1997 International \Wrkshop on Field Programmable Logic and Applications

VPR: A New Packing, Placement and Routing Tool for
FPGA Research?

Vaughn Betz and Jonathan Rose

Department of Electrical and Computer Engineeringyéhsity of Toronto
Toronto, ON, Canada M5S 3G4 ajwghn, jayar}@eecg.toronto.edu

Abstract

We describe the capabilities of and algorithms used imaRRGA CAD tool,
Versatile Place and Route (VPR). In terms of minimizing routing area, VPR outper-
forms all published FPGA place and route tools to which we can compare.
Although the algorithms used are based orvipusly knavn approaches, we
present seeral enhancements that impeo run-time and quality\We present place-
ment and routing results on awmeet of lage circuits to allev future benchmark
comparisons of FPGA place and route tools on circuit sizes more typical ofstoday’
industrial designs.

VPR is capable of tgeting a broad range of FPGA architectures, and the source
code is publicly gailable. It and the associated netlist translation / clustering tool
VPACK have already been used in a number of research projectdwide, and
should be useful in mgrareas of FPGA architecture research.

1 Introduction

In FPGA research, one must typicallyakiate the utility of ne architectural fea-
tures eperimentally That is, benchmark circuits are technology mapped, placed and
routed onto the FPGA architectures of interest, and measures of the arch@ecture’
quality, such as speed or area, can then readilxtoacted. Accordinglythere is con-
siderable need fdtexible CAD tools that can tget a wide griety of FPGA architec-
tures eficiently, and hence alle fair comparisons of the architectures.

This paper describes theeMatile Place and Route (VPR) tool, which has been
designed to be figble enough to allw comparison of mandifferent FPGA architec-
tures. VPR can perform placement and either global routing or combined global and
detailed routing. It is publiclyailable from http://wwweecg.toronto.edu/~jayar/soft-
ware.html.

In order to ma& meaningful FPGA architecture comparisons, it is essential that the
CAD tools used to map circuits into each architecture are of high quditigy routing
phase of VPR outperforms all preusly published FPGA routers for which standard
benchmarks results areadlable, and that the combination of VBRilacer and router
outperforms all published combinations of FPGA placement and routingztools.

The opanization of this paper is as fols. In Section 2 we describe some of the
features of VPR and the range of FPGA architectures with which it may be used. In
Sections 3 and 4 we describe the placement and routing algorithms. In Section 5, we
compare the number of tracks required by VPR to successfully route circuits with that
required by other published tools. In Section 6 we conclude and outline some future

1. This work was supported by a &ifer C. Sumner Memorial Fellship, an NSERC 1967
Scholarship, and the Informatioedhnology Centre of Ontario.

2. Again, for those tools which tia standard benchmark results to which we can compare.

10of10

1997 International \Wrkshop on Field Programmable Logic and Applications

enhancements which will be made to VPR.

2 Overview of VPR

Figure 1 outlines the VPR CAD flo The inputs to VPR consist of a technology-
mapped netlist and axtefile describing the FPGA architecture. VPR can place the
circuit, or a pre-gisting placement can be read in. VPR can then perform either a glo-
bal route or a combined global/detailed route of the placement. s\Rfjut consists
of the placement and routing, as well as statistics useful in assessing the utility of an
FPGA architecture, such as routed wirelength, track count, and maximum net length.

Some of the architectural parameters that can be specified in the architecture
description file are:

» the number of logic block inputs and outputs,

* the side(s) of the logic block from which each input and output is accessible,

» the logical equialence betweenavious input and output pins (e.g. all LUT

inputs are functionally equalent),

» the number of I/O pads that fit into onevror one column of the FPGA, and

» the dimensions of the logic block array (e.g. 23 x 30 logic blocks).

In addition, if global routing is to be performed, one can also specify:

* the relatve widths of horizontal andevtical channels, and

« the relatve widths of the channels in fifent rgions of the FPGA.

Finally, if combined global and detailed routing is to be performed, one also specifies:

* the switch block [1] architecture (i.e.\ndhe routing tracks are interconnected),

+ the number of tracks to which each logic block input pin conneg{d JF

+ the R value for logic block outputs, and

+ the R value for I/O pads.

The current architecture description format does nowvalgments that span more
than one logic block to be included in the routing architectuwrewe are presently
adding this feature. Adding werouting architecture features to VPR is refealty
easy since VPR uses the architecture description to create a routing resource graph.
Every routing track andvery pin in the architecture becomes a node in this graph, and
the graph edges represent thewadlble connections. The routgraphics visualiza-

Technology-Mapped Architecture
Netlist Description File

s -~ Existing Placement
Place Circuit or Read in Existing Placem 4 or Placement from
v N \Another CAD T)gl /

Perform either Global or Combined
Global / Detailed Routing

y

Placement and Routing Output Filas,
Placement and Routing Statistic

Fig. 1. CAD flow.

20f10

1997 International \Wrkshop on Field Programmable Logic and Applications

—p| K-Input
) D Fli
Inputs) LUT - p Out
— p

Clock—

Fig. 2. Basic FPGA logic block.

tion and statistics computation routines adirkvonly with this routing resource graph,
so adding ne routing architecture features onlywaives changing the subroutines
that tuild this graph.

Although VPR vas initially dereloped for island-style FPGAs [2, 3], it can also be
used with rav-based FPGAs [4]. VPR is not currently capable afating hierarchi-
cal FPGAs [5], although adding an appropriate placement cost function and the
required routing resource graphilding routines wuld allow it to taget them.

Finally, VPR’s kuilt-in graphics allav interactve visualization of the placement,
the routing, the ailable routing resources and the possibéssvof interconnecting
the routing resources.

2.1 TheVPACK Logic Block Packer / Netlist Trandlator

VPACK reads in a blif format netlist of a circuit that has been technology-mapped
to LUTs and flip-flops, packs the LUTs and flip flops into the desired FPGA logic
block, and outputs a netlist in VRRhetlist format. VRCK can taget a logic block
consisting of one LUT and one F&s shan in Figure 2, as this is a common FPGA
logic element. VRCK is also capable of tgeting logic blocks that containvezal
LUTs and seeral flip flops, with or without shared LUT inputs [6]. These “cluster
based” logic blocks are similar to those emyplh in recent FPGAs by Altera, Xilinx
and Lucent &chnologies.

3 Placement Algorithm

VPR uses the simulated annealing algorithm [7] for placemerm.hd¢ eperi-
mented with seeral diferent cost functions, and found that what we céiiear con-
gestioncost function preides the best results in a reasonable computation time [8].
The functional form of this cost function is

Nnets
) bb,(n) bb,(n)
Cost = nglq(n)[cav’x(n) + Cav},/y(n)}

where the summation isver all the nets in the circuit. oF each net, bband bl
denote the horizontal anceetical spans of its bounding box, respegli. The q(n)
factor compensates for thacf that the bounding box wire length model underesti-
mates the wiring necessary to connect nets with more than three terminals, as sug-
gested in [10]. Itsalue depends on the number of terminals of net n; q is 1 for nets
with 3 or faver terminals, and shdy increases to 2.79 for nets with 50 terminals.
Cax(n) and G, (n) are the @erage channel capacities (in tracks) in the x and y direc-
tions, respectely, over the bounding box of net n.

This cost function penalizes placements which require more routing in areas of the
FPGA that hae narrever channels. All the results in this pagesvever, are obtained
with FPGAs in which all channels vthe same capacityin this case & is a con-

3 0of 10

1997 International \Wrkshop on Field Programmable Logic and Applications

stant and the linear congestion cost function reduces to a bounding box cost function.
A good annealing schedule is essential to obtain high-quality solutions in a reason-
able computation time with simulated annealinge Nde developed a n& annealing
schedule which leads tcery high-quality placements, and in which the annealing
parameters automatically adjust tofeliént cost functions and circuit sizes.e \6bm-
pute the initial temperature in a manner similar to [11]. LgjMNbe the total num-
ber of logic blocks plus the number of I1/O pads in a circuie fiét create a random
placement of the circuit. Mewe perform Nocs Moves (pairwise saps) of logic
blocks or I/O pads, and compute the standavihtlen of the cost of thesey ks dif-
ferent configurations. The initial temperature is set to 20 times this standatibte
ensuring that initially virtually anmove is accepted at the start of the anneal.
As in [12], the dedult number of mees ealuated at each temperature is

1.33
10 E(N bl ocks)

however, to allov different CPU time / placement quality tradsof Reducing the
number of maes per temperature by actor of 10, for gample, speeds up placement
by a factor of 10 and reduces final placement quality by only about 10%.

When the temperature is so high that almogtraove is accepted, we are essen-
tially moving randomly from one placement to another and little imgment in cost
is obtained. Corersely if very fav moves are being accepted (due to the temperature
being lav and the current placement being airliy high quality), there is also little
improvement in cost. \th this motvation in mind, we propose awdemperature
update schedule which increases the amount of time spent at temperatures where a sig-
nificant fraction of, bt not all, mees are being accepted. Amntemperature is com-
puted as g, = 0 Tpg Where the alue ofa depends on the fraction of attempted

moves that were acceptedRep) at Toig, as shan in Tablel.

This de&ult number can beverridden on the command line,

Table 1. Temperature update schedule.

Fraction of mees accepted Q%cept) a
Raccep1> 0.96 05
0.8 < Rygeepis 0.96 0.9
0.15 < RiccepS 0.8 0.95
Raccepts 0.15 0.8

Finally, it was shevn in [12, 13] that it is desirable t@&p Rccepinear 0.44 for as
long as possible. #accomplish this by using thalue of Rceto control a range
limiter -- only interchanges of blocks that are less than or equajtp nits apart in
the x and y directions are attempted. A smalug of Dy increases Rceptby

ensuring that only blocks which are close together are considereddfopisgy. These
“local swaps” tend to result in relatly small changes in the placement cost, increas-
ing their likelihood of acceptance. Initia)l;,; is set to the entire chip. Whesee

the temperature is reduced, thealue of 0, is updated according to

new old old
Diimit = Djimit {1—0.44+ Ry o) » @nd then clamped to the range<IDymjr <

4 0of 10

1997 International \Wrkshop on Field Programmable Logic and Applications

maximum FPGA dimension. This results i, being the size of the entire chip for

the first part of the anneal, shrinking gradually during the middle stages of the anneal,
and being 1 for the \@-temperature part of the anneal.

Finally, the anneal is terminated when T < 0.005 * CostddN The m@ement of
a logic block will alvays afect at least one net. When the temperature is less than a
small fraction of thegerage cost of a net, it is urdily that ay move that results in a
cost increase will be accepted, so we terminate the anneal.

4 Routing Algorithm

VPR'’s router is based on thathRfinder ngotiated congestion algorithm [14, 8].
Basically this algorithm initially routes each net by the shortest path it can find,
regardless of ayoveruse of wiring sgments or logic block pins that may result. One
iteration of the router consists of sequentially ripping-up and re-routing (byvilestlo
cost path found)wery net in the circuit. The cost of using a routing resource is a func-
tion of the currenteruse of that resource andy/awveruse that occurred in prior rout-
ing iterations. By gradually increasing the cost wérsubscribed routing resources,
the algorithm forces nets with alternati routes to wid using @ersubscribed
resources, laéng only the net that most needs aayi resource behind.

For the eperimental results in this paper we set the maximum number of router
iterations to 45; if a circuit has not successfully routed invarghumber of tracks in
45 iterations it is assumed to be unroutable with channels of that widtrasoid
overly circuitous routes and tov&a CPU time, we alle the routing of a net to go at
most 3 channels outside the bounding box of the net terminals.

One important implementation detail deserymention. Both the originabf-
finder algorithm and VPR'router use Dijkstra’algorithm (i.e. a maze router [15]) to
connect each net.oFa k terminal net, the maze router igaked k-1 times to perform
all the required connections. In the firsvdoation, the maze routing amefront
expands out from the net source until it reachgsaae of the k-1 net sinks. The path
from source to sink is mothe first part of this net’routing. The maze routingave-
front is emptied, and a mewavefront expansion is started from the entire net routing
found thus &r. After k-1 insocations of the maze router all k terminals of the net will
be connected.

Unfortunately this approach requires considerable CPU time for ragbtit nets.
High-fanout nets usually span most or all of the FPGA. Therefore, in the latieain
tions of the maze router the partial routing used as the net source wihbtage,
and it will take a long time toxpand the maze routeramefront out to the né sink.
Fortunately there is a morefiefent method. When a net sink is reached, add all the
routing resource genents required to connect the sink and the current partial routing
to the vavefront (i.e. the xpansion list) with a cost of 0. Do not empty the current
maze routing avefront; just continuex@anding normally Since the nge path added
to the partial routing has a cost of zero, the maze routerxpidlrel around it at first.
Since this ne path is typically &irly small, it will tale relatively little time to add this
new wavefront, and the né sink will be reached much more quickly than if the entire
wavefront xpansion had been started from scratch. Figure 3 illustrates fieidife
graphically

5 of 10

1997 International \Wrkshop on Field Programmable Logic and Applications

Unconnected Expansion Expansion Re-expand around Expansion
sink wavefront wavefront new wire wavefront
J_ g 3 g e R 1
] I r |
E'i] | |
-
'—]—4 _, | LL —|-:| | |_I _' |
| L
°| * = o |
a J|™ |
—] [&— a
B T qL O A
,—' I |] = 2 ,_l . |
! - | | |,| [-
| | LJ — | I—‘ﬂ | .| I"D_I
= - J\\ = L - — — L2
Cur&eonuttip;%mal Sink reached (c) VPR method: maintain
. . (b) Traditional method: wavefront and gpand
(a) Expansion reaches a sink restart vavefront around ner wire

Fig. 3. When a sink is reached (a), asn@avefront can be tilt from scratch (b), or
incrementally (c).

5 Experimental Results

The various FPGA parameters used in this section wevayal chosen to alo a
direct comparison with pwously published results. All the results in this section
were obtained with a logic block consisting of a 4-input LUT plus a flip flop, asnsho
in Figure 2. The clock netas not routed in sequential circuits, as it is usually routed
via a dedicated routing netrk in commercial FPGAs. Each LUT input appears on
one side of the logic block, while the logic block output is accessible from both the
bottom and right sides, as st in Figure 4. Each logic block input or output can
connect to aytrack in the adjacent channel(s) (i.e.=FW). Each wire sgment can

connect to three other wiringgmaents at channel intersections (ig=3) and the
switch box topology is “disjoint” -- that is, a wiringggaent in track O connects only
to other wiring sgments in track 0 and so on.

5.1 Experimental Resultswith Input Pin Doglegs

Most previous FPGA routing results ha assumed that “input pin dogk are
possible. If the connection box between an input pin and the tracks to which it con-
nects consists of Andependent pass transistors controlled b$RAM bits, it is pos-

sible to turn on tw of these switches in order to electrically connecttnacks via the
input pin. W\ will refer to this as an input pin dogle Commercial FPGAs, hever,

in3 clk

. in4
in2 n
out
inl out
Fig. 4. Logic block pin locations.

6 of 10

1997 International \Wrkshop on Field Programmable Logic and Applications

implement the connection box from an input pin to a channel via a my#ipé® only
one track may be connected to the input pin. Using a muiiptather than indepen-
dent pass transistorsves considerable area in the FPGA layout. As well, normally
there is a bffer between a track and the connection block muketeto which it con-
nects in order to impk@ speed; thisuffer also means that input pin doggecan not
be used. Therefore, while we allanput pin doglgs in this section in order to mak
fair comparison with past results, ibuld be best if in the future FPGA routers were
tested without input pin dogis.

In this section we compare the minimum number of tracks per channel required for
a successful routing byarvious CAD tools on a set of 9 benchmark circitall the
results in &ble2 are obtained by routing a placement produced by Altor [16], a min-
cut based placement tool. Three of the columns consist @btep (global then
detailed) routing, while the other routers perform combined global and detailed rout-
ing. VPR requires 10% ¥eer tracks than the second best rquéerd the third best
router consists of VPR’global route phase plus SEGA for detailed routing.

Table 2. Tracks required to route placements generated by.Altor

Global R. LocusRoute [17] GBP | occ | IKMB VPR TRACER
VPR
Detail R.| CGE [18]] SEGA[19]| [20] | [21] | [22] [seGgaf23)] [24]
9symml 9 9 9 9 8 7 6 6
alu2 12 10 11 | 9 9 8 9 8
alud 15 13 14 | 12 | 11 10 11 9
ape7 13 13 11 | 10 | 10 10 8 8
example2| 18 17 13 | 12 | 11 10 10 9
k2 19 16 17 | 16 | 15 14 14 12
term1 10 9 10 | 9 8 8 7 7
too_lage 13 11 12 11 10 10 9 8
vda 14 14 13 | 11 | 12 12 11 10
Total 123 112 110 | 99 | 94 89 85 77

Table3 lists the number of tracks required to implement these benchmarks when
new CAD tools are allved to both place and route the circuits. The size column lists
the number of logic blocks in each circuit. VPR uses 13R&iféracks when it per-
forms combined global and detailed routing than it does when SEGA is used to per-
form detailed routing on a a VPR-generated global route. FPR, which performs
placement and global routing simultaneously in an attempt to ipm@utability
requires 87% more total tracks than VPR. Finallioving VPR to place the circuits
instead of forcing it to use the Altor placements reduces the number of tracks VPR
requires to route them by 40%, indicating that \§>&tmulated annealing based placer
is considerably better than the Altor min-cut placer

5.2 Experimental Results Without Input Pin Doglegs
Table4 compares the performance of VPR with that of the SFER/SROUTE tool

1. These benchmarks areadlable for devnload at http://wwweecg.toronto.edu/~lemieuxgse

7 0of 10

1997 International \Wrkshop on Field Programmable Logic and Applications

Table 3. Tracks required to place and route circuits.

Placement
Number of VPR

Global Routing| Logic Blocks | FPR [25] VPR

- - in Circuit
Detailed Routing SEGA
9symml 70 9 6 5
alu2 143 10 7 6
alud 242 13 8 7
ap’ 77 9 5 4
example2 120 13 5 5
k2 358 17 10 9
terml 54 8 5
too_lage 148 11 7 6
vda 208 13 9 8

Total - 103 62 55

set, which does not alloinput pin doglgs. When both tools are only alled to route
an Altorgenerated placement VPR requires 13%efetracks than SBRUTE. When
the tools are allwed to both place and route the circuits, VPR requires 29%érfe
tracks than the SPLGE/SROUTE combination. Both VPR and SPCE are based
on simulated annealing. &\beliere the VPR placer outperforms SPCE partially
because it handles highffout nets more ffiently, alloving more mees to be ealu-
ated in a gien time, and partially because of its morfecint annealing schedule.

Table 4. Tracks required to place and route circuits with no input dsgle

Placement Altor SPLACE [26] VPR
Global + Detailed Routg SROUTE [26] VPR SROUTE

9symmi 7 6 7 5
alu2 9 8 8 6
alu4 12 10 9 7
ap7 9 9 6 4
example2 11 10 7 5
k2 15 14 11 9
terml 8 7 4
too_lage 11 9 8 7
vda 12 10 10 8
Total 94 83 71 55

5.3 Experimental Resultson Large Circuits

The benchmarks used in Sections 5.1 and 5.2 range in size from 54 to 358 logic
blocks, and accordingly are too small to rwrepresentate of todays FPGASs.
Therefore, in this section we presemperimental results for the 20 ¢gst MCNC
benchmark circuits [27], which range in size from 1047 to 8383 logic blocksuse/
Flowmap [28] to technology map each circuit to 4-LUTs and flip flops, adC®Ro

8 of 10

1997 International \Wrkshop on Field Programmable Logic and Applications

combine flip flops and LUTs into our basic logic block. The number of /O pads that
fit per rav or column is set to 2, in line with current commercial FPGAs. Each circuit
is placed and routed in the smallest square FPGA which can contain it. Input pin dog-
legs are not allwed. Note that three of the benchmarks, &iglles, and dsip, are pad-
limited in the FPGA architecture assumed.

Table 5. Channel widths required to place and route 2@eldmrenchmark circuits.

Circuit| # LBs| SEGA| VPR|| Circuit Lgs SEGA| VPR|| Circuit Lgs SEGA| VPR

alu4 | 1522 16 10 [|dsip 1370 9 7 [[s298 1931 18 7
ape2 | 1878 20 11 ||elliptic | 3604| 16 10 ||s38417 | 6406| 10 8
ap4 | 1262| 19 12 ||ex1010| 4598| 22 10 |{s38584.1) 6447 12 9

bigkey | 1707| 9 7 ||lexp | 1064| 16 13 ||seq 1750| 18 11
cima |8383| =24 | 12 ||frisc |3556| 18 | 11 ||spla 3690| 26 | 13
des 1591| 11 7 ||misex3 | 1397 17 10 |[tseng 1047 9 6
diffeq | 1497| 10 | 7 |lpdc | 4575| =31 | 16 |[Total — | =331| 197 |

Table5 compares the number of tracks required to place and completely route cir-
cuits with VPR with the number required to place and globally route the circuits with
VPR and then perform detailed routing with SEGA [233bI€5 also gves the size of
each circuit, in terms of the number of logic blocks. The entries in the SEGA column
with a > sign could not be successfully routed because SEGA ran out of memory
Using SEGA to perform detailed routing on a global route generated by VPR increases
the total number of tracks required to route the circuitsvay 68% vs. hang VPR
perform the routing completelyClearly SEGA has ditulty routing lage circuits
when input pin doglgs are not allved.

To encourage other FPGA researchers to publish routing results using these lar
benchmarks, we issue the follmg “FPGA challengé. Each time erified results
which beat the préously best erified results on these benchmarks are announced, we
will pay the authors $1 (sorrg$l Cdn., not $1 U.S.) for each track by whichythe
reduce the total number of tracks required from that of thequely best results. The
technology-mapped netlists, the placements generated by VPR and the currently best
routing track total arevailable at http://wwweecg.toronto.edu/~jayar/sofiwe.html.

6 Conclusionsand Future Work

We hare presented a mneFPGA placement and routing tool that outperforms all
such tools to which we can neklirect comparisons. In addition wevbgresented
benchmark results on muchdar circuits than hee typically been used to character-
ize academic FPGA place and route toolse Népe the ne generation of FPGA
CAD tools will be compared on the basis of thesgdabenchmarks, as thare a
closer approximation of the kind of problems being mapped into &BGAS.

One of the main design goals for VPRao keep the tool fieible enough to allw
its use in may FPGA architectural studies. ahare currently wrking on seeral
improvements to VPR to further increase its utility in FPGA architecture research. In
the near future VPR will supportuffered and sgmented routing structures, and soon
after that we plan to add a timing analyzer and timingedrirouting.

9 of 10

1997 International \Wrkshop on Field Programmable Logic and Applications

References

[1] S. Brown, R. Francis, J. Rose, and Z. VraneEie|d-Programmable Gate Aays Kluwer
Academic Publishers, 1992.

[2] Xilinx Inc., The Pogrammable Lgic Data Book 1994.

[3] AT & T Inc., ORCA Datasheefl994.

[4] Actel Inc.,FPGA Data Book1994.

[5] Altera Inc.,Data Book 1996.

[6] V. Betz and J. Rose, “ClustBased Logic Blocks for FPGAs: Areafiefengy vs. Input
Sharing and SizeCICC, 1997, pp. 551 - 554.

[7] S. Kirkpatrick, C. D. Gelatt, Jrand M. PVecchi, “Optimization by Simulated Annealihg,
ScienceMay 13, 1983, pp. 671 - 680.

[8] V. Betz and J. Rose, “Directional Bias and Non-Uniformity in FPGA Global Routing
Architectures, ICCAD, 1996, pp. 652 - 659.

[9] V. Betz and J. Rose, “On Biased and Non-Uniform Global Routing Architectures and CAD
Tools for FPGAS, CSRI Edh. Rep. #358Dept. of ECE, Uniersity of Toronto, 1996.

[10] C. E. Cheng, “RISA: Accurate andfiefent Placement Routability ModelitigDAC, 1994,
pp. 690 - 695.

[11] M. Huang, F Romeo, and A. Sangianni-incentelli, ‘An Efficient General Cooling
Schedule for Simulated AnnealihgCCAD, 1986, pp. 381 - 384.

[12] W. Swartz and C. Sechen, “MeAlgorithms for the Placement and Routing of Macro
Cells} ICCAD, 1990, pp. 336 - 339.

[13] J. Lam and J. Delosme, “Performance of asMennealing Schedufe DAC, 1988, pp. 306
- 311.

[14] C. Ebeling, L. McMurchie, S. A. Hauck and S. Burns, “Placement and Routinlg for
the Triptych FPGA, IEEE Trans. on VLSIDec. 1995, pp. 473 - 482.

[15] C. Y. Lee, ‘An Algorithm for Rath Connections and its ApplicationtiRE Trans. Electon.
Comput, Vol. EC=10, 1961, pp. 346 - 365.

[16] J. S. Rose, WM. Snelgree, Z. G. Vranesic ALTOR: An Automatic Standard Cell Layout
Progrant, Canadian Confon VLS] 1985, pp. 169 - 173.

[17] J. S. Rose, “&rallel Global Routing for Standard Cell$EEE Trans. on CADOct. 1990,
pp. 1085 - 1095.

[18] S. Brawn, J. Rose, Z. G. VranesicA “Detailed Router for Field-Programmable Gate
Arrays; IEEE Trans. on CADMay 1992, pp. 620 - 628.

[19] G. Lemieux, S. Bron, “A Detailed Router for Allocating W& Se@ments in FPGAS,
ACM/SIGIA Physical Design Wkshop,1993, pp. 215 - 226.

[20] Y.-L. Wu, M. Marek-Sadaska, ‘An Efficient Router for 2-D Field-Programmable Gate
Arrays; EDAC, 1994, pp. 412 - 416.

[21] Y.-L. Wu, M. Marek-Sadwska, “Orthogonal Greedy Coupling -- A WeOptimization
Approach to 2-D FPGA RoutifgDAC, 1995, pp. 568 - 573.

[22] M. J. Alexander G. Robins, “Ner Performance-Dvien FPGA Routing AlgorithmsDAC,
1995, pp. 562 - 567.

[23] G. Lemieux, S. Bran, D. Vranesic, “On Wo-Step Routing for FPGAs)nt. Symp. on
Physical Design1997, pp. 60 - 66.

[24] Y.-S. Lee, A. W, “A Performance and Routability @dn Router for FPGAs Considering
Path Delays, DAC, 1995, pp. 557 - 561.

[25] M. J. Alexander J. P Cohoon, J. L. Ganfe G. Robins, “Performance-Oriented Placement
and Routing for Field-Programmable Gate ArrafsDAC, 1995, pp. 80 - 85.

[26] S. WIIton, “Architectures and Algorithms for Field-Programmable Gate Arrays with
Embedded Memori€'sPh.D. Dissertation{Jniversity of Toronto, 1997.

[27] S. Yang, “Logic Synthesis and Optimization Benchmarkstsin 3.0, Tech. Report
Microelectronics Centre of North Carolina, 1991.

[28] J. Cong and YDing, “Flovmap: An Optimal &hnology Mapping Algorithm for Delay
Optimization in Lookup-&ble Based FPGA Desigh$EEE Trans. on CADJan. 1994, pp.
1-12.

10 of 10

