations onto reconfigurable
computers. The input representations of the mapping process
includes VHDL FPGA component library of the operators and the
GTM operation specification. One of the assumptions is the
permutability of the operations. ROCCC takes C as input and
detects whether the loop nest is permutable. ROCCC generates the
VHDL codes of data path and on-chip buffer automatically.

SPARK [26] is another C to VHDL compiler. SPARK takes a
subset of C as input and output synthesizable VHDL. Its pre-
synthesis transformations include loop unrolling/fusion, common
sub-expression elimination, copy propagation, dead code
elimination and transformations such as loop-invariant code motion
etc. However, SPARK does not support two-dimension array
accesses.

4. CODE ANALYSIS AND OPTIMIZATION
In [27] Wolf and Lam presented a loop nest representation and an
efficient algorithm to maximize the parallelism of a loop nest for
parallel machines. We use a similar representation, however, our
compiler is designed for generating VHDL codes specifically
targeting reconfigurable devices. In this paper our focus is on
analyzing and optimizing window operation loop nests. Therefore, if
the compiler can successfully optimize the window operation loop
nests it generates correct hardware. Otherwise, the compiler treats
the loop nest as common loop nest and exploits other forms of
parallelism if available.

4.1 Window Operation Pattern Checking
In most window-based operation, the input and output arrays (or
streams) are separate and therefore there are no loop carried
dependencies on a single array. We therefore assume separate input
and output data buffers on the FPGA. In section seven we discuss
in-situ array update.

An example C code is shown in Figure 4. This algorithm is
used to detect the edges in an image. It’s a common window
operation, whose 3×3 window slides on the image. The read buffer
is array P and write buffer, array B, as shown in Figure 4. The
compiler walks through all the memory references in the SUIF IR
and confirms that there is no arrays being both read and written. The
compiler also checks the following constraints.

1. Loop counters are assigned and updated only in the loop
statements.

2. Each loop counter determines the memory address
calculation in only one dimension.

4.2 Scalar Replacement and Data Path
Figure 5 shows the code from Figure 4 after scalar replacement.
The Machine-SUIF passes take the highlighted region in Figure 5

for(i = 1; i<= N - 2; i++) {
 for(j = 1; j<=N - 2 ; j++) {
 MASKv = (P[i-1][j+1] - P[i-1][j-1]) +
 (P[i][j+1] - P[i][j-1]) + (P[i+1][j+1] - P[i+1][j-
1]);
 MASKh = (P[i+1][j-1] - P[i-1][j-1]) +
 (P[i+1][j] - P[i-1][j]) + (P[i+1][j+1] - P[i-1][j+1]);
 B[i][j] = (MASKv*MASKv + MASKh*MASKh);
 }
}

Figure 4 - The Edge Detection Algorithm in C Code

251

as input and exploit instruction level parallelism, synchronize
alternative branches, and eventually, generate the fully pipelined
data path in VHDL. The details of the data path code generation
are beyond the scope of this paper.

4.3 The Hardware Architecture
One of the most important characteristics of window operations is
that the compiler can decouple the memory accesses from the
computations and thereby can maximize data reuse. This feature
was shown to heavily influence reconfigurable computing
systems’ speedup over general-purpose processors [5]. A
schematic of hardware architecture for the code in Figure 5 is
shown in Figure 6. The input address generator generates
memory load addresses and feeds the addresses to the on-chip
block memory. The smart buffer gets the input data stream from
on-chip memory, exploits the data reuse and makes the window
data available to the data path. By window data we mean the data
covered by the sliding window on an array or a stream of data for
a given iteration or set of iterations (when the loop is fully or
partially unrolled). The write buffer collects the results from the
data path and presents it to the output memory. The output
address generator generates memory store addresses. In the
general case, we assume that the size of input data does not match
that of the output data (in bits) and therefore the two address
generators operate at different rates.

5. CODE GENERATION
In this section we present our compiler’s methods to generate
efficient VHDL code. The goal is to minimizing run-time control
calculation and maximizing input data reuse by utilizing compile
time understanding on the loop nest and the compiler’s awareness
on the resulting circuit at the clock cycle level.

5.1 The Address Generation
Window operations have one or multiple windows sliding on one
or multiple arrays. Both the read and the write array access
addresses are known are compile time. At the same time, on-chip
memory’s access time in terms of clock cycle is known as well. It
is possible to generate efficient read/write units for window
operations by the compiler.

Take the source code in Figure 4 as an example. According
to the memory load references in Figure 5 and the loop
optimization parameters, the following parameters are known at
compile time.

1. Stating and ending addresses

2. The number of clock cycles between two sequential
memory accesses

3. The unrolled window’s size

4. The unrolled window’s sliding strides at each direction

5. The array’s row size

6. The starting address-difference between two adjacent outer
iterations.

We have designed a parameterized FSM (finite state
machine) in the VHDL library to be used as the address generator.
All the parameters above are the FSM’s inputs. Notice that these
parameters are redundant. For example, parameter 6 can be
deduced from others. If we unroll twice the outer loop of the code
in Figure 5, the array reference addresses are generated in the
order shown in Figure 7. The compiler parameterizes the input
and output address generators and exports the corresponding
memory access units. The compiler also needs to take care of the
fact that the output array’s size is a little bit smaller than the input
array size. The generated memory access units does not waste any
cycle on rewinding address in either column direction or row
direction, which is the performance advantage of handcraft
VHDL.

5.2 The Smart Buffer Generation
Essentially elements of an array are stored linearly in memory. For
window operations, the data elements are fetched sequentially in
the order of, for example, shown in Figure 7. In order to reuse the
input data, the compiler needs to design a buffer, which has the
ability to intelligently fulfill the following tasks:

for(i = 0; i<= N - 2; i++) {
 for(j = 0; j<=N - 2 ; j=j+1) {
 P_im1_jm1 = P[i-1][j-1]; P_im1_j = P[i-1][j];
 P_im1_jp1 = P[i-1][j+1]; P_i_jm1 = P[i][j-1];
 P_i_jp1 = P[i][j+1]; P_ip1_jm1 = P[i+1][j-1];
 P_ip1_j = P[i+1][j]; P_ip1_jp1 = P[i+1][j+1];
 MASKv = (P_im1_jp1 - P_im1_jm1) + (P_i_jp1 -
P_i_jm1) + (P_ip1_jp1 - P_ip1_jm1);
 MASKh = (P_ip1_jm1 - P_im1_jm1) + (P_ip1_j -
P_im1_j) + (P_ip1_jp1 - P_im1_jp1);
 B_i_j = MASKv*MASKv + MASKh*MASKh;
 B[i][j] = B_i_j;
 }
}

Figure 5 - The Edge Detection Code After Scalar
Replacement

252

• Buffering the input data stream and exporting, to the
data path, a complete data window once it becomes
available.

• Managing the storage utilization of the buffer by
keeping live data and clearing unused data.

Our compiler relies on the six parameters of Section 5.1 to
generate the smart buffer. The smart buffer is not implemented as
a circular shift register where the valid data is presented in the
same location every cycle. Instead, the compilers embodies the
control signals in the FSM to export the set of valid data every
cycle without having data being shifted.

5.2.1 The Buffer
The smart buffer has the same number of rows as the window in
the unrolled inner loop. The number of columns should satisfy the
following conditions.

 memwindowbuffer

membuffer

hbuffer

WordLengthColumnColumn
0 h WordLengtmod Column

0 Stride mod Column

+>
=

=

where

Columnbuffer : the number of columns of the smart buffer,

Strideh : the stride of the sliding window in horizontal direction in
both Figure 7 and Figure 8.

WordLengthmem : the width of memory I/O.

Columnwindow : the number of columns of one window.

The unit of all the parameters is the number of pixels. The
first condition ensures that the leftmost column in the smart buffer
is always the start of the next stride of window. The second
condition ensures that input data can be directly stored into a set
of bundled buffer elements. Tokens are used to indicate current
open locations to the new input data. We will introduce the tokens
later on. The third condition makes sure that new input data does
not overwrite live buffered data.

Figure 8 shows the smart buffer of the edge detection code
(inner loop is unrolled twice) in Figure 5. In this figure, we
assume that the memory I/O bus is 16 bits wide (a word) and each
pixel is 8 bits. According to the reading order in Figure 7, the
smart buffer get the number 0 ellipse (word), which has two
pixels, then the number 1 ellipse and so on. The number 12 ellipse
overwrites the number 0 ellipse.

We use tokens in the buffer to have the circuit automatically
determine the location of new coming input data. At the very
beginning, only the two elements in the number 0 ellipse have
tokens. Once these two elements get and store the input data, the
tokens are passed to the next ellipse, number 1 ellipse, at the same
time. The number 11 ellipse passes the tokens to number 0 ellipse.

5.2.2 The Sliding Windows
The Boolean signal token of each buffer element indicates if the
next new input data should be stored into the corresponding
element. Each buffer element also has another signal, live, to
indicate if the data in the element is valid or not. It is set when
new data is stored .

Based on the window’s size and sliding strides, the compiler
determines the elements that form a window. For instance, in
Figure 8, the elements in ellipse 0, 1, 2, and the left elements in
ellipse 4, 5, 6 belong to window 0. These nine elements comprise
the managed set of window 0. Notice that the managed set of
window 11 covers three element of the rightmost column and six
elements of the two leftmost columns. Once the circuit detects that
within one managed set, all the elements’ live signals are set,

these elements are exported to the buffer’s output ports. Thus, this
window’s availability is asserted and the data is fed into the data
path. Note that the order of the window’s availability is know at
compile time.

Each window in Figure 8 also has a kill set, which consists of
the elements that are not needed (dead) once this window’s data
has been used. For example, window 0’s kill set consists of only
the left element of ellipse 0, while window 11’s kill set consists of
the right three elements of ellipse 9, 10, 11. Once a window is
asserted available, the live signals of the elements in the kill set
are reset.

Smart
Buffer

Block
RAM

Input
Address

Generator

Dataflow

Block
RAM

Output
Address

Generator

Task
Trigger

Write
Buffer

Figure 6 - The Overview
Architecture of the Edge

Detection Code

* * *

* * *

* * *

* * *

*

*

*

*

*

Figure 7 - Reading Order

of the Edge Detection
Code

6

0

3

4

Window 1 Window 0

Window 11

11 7

5

2

1

10

9

8

Window 11

* * * * * *
* * * * * *
* * * * * *
* * * * * *

Figure 8 - Smart Loading Buffer of

The Edge Detection Code

253

 The compiler first does all this analysis and generates the
managed set and the kill set. Then, the VHDL code generation is
performed based on this analysis. The VHDL code, by itself,
doesn’t need to have the concepts of the windows and sets. The
VHDL code only describes the logical and sequential relationship
between signals/registers.

The compiler reduces handshaking signals between
components, and therefore, saves clock cycles spent on doing
Boolean calculation on the handshaking signals. In other words,
this approach’s compile time analyses on the result circuits, such
as the windows and the sets, shift run time control burden to
compiler.

6. EXPERIMENTAL RESULTS
We use three window operations as benchmarks: FIR filter, edge
detection and wavelet transform. FIR (finite impulse response)
filter is a one-dimension window operator, whose window size is
1×n, where n is the number of data used in one iteration. The edge
detection code is shown in Figure 4. The wavelet transform is also
a two-dimension window operator, whose window size is 5×5 and
strides are two in both X and Y direction.

For each benchmarks, the compiler generates the smart
buffers and the data path in VHDL, as the architecture shown in
Figure 6. The compiler also gives the parameters for the
parameterized address generators.

Table 1 - Experimental Results of the Smart Buffers

Stride
Benchmark Window

Size
X Y

Buffer
Size

of
Slice

of Clock
Cycle

Pipeline
Latency

FIR 1×5 N/A 1 8 263 128 5

Edge
Detection 3×3 1 1 36 1,355 48384 6

Wavelet
Trans. 5×5 2 2 88 2,612 43648 5

In all these three benchmarks, I/O width is 16-bit and data
width is 8-bit. The input of FIR is a vector of 256 8-bit data. The
input image of both edge detection and wavelet transform
examples is a 256×256 8-bit array. We unroll the inner loop four

times. In Table 1, the second column shows the original window
size before loop unrolling. The third and fourth columns list the
strides of the sliding window in both X and Y directions. The
number of registers in the smart buffer is shown in the fifth
column. The sixth column gives out device utilization as the
number of slices used for the buffer on a Xilinx Virtex xcv2000E
chip, which account for 1%~13% of the whole chip. Notice that
xcv2000E is just a mid-sized FPGA at present. The seventh
column list the numbers of clock cycles to read and buffer the
input data. Because the data path is fully pipelined and free of
bubbles, the number of clock cycles for the entire calculation is
equal to the number of clock cycles for memory access plus the
pipeline latency, which is listed in the last column.

We have compared our results to another C to VHDL
compiler: SPARK [26] but only for the FIR case. SPARK does
not support two-dimensional arrays. SPARK’s resulting VHDL
code requires 1765 clock cycles to compute on the same size of
input data set. ROCCC gets 13.8 (1765÷128) times speedup. If we
factor out the input bus width difference (ROCCC is 16-bit while
SPARK is 8-bit), the speedup is 6.9. ROCCC compiler’s analysis
and optimizations are aware of the bus and data widths and
exploit this information to maximize parallelism. This same
feature is also in Streams-C. The essential reason of the speedup is
that ROCCC tailors the optimizations according to the C source
code’s characteristic and therefore utilizes the potential
parallelism of window operations, while SPARK treats the input
code as a general one. For instance, SPARK doesn’t reuse the
input data. The number of clock cycles of SPARK’s resulting
VHDL code varies according to the FIR’s number of taps, while
our compiler’s resulting VHDL code doesn’t spend more cycles
even if we increase the number of taps since our resulting circuit
reuses the data in the input stream.

7. DISCUSSION
This paper mainly reports our compiler’s approaches and
performance of dealing with the situation that the window
operators read input data from one array and write the output to
other array. But the ROCCC compiler doesn’t exclude window
operations updating array in place if there is potential parallelism.
ROCCC follows the approaches in [27].

Figure 9 shows an example code of bubble sort. Every
innermost iteration works on a 1 × 2 window in place and the
window slides on the one-dimension array to be sorted. A[j] =
f{A[j], A[j+1]} gives rise to distance vectors (1, 0) and (1, -1)
and, A[j+1] = f{A[j], A[j+1]} gives rise to distance vectors (0, 1)
and (1, 0). Therefore, the original code’s distance vectors are









−

=
101

110
D .

Using skewing and waveform transformations we change the
original distance vectors to









==′

110
121

TDD ,

where 







=
















=

01
12

11
01

01
11

T .

for (i=0; i<7; i=i+1)
 for(j=0; j<7; j=j+1)
 if (A[j]<A[j+1])
 {
 temp = A[j];
 A[j]=A[j+1];
 A[j+1] = temp;
 }

Figure 9 - A
Bubble Sort Code

in C

for (i=0; i<=18; i=i+1)
 for(j=max(0,(i-6)/2); j<=min(6,i/2); j=j+1)
 if (A[i-2j]<A[2-2j+1])
 {
 temp = A[i-2j];
 A[i-2j]=A[i-2j+1];
 A[i-2j+1] = temp;
 }

Figure 10 - The bubble Sort Code After
Loop Transformations

254

Matrix T consists of two transformations: 







11
01

 skews the

shape of the iteration space and 







01
11

 performs a frontwave

transformation to obtain one degree of parallelism.
The transformed loop nest is shown in Figure 10. We

observe that there is no data dependence between any innermost
loops. Therefore, in each outermost loop, the address generator in
Figure 6 can keep on feeding reading addresses to the memory
without any pipeline bubble. Notice that this time, the reading
memory and writing memory are the same bank of dual-port
memory. The legality of the loop transformations and the
compiler’s awareness of the data path at clock cycle level ensure
that the dual-port memory is free of accessing hazard.

8. CONCLUSION
Reconfigurable computing is an emerging and promising
technology that allows part of a computation to be mapped onto a
reconfigurable fabric such as an FPGA. The most challenging
aspect of reconfigurable computing is the compilation of high-
level language programs to HDL. So far, hand-crafted VHDL
code is twice as fast as most compiler generated ones [5][29].

In this paper, we present our reconfigurable computing
compiler system, ROCCC. ROCCC, an open framework built on
the SUIF platform, takes high-level languages, such as C/Fortran,
as input and generated VHDL codes for reconfigurable devices.

We have identified the reuse of data elements that are fetched
from memory to the FPGA as one area where hand-crafted VHDL
codes perform much better. This paper presents a new approach to
the reuse of data when compiling window operations. We describe
the compiler’s analysis and optimization on the memory accesses
of the C input codes. We propose a compile-time scheme that
generates a smart buffer for storing all the fetched data elements
based on window size, stride, data size, memory access size etc.
The smart buffer design does not rely on shifting data or circular
buffers. Instead, a controller keeps track of the managed set and
the kill set of data in every iteration. The newly fetched data
replaces the kill set.

The experimental results show that our scheme does not
imply any extra idle cycles. In other words, the computation
requires exactly as many cycles as fetching the data from memory
does. This paper also discusses the situations of window
operations working on an array in-situ.

9. ACKNOWLEDGMENTS
This work was supported in part by NSF ITR Award No. 0083080
and by the Los Alamos National Laboratory.

10. REFERENCES
[1] A. V. Oppenheim, R. W. Schafer, Discrete-Time Signal

Processing. Prentice-Hall , Inc. 1989

[2] R. C. Gonzales, R. E. Woods, Digital Image Processing.
Prentice-Hall Inc. 2002

[3] A. M. Tekalp. Digital Video Processing. Prentice-Hall Inc.
1995.

[4] H. T. Kung. Why Systolic Architectures? IEEE Computer.
Vol. 15, No. 1 (Jan. 1982), pp. 37-46

[5] Z. Guo, W. Najjar, F. Vahid and K. Vissers. A Quantitative
Analysis of the Speedup Factors of FPGAs over Processors,
Int. Symp. Field-Programmable gate Arrays (FPGA),
Monterrey, CA, February 2004.

[6] D. C. Suresh, W. A. Najjar J. Villareal, G. Stitt and F. Vahid.
Profiling Tools for Hardware/Software Partitioning of
Embedded Applications. Proc. ACM Symp. On Languages,
Compilers and Tools for Embedded Systems (LCTES 2003),
San Diego, CA, June 2003.

[7] Triscend Corporation, "Triscend A7 Configurable System on
a Chip Family." http://www.triscend.com/products/a7.htm
2004

[8] Xilinx Corp. "IBM and Xilinx Team."
http://www.xilinx.com/prs_rls/ibmpartner.htm 2004

[9] Altera Corp. "Excalibur: System-on-a-Programmable."
http://www.altera.com 2004

[10] SUIF Compiler System. http://suif.stanford.edu, 2004

[11] G. Aigner, A. Diwan, D. L. Heine, M. S. Lam, D. L. Moore,
B. R. Murphy, C. Sapuntzakis. An Overview of the SUIF2
Compiler Infrastructure. Computer Systems Laboratory,
Stanford University.

[12] Machine-SUIF.
http://www.eecs.harvard.edu/hube/research/machsuif.html,
2004

[13] M. D. Smith and G. Holloway. An introduction to machine
SUIF and its portable libraries for analysis and optimization.
Division of Engineering and Applied Sciences, Harvard
University.

[14] G. Holloway and M. D. Smith. Machine-SUIF SUIFvm
Library. Division of Engineering and Applied Sciences,
Harvard University 2002.

[15] G. Holloway and M. D. Smith. Machine SUIF Control Flow
Graph Library. Division of Engineering and Applied
Sciences, Harvard University 2002.

[16] G. Holloway and A. Dimock. The Machine SUIF Bit-Vector
Data-Flow-Analysis Library. Division of Engineering and
Applied Sciences, Harvard University 2002.

[17] G. Holloway. The Machine-SUIF Static Single Assignment
Library. Division of Engineering and Applied Sciences,
Harvard University 2002.

[18] Synplicity, Inc. http://www.synplicity.com/ 2004

[19] SystemC Consortium. http://www.systemc.org 2004

[20] Handel-C Language Overview. Celoxica, Inc.
http://www.celoxica.com 2004

[21] Y. Li, T. Callahan, E. Darnell, R. Harr, U. Kurkure, and J.
Stockwood. Hardware-software co-design of embedded
reconfigurable architectures. In Design Automation Conf.
(DAC), 1999.

[22] W. Najjar, W. Böhm, B. Draper, J. Hammes, R. Rinker, R.
Beveridge, M. Chawathe and C. Ross. From Algorithms to

255

Hardware - A High-Level Language Abstraction for
Reconfigurable Computing. IEEE Computer, August 2003.

[23] W. Böhm, J. Hammes, B. Draper, M. Chawathe, C. Ross, R.
Rinker, W. Najjar. Mapping a Single Assignment
Programming Language to Reconfigurable Systems, The
Journal of Supercomputing, Volume 21, pages 117-130,
2002.

[24] M. B. Gokhale, J. M. Stone, J. Arnold, and M. Lalinowski.
Stream-oriented FPGA computing in the Streams-C high
level language. In IEEE Symp. on FPGAs for Custom
Computing Machines (FCCM), 2000.

[25] T. J. Callahan, J. R. Hauser, J. Wawrzynek. The Garp
Architecture and C Compiler. IEEE Computer, April 2000.

[26] SPARK. http://www.cecs.uci.edu/~spark/ 2004

[27] M. E. Wolf and M. S. Lam. A loop transformation theory
and an algorithm to maximize parallelism. IEEE
Transactions on Parallel and Distributed Systems, 2(4): 452--
470, October 1991.

[28] D. Kulkarni, W. Najjar, R. Rinker, and F. Kurdahi, Fast Area
Estimation to Support Compiler Optimizations in FPGA-
based Reconfigurable Systems, IEEE Symp. on Field-
Programmable Custom Computing Machines (FCCM),
Napa, CA, April 2002.

[29] J. Frigo, M. Gokhale, and D. Lavenier. Evaluation of the
Streams-C C-to-FPGA Compiler: An Applications
Perspective. Ninth ACM/SIGDA International Symposium
on Field Programmable Gate Arrays (FPGA), Monterey, CA,
2001.

[30] B. So, M. W. Hall and P. C. Diniz, "A Compiler Approach to
Fast Hardware Design Space Exploration in FPGA-based
Systems", Int. Symp. On Programmong Language Design
and Implementation (PLDI) 2002

[31] X. Liang, J. Jean, Mapping of Generalized Template
Mapping on Reconfigurable Computers. IEEE Trans. on
VLSI System, 11(3): 485-498, 2003

256

