
Lab 1: Fibonacci Calculator
EEL 5721/4720 – Reconfigurable Computing

Objective:
The objective of this lab is to create an FSMD and FSM+D that calculates Fibonacci numbers. It is

also your responsibility to build your own testbench.

Required tools and parts:
Vivado, ModelSim-Altera Starter Edition (or equivalent simulator)

Lab requirements:
1. For this lab, the entity we will be creating is a Fibonacci calculator. First, study the following pseudo-

code to make sure you understand the basic algorithm. This code assume that the first Fibonacci
number corresponds to an n value of 0. E.g. fib(0) = 0, fib(1) = 1, fib(2) = 1, fib(3) = 2, etc.

// Inputs: go, n

// Outputs: output, done

// Reset values (add any others that you might need)

output = 0; done = 0;

while(1){

 // Wait for go to start circuit

while (go == 0);

done = 0;

// Register the n input (should happen in the cycle go is asserted)

 n_r = n;

 // Initialization

 x_r = 0;

 y_r = 1;

 // Main algorithm

 if (n == 0)

output = x_r;

 else {

 for (int i=2; i <= n_r; i++) {

 int temp = x_r + y_r;

 x_r = y_r;

 y_r = temp;

}

output = y_r;

}

// should remained asserted until circuit is started again

done = 1;

}

2. IMPORTANT: The design has the following timing requirements:

 Done should be cleared 1 cycle after the assertion of go.

 Upon completion, done should remain asserted indefinitely until go is asserted again.

Lab 1: Fibonacci Calculator
EEL 5721/4720 – Reconfigurable Computing

FSMD
3. Create a 1-process FSMD that implements the code shown above. Add the code to the fsmd

architecture within fib.vhd.

4. Synthesize your FSMD in Vivado (for any FPGA) and take a screenshot showing no synthesis
warnings. Make sure that the default_arch architecture of fib.vhd is using the fsmd
architecture. Save the screenshot to synthesis_fsmd.jpg.

FSM+D
5. Create the following datapath by filling in the datapath.vhd file. You can create the datapath

structurally or behaviorally, but it must synthesize to this same structure. If you create a structural
architecture, make sure to add your extra entities to datapath.vhd to ensure that all
submissions have the same files.

6. Create a 2-process FSM controller that controls the datapath from the previous step to implement the

required functionality from the pseudo-code in part 1. Your controller should be implemented in the
fsm.vhd file.

7. Fill in the fsm_plus_d architecture in fib.vhd to instantiate and connect the datapath and controller.

8. Synthesize your FSM+D in Vivado (for any FPGA) and take a screenshot showing no synthesis

warnings. Make sure that the default_arch architecture of fib.vhd is using the fsm_plus_d
architecture. Save the screenshot to synthesis_fsmd.jpg.

9. Important: you will likely get these warnings (or something similar) for the FSM+D. These warnings

are fine, but only if they occur at time 0. They are caused by a value that isn’t ‘0’ or ‘1’ reaching an
arithmetic operation. This is often unavoidable at time 0 because certain signals haven’t been
initialized yet depending on how the simulation orders the execution of processes.

** Warning: NUMERIC_STD."<=": metavalue detected, returning FALSE
Time: 0 ns Iteration: 0 Instance: /fib_tb/DUT/U_FIB/U_DATAPATH

I_MUX

2

I_REG

+

1

<=

i_sel

i_en

i_le_n

X_MUX

0

X_REG

+

x_sel

x_en

Y_MUX

1

Y_REG

y_sel

y_en

RESULT_MUX

0

RESULT_REG

result_sel

result_en

result

N_REGn_en

n

=n_eq_0

0

Lab 1: Fibonacci Calculator
EEL 5721/4720 – Reconfigurable Computing

** Warning: NUMERIC_STD."=": metavalue detected, returning FALSE
Time: 0 ns Iteration: 0 Instance: /fib_tb/DUT/U_FIB/U_DATAPATH

Testbench
10. Create a testbench in fib_tb.vhd that tests at least 3 different values of n. You are only required to test

the range 0 <= n <= 47. I would highly suggest testing all the input values to ensure that your design
is working. I will be testing it with a very thorough testbench, which will likely catch errors your
testbench might miss.

11. Your testbench should be used to test both the fsmd and fsm_plus_d architectures. You can do this
either by manually changing the architecture that is used in the testbench, or by changing the
default_arch architecture in fib.vhd. For this lab, do not create multiple testbench files.

12. Take a screenshot of your testbench running the FSMD and save it to a file testbench_fsmd.jpg.

13. Take a screenshot of your testbench running the FSM+D and save it to a file

testbench_fsm_plus_d.jpg.

14. An additional testbench is provided in fib_crv_tb.vhd that uses a strategy called constrained-random
verification. It performs numerous random tests, while also verifying the timing of the done signal. I
would highly recommend using it in addition to your own testbench because the graders will use
something similar.

Turn in instructions:
Submit the following to Canvas as a single zip file where the file name is your UFID. e.g., for 12345678
your submission should be a single zip called 12345678.zip. Do not include any extra folders, do not
change the name of any files, do not use another compression format, etc. This specific structure is
intended to help automate grading.

 fib.vhd

 fsm.vhd

 datapath.vhd

 fib_tb.vhd

 synthesis_fsmd.jpg

 synthesis_fsm_plus_d.jpg

 testbench_fsmd.jpg

 testbench_fsm_plus_d.jpg

 README.txt - If any problems occurred that I should be aware of for grading, include them here.

