
Defensive Approximation: Enhancing CNNs Security through Approximate
Computing

Amira Guesmi
University of Sfax,

Tunisia

Ihsen Alouani
Polytechnic University Hauts-De-France,

France

Khaled Khasawneh
George Mason University,

USA

Mouna Baklouti
University of Sfax,

Tunisia

Tarek Frikha
University of Sfax,

Tunisia

Mohamed Abid
University of Sfax,

Tunisia

Nael Abu-Ghazaleh
University of California Riverside,

USA

Abstract—In the past few years, an increasing number of
machine-learning and deep learning structures, such as Convo-
lutional Neural Networks (CNNs), have been applied to solving
a wide range of real-life problems. However, these architectures
are vulnerable to adversarial attacks: inputs crafted carefully
to force the system output to a wrong label. Since machine-
learning is being deployed in safety-critical and security-sensitive
domains, such attacks may have catastrophic security and safety
consequences. In this paper, we propose for the first time to
use hardware-supported approximate computing to improve the
robustness of machine learning classifiers. We show that our ap-
proximate computing implementation achieves robustness across
a wide range of attack scenarios. Specifically, for black-box and
grey-box attack scenarios, we show that successful adversarial
attacks against the exact classifier have poor transferability to
the approximate implementation. Surprisingly, the robustness
advantages also apply to white-box attacks where the attacker
has access to the internal implementation of the approximate
classifier: in this case, we show that substantially higher levels of
adversarial noise are needed to produce adversarial examples.
We explain some of the possible reasons for this robustness
through analysis of the internal operation of the approximate im-
plementation. Furthermore, our approximate computing model
maintains the same level in terms of classification accuracy,
does not require retraining, and reduces resource utilization
and energy consumption of the CNN. We conducted extensive
experiments on a set of strong adversarial attacks; We empirically
show that the proposed implementation increases the robustness
of a LeNet-5 and an Alexnet CNNs by up to 99% and 87%,
respectively for strong grey-box adversarial attacks along with
up to 67% saving in energy consumption due to the simpler
nature of the approximate logic. We also show that a white-box
attack requires a remarkably higher noise budget to fool the
approximate classifier, causing an average of 4db degradation of
the PSNR of the input image relative to the images that succeed
in fooling the exact classifier.

I. INTRODUCTION

Convolutional neural networks (CNNs) and other deep
learning structures are used in an increasing number of appli-
cations owing to their state-of-the-art performance in multiple
fields, such as computer vision [1], [2], natural language
processing (NLP) [3], robotics [4], autonomous driving [5],
and healthcare [6]. While rapid progress in all aspects of
CNN development and deployment is occurring, they are
vulnerable to adversarial attacks: maliciously designed im-
perceptible perturbations injected within the input data that

cause CNNs to misclassify the data. Adversarial attacks have
been demonstrated in real-world scenarios [7], [8], [9], making
this vulnerability a serious threat to safety-critical and other
applications that rely on CNNs.

Since the demonstration of adversarial examples, several
attacks and defenses have been proposed. Previous work
proposed solutions based on manipulating either the input data,
the objective function, or the network structure to mitigate ad-
versarial effects. However, these proposed techniques require
substantial changes to the architecture, retraining procedure,
or incorporate additional input data processing overhead. In
addition, some proposed defenses have been shown to be
vulnerable to alternative attack strategies. We review the
state of the art attacks and defenses in Section IX. Another
challenge in deploying such systems is their high power and
computational requirements, which make them challenging to
deploy in embedded systems and latency critical applications.
For this reason, many research studies have explored tech-
niques to accelerate CNNs ranging from algorithmic opti-
mizations, hardware acceleration, and even dedicated mobile
platforms [10]. Since many of the proposed defenses against
adversarial attacks require substantial additional overheads,
they make it more challenging to build secure CNNs under
power and computational resource constraints.

In this paper, we propose a new hardware based approach
to improving the robustness of machine learning classifiers.
Specifically, we propose to leverage Approximate Computing
(AC), a family of hardware techniques designed to improve
the performance and power consumption of logic circuits and
processing elements, at the cost of introducing some approx-
imation to their operation. Since CNNs are highly tolerant
to computational errors [11], [12], they represent an ideal
candidate for approximate implementation. While AC has been
explored as a possible approach to reduce power consumption
and computation complexity, in this paper, we show for the
first time that it can also provide a defense mechanism against
adversarial attacks. Our technique, which we call defensive
approximation (DA), substantially enhances the robustness of
CNNs to adversarial attacks. Note that, throughout the paper,
we refer to classifiers that uses DA as approximate classifiers.
We show that for a variety of attack scenarios, and utilizing

ar
X

iv
:2

00
6.

07
70

0v
1

 [
cs

.C
R

]
 1

3
Ju

n
20

20

a range of algorithms for generating adversarial attacks, DA
provides substantial robustness even under the assumptions
of a powerful attacker (e.g., with full access to the classifier
structure). Importantly, DA does not require retraining or
fine-tuning, allowing pre-trained models to benefit from its
robustness and performance advantages by simply replacing
the exact multiplier implementations with approximate ones.
The approximate classifier achieve similar accuracy to the
exact classifier for Lenet-5 and Alexnet. In addition to these
attractive properties from a robustness perspective, DA benefits
from the conventional advantages of AC, resulting in a less
complex design that is both faster and more energy efficient.

We evaluate DA’s robustness properties empirically against
several threat models and using a range of adversarial example
generation algorithms. First, we consider whether an attacker
that has access to the exact classifier and generates adversarial
examples that fool that classifier, would be able to use those
examples against the approximate classifier. We find that these
attacks exhibit poor transferability to the approximate classifier
(e.g., over 80% of Lenet-5 adversarial examples are classified
correctly by the approximate classifier). We then consider two
scenarios where the attacker directly attacks the approximate
classifier:

• Black-box attack: the attacker reverse engineers the ap-
proximate classifier and constructs a proxy of it that uses
exact multipliers. Adversarial examples are generated
using this proxy model. While these examples transfer
back to fool the exact classifier, they are not able to fool
the approximate classifier.

• White-box attack: the attacker has full access to the ap-
proximate classifier, and can use it to generate examples
that reliably fool the approximate classifier. In this case,
we show that the amount of injected noise needed to
fool the approximate classifier is substantially higher than
the noise needed to fool an exact classifier, for example
resulting in around 4db degradation of the adversarial
example (and 6x increase in Mean Square Error) for DA
relative to the ones that fool the exact classifier.

We carry out a number of experiments to better under-
stand the robustness advantages of DA. We show that the
unpredictable variations introduced by AC improve the CNN
resilience to adversarial perturbations. Experimental results
show that DA has a confidence enhancement impact. In
fact, the AC-induced noise in the convolution layer is shown
to be higher in absolute value when the input matrix is
highly correlated to the convolution filter, and by consequence
highlights further the features. This observation at the feature
map propagates through the model and results in enhanced
classification confidence, i.e., the difference between the 1st

class and the ”runner-up”. Intuitively and as shown by prior
work [13], enhancing the confidence furthers the classifier
robustness.At the same time, we observe negligible accuracy
loss compared to a conventional CNN implementation on non-
adversarial inputs while providing considerable power savings.

Related to our work, a set of defenses based on random-

ization emerged over the last years, and provide theoretically
quantifiable robustness bounds [13], [14], [15]. Unlike our
implementation, these works assume introduction of Gaussian
noise at different stages of the operation of the classifier;
our approximate multiplier is sensitive to the input data, but
is not Gaussian. However, these works support our general
observation that the injection of perturbations improves the
robustness of the classifier. From a practical perspective, none
of these works have been evaluated at scale or with realistic
implementations. For example, Raghunathan et al. [15] evalu-
ate only a tiny neural network. Other works [13], [14] consider
scalability but require high overhead to implement the defense.
Specifically, to estimate the model output, these methods
require running a heavy Monte Carlo simulation involving
a number of different runs of the CNN for the same input.
Our approach is different since, not only our AC-injected
noise does not require overhead but comes naturally from the
simpler and faster AC implementation. Moreover, while these
techniques require additional training, our implementation is a
drop-in replacement of the hardware without specific training
requirements, and with no changes to the architecture nor the
parameters of the CNN.

In summary, the contributions of the paper are:

• We build an aggressively approximate floating point mul-
tiplier that injects data-dependent noise within the convo-
lution calculation. Based on this approximate multiplier,
we implement an approximate CNN hardware accelerator
(Section IV-B).

• To the best of our knowledge, we are the first to leverage
AC to enhance CNN robustness to adversarial attacks
without the need for re-training, fine-tuning nor input
pre-processing. We investigate the capacity of AC to help
defending against adversarial attacks in Section V-C.

• We empirically show that the proposed approximate
implementation reduces the success rate of adversarial
attacks by an average of 87% and 71.5% in Lenet-5 and
Alexnet CNNs respectively.

• We illustrate empirically that white-box attacks require
substantially higher adversarial perturbations to fool the
approximate classifier.

• We provide some insights into the impact of DA through
a theoretical analysis (Section VI-B).

• DA is highly practical; it can be deployed without retrain-
ing or fine-tuning, achieving comparable classification
performance to exact classfiers. In addition to security
advantages, DA improves performance by reducing la-
tency by 4x, energy by 2.5x, and consequently, the energy
delay product by 10x, making it an attractive choice even
in Edge device settings (Section VII-C).

II. BACKGROUND

This section first presents an overview of CNNs, which are
the targets of our attack in this paper; however, we expect
DA to apply to other learning structures. We then overview
adversarial attacks and introduce approximate computing.

A. Convolutional neural networks

A convolutional neural network (CNN) [16] is a Deep
Learning algorithm that takes an image as input, automatically
extracts features, and produces labels (corresponding to the
classification task the CNN was trained for) as output. A
CNN consists of convolution layers and sub-sampling layers
performing the feature extraction, followed by fully connected
layers performing the classification. The input image is fed
to the CNN and the convolution layer creates feature maps.
The feature maps are pooled (down-sampled) to reduce their
dimension while conserving the most important information,
which is one of the factors that make CNNs more tolerant
to distortions. The fully connected layers use the feature
matrix to classify the input. Another important concept of
CNNs is the use of activation functions, commonly a rectified
linear unit (ReLU). Applying a non-saturating ReLU activation
function ReLu(x) = max(0, x) removes negative values from
an activation map by setting them to zero. This increases
the nonlinear properties of the decision function and of the
overall network without affecting the receptive fields of the
convolution layer.

B. Adversarial attacks

Deep learning techniques gained popularity in recent years
and are now deployed even in safety-critical tasks, such as
recognizing road signs for autonomous vehicles [17]. Despite
their effectiveness and popularity, CNN-powered applications
are facing a critical challenge adversarial attacks. Many stud-
ies [18], [19], [20], [9] have shown that CNNs are vulnerable
to carefully crafted inputs designed to fool them, very small
imperceptible perturbations added to the data can completely
change the output of the model. In computer vision domain,
these adversarial examples are intentionally generated images
that look almost exactly the same as the original images,
but can mislead the classifier to provide wrong prediction
outputs. Other work [21] claimed that adversarial examples
are not a practical threat to machine learning in real-life
scenarios. However, physical adversarial attacks have recently
been shown to be effective against CNN based applications in
real-world [22].
Minimizing injected noise: Its essential for the adversary to
minimize the added noise to avoid detection. For illustration
purposes, consider a CNN used for image classification. More
formally, given an original input image x and a target classi-
fication model f(), the problem of generating an adversarial
example x∗ can be formulated as a constrained optimization
[23]:

x∗ = arg min
x∗

D(x, x∗),

s.t. f(x) = l, f(x∗) = l∗, l 6= l∗
(1)

Where D is the distance metric used to quantify the sim-
ilarity between two images and the goal of the optimization
is to minimize this added noise, typically to avoid detection
of the adversarial perturbations. l and l∗ are the two labels
of x and x∗, respectively: x∗ is considered as an adversarial

example if and only if the label of the two images are different
(f(x) 6= f(x∗)) and the added noise is bounded (D(x, x∗) < ε
where ε > 0).
Distance Metrics: The adversarial examples and the added
perturbations should be visually imperceptible by humans.
And since it’s hard to model human perception, researchers
proposed three metrics to approximate humans perception of
visual difference, namely L0, L2, and L∞ [24]. These metrics
are special cases of the Lp norm:

‖x‖p =

(
n∑
i=1

|xi|p
) 1

p

(2)

These three metrics focus on different aspects of visual
significance. L0 counts the number of pixels with different
values at corresponding positions in the two images. L2

measures the Euclidean distance between the two images x
and x∗. L∞ measures the maximum difference for all pixels
at corresponding positions in the two images.

The consequences of an adversarial attack can be dramatic.
For example, misclassification of a stop sign as a yield sign
or a speed limit sign could lead to material and human
damages. Another possible situation is when using CNNs in
financial transactions and automatic bank check processing.
Using handwritten character recognition algorithms to read
digits from bank cheques or using neural networks for amount
and signature recognition [25]. An attacker could easily fool
the model to predict wrong bank account numbers or amount
of money or even fake a signature. A dangerous situation,
especially with such large sums of money at stake.

C. Approximate Computing

The speed of new generations of computing systems, from
embedded and mobile devices to servers and computing data
centers, has been drastically climbing in the past decades.
This development was made possible by the advances in
integrated circuits (ICs) design and driven by the increasingly
high demand for performance in the majority of modern
applications. However, this development is physically reaching
the end of Moores law, since TSMC and Samsung are releasing
5 nm technology [26]. On the other hand, a wide range of
modern applications is inherently fault-tolerant and may not
require the highest accuracy. This observation has motivated
the development of approximate computing (AC), which is
a computing paradigm that trades power consumption with
accuracy. The idea is to implement inexact/approximate com-
puting elements that consume less energy, as far as the overall
application tolerates the imprecision level in computation.
This paradigm has been shown promising for inherently fault-
tolerant applications such as deep/machine learning, big data
analytics, and signal processing. Several AC techniques have
been proposed in the literature and can be classified into three
main categories based on the computing stack layer they target:
software, architecture, and circuit level [27].

In this paper, we consider AC for a totally new objective;
enhancing CNNs robustness to adversarial attacks, without
losing the initial advantages of AC.

III. THREAT MODEL

We assume an attacker attempting to conduct adversarial
attacks to fool a classifier in a number of attack scenarios,
which we overview in this section.

A. Transferability attacks

One of the important properties of adversarial examples
is the transferability of attacks across classifiers. Specifically,
transferability measures how well adversarial examples gener-
ated to target one model can also fool other related models.
The property of transferability is relevant to different attack
modalities. For example, in black-box scenarios [28], [29],
the attacker often builds a proxy model based on observing
the behavior of a target model. The attacker then creates
adversarial examples using the proxy model and hopes that
these attacks will transfer back to fool the original target
model. This is important because the attacker may not be
able to query the target model indefinitely to construct the
adversarial examples. Relevant to this paper, we will also
consider transferability from exact classifier to approximate
classifier and vice versa.

B. Adversary knowledge (attacks scenarios)

In this work, we consider three attack scenarios:
• Transferability attack. In this attack, we assume the

adversary is aware of the exact classifier internal model
(its architecture and parameters). The adversary uses the
exact classifier model to create adversarial examples.
Therefore, we explore whether these examples transfer
effectively to the approximate classifier (DA classifier).

• Black-box attack. We assume the attacker has access only
to the input/output of the victim classifier (which is our
approximate classifier) and has no information about its
internal architecture. The adversary first uses the results
of querying the victim to reverse engineer the classifier
and create a substitute CNN model. With the substitute
model, the attacker can attempt to generate different
adversarial examples to attack the victim classifier.

• White-box attack. We assume a powerful attacker who
has full knowledge of the victim classifier’s architecture
and parameters (including the fact that it uses approx-
imate computing). The attacker uses this knowledge to
create adversarial examples.

C. Adversarial example generation

We consider several adversarial attack generation algorithms
for our attacks scenarios, including some of the most recent
and potent evasion attacks. Generally, in each algorithm, the
attacker tries to evade the system by adjusting malicious sam-
ples during the inference phase, assuming no influence over
the training data. However, as different defenses have started
to be deployed that specifically target individual adversarial

attack generation strategies, new algorithms have started to be
deployed that bypass these defenses. For example, methods
such as defensive distillation [30] and automation detection
[31] were introduced and demonstrate robustness against the
Fast gradient sign attack [19]. However, the new C&W attack
was able to bypass these defenses [24]. Thus, demonstrating
robustness against a range of these attacks provides confidence
that a defense is effective in general, against all known attack
strategies, rather than against a specific strategy.

These attacks can be divided into three categories: Gradient-
based attacks relying on detailed model information, including
the gradient of the loss w.r.t. the input. Score-based attacks
rely on the predicted scores, such as class probabilities or
logits of the model. On a conceptual level, these attacks use
the predictions to numerically estimate the gradient. Finally,
decision-based attacks rely only on the final output of the
model and minimizing the norm-based adversarial examples.
The attacks are summarized in Table I and described in more
detail in the order they appear in the table below.

TABLE I: Summary of the used attack methods. Notice that
the strength estimation is based on [32].

Method Category Perturb. Norm Learning Strength

FGSM gradient-based L∞ One shot ***
PGD gradient-based L∞ Iterative ****

JSMA gradient-based L0 Iterative ***
C&W gradient-based L2 Iterative *****

DF gradient-based L2 Iterative ****
LSA Score-based L2 Iterative ***
BA Decision-based L2 Iterative ***
HSJ Decision-based L2 Iterative *****

Fast Gradient Sign Method (FGSM). The Fast Gradient
Sign Method [19] is a single-step, gradient-based, attack. An
adversarial example is generated by performing a one step
gradient update along the direction of the sign of gradient at
each pixel as follows:

x∗ = x+ ε · sign(∇xLθ(x, y)) (3)

Where ∇L() computes the gradient of the loss function L and
θ is the set of model parameters. The sign() denotes the sign
function and ε is the perturbation magnitude.
Projected gradient descent (PGD). PGD [33] is a the
strongest iterative variant of the FGSM where the adversarial
example is generated as follows:

xt+1 = PSx(xt + α · sign(∇xLθ(xt, y))) (4)

Where PSx() is a projection operator projecting the input
into the feasible region Sx and α is the added noise at each
iteration. The PGD attack tries to find the perturbation that
maximizes the loss of a model on a particular input while
keeping the size of the perturbation smaller than a specified
amount.
Jacobian based saliency map attack (JSMA). Jacobian
based saliency map attack [34] builds a saliency map using
the Jacobian matrix in order to define the most salient input

pixels to be modified. The Jacobian matrix of a given input x
is computed as follows:

JF (x) =
∂F (x)

∂x
=

[
∂Fj(x)

∂xi

]
i×j

(5)

Where F denotes the second-to-last layer in [34].
Carlini & Wagner (C&W). The Carlini & Wagner attack
(C&W) [35] is one of the state-of-the-art attacks. This latter
has 3 forms based on different distortion measures (l0, l2, l∞).
In this work we only consider the l2 form as it has the best
performance. It generates adversarial examples by solving the
following optimization problem:

minimize
δ

‖δ‖2 + c · l(x+ δ)

s.t. x+ δ ∈ [0, 1]n
(6)

Where ‖δ‖2 is the smallest perturbation measured by the l2
norm that makes the model missclassify into another/target
class. l(·) is the loss function reflecting the distance between
the current situation and the objective of the attack defined as:

l(x) = max(maxi6=t{Z(x)i} − Z(x)t − κ) (7)

Where Z(x) is the output of the layer before the softmax
called logits. t is the target label, and κ is called the confidence,
a hyper-parameter used to enhance the transferability of the
output. An adversarial example is considered as successful if
maxi 6=t{Z(x)i} − Z(x)t ≤ 0. In the C& W attack, the box
constrained optimization problem x+δ ∈ [0, 1]n is turned to an
unconstrained problem by replacing δ with 1

2 (tanh(w)+1)−x,
wherew is a new optimizer ranging in (−∞,+∞).
DeepFool Attack (DF). DeepFool attack [36] is an iterative
attack optimized for the L2 metric where the basic idea is
to find the closest decision boundary from a clean image x
in the image space, and then to go beyond that boundary to
fool the classifier. It is hard to solve this problem directly in
the high-dimensional and highly non-linear space in neural
networks. So instead, it iteratively solves this problem with
a linearized approximation. Specifically, for each iteration,
it linearizes the classifier around the intermediate x∗ and
derives an optimal update direction on this linearized model.
It then updates x∗ towards this direction by a small step α.
By repeating the linearize-update process until x∗ crosses the
decision boundary, the attack finds an adversarial example with
small perturbation.
Local Search Attack (LSA). Local Search Attack [37] is an
iterative attack that utilizes a local-search based technique to
construct a numerical approximation to the network gradient,
which is then carefully used to construct a small set of pixels
in an image to perturb. This attack only uses the prediction
results of the target model and does not require gradients nor
probabilities.
Boundary Attack (BA). Boundary Attack [38] is an iterative
algorithm based on rejective sampling algorithm in combina-
tion with a simple proposal distribution. Starting from a large
perturbation sampled at each step from the proposal distribu-
tion, reducing the distance between the perturbed image and

the original input. In addition to its simplicity, this attack is
extremely flexible in terms of the possible adversarial criteria
and has a performance similar to that of gradient-based attacks
in terms of the size of minimal perturbations.
Hop Skip Jump Attack (HSJ). HSJ [39] is a powerful
black-box attack that only requires final class predictions.
This method builds an approximate gradient and estimates
the gradient direction using binary information at the decision
boundary.

IV. DEFENSIVE APPROXIMATION: IMPLEMENTING
APPROXIMATE CNNS

We propose to leverage approximate computing to improve
the robustness of machine learning classifiers, such as CNNs,
against adversarial attacks. We call this general approach
Defensive Approximation (DA). In our implementation, we re-
place the mantissa multiplier in floating point multipliers, with
a simpler approximate implementation. DA can be thought
of as a perturbation-based defense [14], [13] that either add
noise or otherwise filter the input data to try to interfere
with any adversarial modifications to the input of a classifier.
However, our approach advances the state-of-the-art by inject-
ing perturbations throughout the classifier and directly by the
hardware, thereby enhancing both robustness and performance.
Moreover, the injected noise due to the approximation is input
dependent, appears to sharpen the classification boundary,
and increase the classification confidence. Moreover, unlike
previous work, DA does not require retraining the model
or pre-processing the input. In this section, we present our
approximate multiplier design and analyze its properties.

A. Approximate Floating Point Multiplier

Machine learning structures such as CNNs often rely on
computationally expensive operations such as convolutions
that are composed of multiplications and additions. Floating-
point multiplications consume most of the processing energy
in both inference and training of CNNs [40], [41]. Although
approximate computation can be introduced in different ways
(with likely different robustness benefits), DA leverages a new
approximate 32-bit floating-point multiplier, which we call
approximate floating-point multiplier (Ax-FPM). The IEEE
754-2008 compliant floating-point format binary numbers are
composed of three parts: a sign, an exponent, and a mantissa
(also called fraction) [42]. The sign is the most significant
bit, indicating whether the number is positive or negative. In
a single-precision format, the following 8 bits represent the
exponent of the binary number ranging from −126 to 127.
The remaining 23 bits represent the fractional part (mantissa),
normalized according to well defined rules in the standard. For
most of the floating number range, the normalized format is:

val = (−1)sign × 2exp−bias × (1.fraction) (8)

A floating-point multiplier (FPM) consists mainly of three
units: the mantissa multiplier, the exponent adder, and the
rounding unit. We choose to approximate the mantissa mul-
tiplication unit only for two main reasons: (i) Approximating

the mantissa prevents massive noise injection that can result
from perturbing the exponent or sign, and (ii) The mantissa
multiplication consumes 81% of the overall power of the
multiplier [43].

Ax-FPM is designed based on a mantissa multiplication unit
that is constructed using approximate full adders (FA). The
FAs are aggressively approximated to inject computational
noise within the circuit. We describe Ax-FPM by first pre-
senting the approximate FA design, and then the approximate
mantissa multiplier used to build the Ax-FPM.

Fig. 1: An illustration of a 4× 4 array multiplier architecture.

To build a power-efficient and a higher performance FPM,
we propose to replace the mantissa multiplier by an ap-
proximate mantissa multiplier; an array multiplier constructed
using approximate FAs. We selected an array multiplier im-
plementation because it is considered one of the most power-
efficient and high performing among conventional multiplier
architectures [44]. In the array architecture, multiplication is
implemented through the addition of partial products generated
by multiplying the multiplicand with each bit of multiplier
using AND gates, as shown in Figure 1. In the case of a 32-
bit floating-point multiplier, the mantissa multiplication is a
24× 24-bit multiplication.

Specifically, we build an array multiplier based on an
approximate mirror adder (AMA5) [45] in place of exact
FAs. The approximation of a conventional FA is performed
by removing some internal circuitry, thereby resulting in
power and resource reduction at the cost of introducing errors.
Consider a FA with (A,B, Cin) as inputs and (Sum, Cout) as
outputs (C here refers to carry). For any input combination,
the logical approximate expressions for Sum and Cout are:
Sum = B and Cout = A as shown in Table II. The AMA5
design is formed by only two buffers (see Figure 2), leading
to the latency and energy savings relative to the exact design,
but introduce errors into the computation. It is interesting to
note that these errors are data dependent, appearing for specific
combinations of the inputs, and ignoring the carry in value,
making the injected noise difficult to predict or model.

When trying to evaluate the proposed Ax-FPM, we were
interested in studying its behavior when dealing with small
numbers ranging between −1 and +1 since most of the
internal operations within CNNs are in this range. We measure
the introduced error as the difference of the output of the
approximate multiplier and the exact multiplier. The results are
shown in Figure 3 using 100 million randomly generated mul-
tiplications across the input range from -1 to 1. Three trends

TABLE II: Truth Tables of Exact FA and AMA5.

Inputs Exact AMA5
A B Cin Sum Cout Sum Cout

0 0 0 0 0 0 0
0 0 1 1 0 0 0
0 1 0 1 0 1 0
0 1 1 0 1 1 0
1 0 0 1 0 0 1
1 0 1 0 1 0 1
1 1 0 0 1 1 1
1 1 1 1 1 1 1

𝐴
𝐵
𝐶𝑖𝑛

𝑆𝑢𝑚

𝐶𝑜𝑢𝑡

𝐶𝑜𝑢𝑡

𝑆𝑢𝑚
𝐴

𝐵
𝐶𝑖𝑛

(a) (b)

Fig. 2: Logic diagram of (a) exact Full Adder, (b) AMA5.

can be observed that will be used later to help understanding
the impact of the approximation on CNN security:

(i) The first is the data-dependent discontinuity of the
approximation-induced errors.

(ii) We noticed that in 96% of the cases, the approximate
multiplication results in higher absolute values than the exact
multiplication: For positive products, the approximate result is
higher than the exact result, and for negative product results
the approximate result is lower than the exact result.

(iii) In general, we notice that the larger the multiplied num-
bers, the larger the error magnitude added to the approximate
result.

Fig. 3: Noise introduced by the approximate multiplier while
the operands ∈ [0, 1] and its projection on a 2D plan.

B. Approximate Convolution

In order to understand the impact of AC at larger scales
than the individual multiplication, we track the impact on
convolution operations. The approximate CNN is built using
the approximate convolution operations as building blocks.

The activation functions and the pooling layers which do not
use multiplication are similar to the conventional CNN. Convo-
lution layers enable CNNs to extract data-driven features rather
than relying on manual feature-extraction in classical machine
learning systems. The convolution operation is performed on
the layer’s input data using a kernel matrix that is convoluted
(piece-wise multiplied) against the input data to produce
a feature map. Specifically, the output of each convolution
operation is the dot product of the input matrix I and a weight
kernel W computed as follows:

O[x][y] = B +

R−1∑
i=0

R−1∑
j=0

I[Sx + i][Sy + j]×W [i][j] (9)

where O is the output feature map, B is the bias vector, R
is the size of the kernel, and S is the stride.

Image 6Image 5

Image 4Image 3

Image 2Image 1

Filter

Fig. 4: Convolution result of the filter and each input image
using exact and approximate convolution.

As we slide the filter over the input from left to right and
top to bottom whenever the filter coincides with a similar
portion of the input, the convolution result is high, and the
neuron will fire. The weight matrix filters out portions of
the input image that does not align with the filter, and the
approximate multiplier helps improve this process by further
increasing the output when a feature is detected. In Figure
4, we run an experiment where we choose a filter and six
different images with different degrees of similarity to the
chosen filter (1 to 6 from the least to the most similar),
and we perform the convolution operation. We notice that
the approximate convolution delivers higher results for similar
inputs and lower results for dissimilar inputs. We can also
notice that the higher the similarity, the higher the gap between
the exact and the approximate result. Therefore, using the
approximate convolution, the main features of the image that
are important in the image recognition are retained and further
highlighted with higher scores that will later help increase the
confidence of the classification result, as explained in Section
VI-B.

V. CAN DA HELP IN DEFENDING AGAINST ADVERSARIAL
ATTACKS?

In this section, we empirically explore the robustness prop-
erties of DA under a number of threat models. We first
explore the transferability of adversarial attacks where we
evaluate whether attacks crafted for exact CNNs transfer to
approximate CNNs. We then consider direct attacks against
approximate CNNs in both black and white-box settings.

A. Experimental setup

The first benchmark we use is the LeNet-5 CNN architecture
[46] along with the MNIST database [47], which implements
a classifier for handwritten digit recognition. The MNIST
consists of 60,000 training and 10,000 test images with 10
classes corresponding to digits. Each digit example is repre-
sented as a gray-scale image of 28 × 28 pixels, flattened as
vectors of 784 features, where each feature corresponds to a
pixel intensity normalized between 0 and 1. We also use the
AlexNet image classification CNN [16] along with the CIFAR-
10 database [48]. CIFAR-10 consists of 60,000 images, of
dimension 32× 32× 3 each. it contains ten different classes,
and each class is divided into 5,000 training images and 1,000
test images. LeNet-5 consists of two convolutional layers, two
max-pooling layers, and two fully connected layers. AlexNet
uses five convolution layers, three max-pooling layers, and
three fully connected layers. The rectified linear unit (ReLU)
was used as the activation function in this evaluation, along
with a dropout layer to prevent overfitting. For both models,
the output layer is a special activation function called softmax
that will assign probabilities to each class.

Our implementations are built using the open source ma-
chine learning framework PyTorch [49]. We use the Adam
optimization algorithm to train the LeNet-5 classifier. For
Alexnet, we use Stochastic Gradient Descent (SGD) with a
learning rate equal to 0.01 and 0.001, respectively. Note that
we do not train the approximate classifier, but rather use
the same hyperparameters obtained from training the original
(exact) classifier; we simply replace the multipliers with the
approximate multiplier implementation.

Our reference exact CNNs are conventional CNNs based
on exact convolution layers with the format Conv2d provided
by PyTorch. In contrast, the approximate CNNs emulate the
32-bit Ax-FPM functionality and replace the element-wise
multiplication in the convolution layers with Ax-FPM in order
to assess the behavior of the approximate classifier. Except for
the black-box setting where the attacker trains her own reverse-
engineered proxy/substitute model, the approximate and exact
classifiers share the same pre-trained parameters and the same
architecture; they differ only in the hardware implementation
of the multiplier.

B. Do adversarial attacks on an exact CNN transfer to an
approximate CNN ?

Attack scenario. In this setting, the attacker has full knowl-
edge of the classifier architecture and hyper-parameters, but
without knowing that the model uses approximate hardware.

An example of such scenario could be in case an attacker
correctly guesses the used architecture based on its widespread
use for a given application (e.g., LeNet-5 in digit recognition),
but is unaware of the use of DA as illustrated in Figure 5.

ם 0RGHO�
ם +DUGZDUH

&OHDQ�VDPSOH

$WWDFNHU�NQRZOHGJH

([DFW�
&ODVVLILHU

$WWDFN�VFHQDULR

$GYHUVDULDO�([DPSOH

Fig. 5: Transferrability attack scenario.

Transferability Analysis. The classifier generates adver-
sarial examples using the set of algorithms in Table I and
assume that the exact classifier from Lenet-5 trained on the
MNIST dataset. Notice that the hyperparameters, as well
as the structure of the network, are the same between the
exact and the approximate classifiers. The attacker then tests
the adversarial examples against the approximate classifier.
Table III presents the attacks respective success rates. We
notice that the DA considerably reduces the transferability
of the malicious samples and, by consequence, increases the
robustness of the classifier to this attack setting. We observed
that the robustness against transferability is very high, and
reaches 99% for C&W attack.

TABLE III: Success rate of different attacks under exact to
approximate transferability setting for MNIST.

Attack method Exact LeNet-5 Approximate LeNet-5

FGSM 100% 12%
PGD 100% 28%

JSMA 100% 9%
C&W 100% 1%

DF 100% 17%
LSA 100% 18%
BA 100% 17%
HSJ 100% 2%

We repeat the experiment for AlexNet with CIFAR-10
dataset. For the same setting, the success of different adversar-
ial attacks is shown in Table IV. While more examples succeed
against the approximate classifier, we see that the majority of
the attacks do not transfer. Thus, DA offers built-in robustness
against transferability attacks.

Notice that, unlike other state-of-the-art defenses, our de-
fense mechanism protects the network without relying on
the attack details or the model specification and without
any tuning or training beyond that of the original classifier.
Unlike most of the perturbation-based defenses that degrade
the classifiers accuracy on non-adversarial inputs, our defense
strategy significantly improves the classification robustness
with no baseline accuracy degradation, as we will show later
in the paper.

TABLE IV: Success rate of different attacks under Exact to
approximate transferability attack setting for CIFAR-10.

Attack method Exact AlexNet Approximate AlexNet

FGSM 100% 38%
PGD 100% 31%

JSMA 100% 32%
C&W 100% 17%

DF 100% 35%
LSA 100% 36%
BA 100% 37%
HSJ 100% 12%

C. Can we attack an approximate CNN?

In the remaining attack models, we assume that the attacker
has direct access to the approximate CNN. We consider both
a black-box setting where the attacker can only query the
classifier and a white-box setting where a powerful attacker
knows the full internal details of the approximate classifier.

Black-box Attack. In a black-box setting, the attacker has
no access to the classifier architecture, parameters, and the
hardware platform but can query the classifier with any input
and obtain its output label. In a typical black-box attack,
the adversary uses the results of many queries to the target
model to reverse engineer it. Specifically, the adversary trains
a substitute (or proxy) using the labeled inputs obtained from
querying the original model (see Figure 6). We also conduct
a black box attack on the exact classifier and evaluate how
successful the black box attack is in fooling it. Essentially,
we are comparing the black-box transferability of the reverse-
engineered models to the original models for both the exact
and the approximate CNNs.

ם 0RGHO�
ם +DUGZDUH

$WWDFNHU�NQRZOHGJH

$SSUR[LPDWH�
&ODVVLILHU

$WWDFN�VFHQDULR

[�
[�
[�
�

�

�

�
[Q

I�[��
I�[��
I�[��

�

�

�

�
I�[Q�

7UDLQ�D�VXEVWLWXWH�
PRGHO�

&OHDQ�VDPSOH ([DFW�
&ODVVLILHU

$GYHUVDULDO�([DPSOH

Fig. 6: Black-box attack scenario.

In Table V, we present the attack success ratios for the exact
CNN and the approximate/DA CNN. DA increases resilience
to adversarial attacks across various attacks and for both
single-step and iterative ones: it achieves 73% classification
success on adversarial examples in the worst case and the
defense succeeded in up to 100% of the examples generated
by C&W, PGD, and HSJ respectively.

TABLE V: Success rate of different attacks under Black-box
setting for MNIST.

Attack method Exact LeNet-5 Approximate LeNet-5

FGSM 100% 22%
PGD 100% 0%

JSMA 100% 13%
C&W 100% 0%

DF 100% 25%
LSA 100% 26%
BA 100% 27%
HSJ 100% 0%

White-box Attack. In this setting, the attacker has access
to the approximate hardware along with the victim model
architecture and parameters, as shown in Figure 7. In particu-
lar, the adversary has full knowledge of the defender model,
its architecture and hyperparameters, the defense mechanism,
along with full access to approximate gradients used to build
the gradient-based attacks.

ם 0RGHO�
ם +DUGZDUH

&OHDQ�VDPSOH

$WWDFNHU�NQRZOHGJH

$SSUR[LPDWH�
&ODVVLILHU�

$WWDFN�VFHQDULR

$GYHUVDULDO�([DPSOH

Fig. 7: White-box attack scenario.

In this scenario, we assume a powerful attacker with full
access to the approximate classifier’s internal model and can
query it indefinitely to directly create adversarial attacks.
Although DA in production would normally reduce execution
time, in our experiments, we emulate the 32-bit Ax-FPM
functionality within the approximate classifier. As a result,
this makes inference extremely slow: on average, it takes 5
to 6 days to craft one adversarial example on an 8th Gen Intel
core i7-8750H processor with NVIDIA GeForce GTX 1050.
This led us to limit the white-box experiments; we use only
two of the most efficient attacks in our benchmark: C&W
and DeepFool attacks, and for a limited number of examples
selected randomly from our test set.

In a white box attack, with an unconstrained noise budget,
an adversary can always eventually succeed in causing an im-
age to misclassify. Thus, robustness against this type of attack
occurs in two ways: (1) The magnitude of the adversarial
noise to be added: if this magnitude is high, this may exceed
the ability of the attacker to interfere, or cause the attack to
be easily detectable; and (2) the number of iterations, and
consequently the time for producing adversarial examples: an
attack that exceeds a certain limit of queries might be detected
and stopped, such as the case of Cloud-based machine-learning
a service platforms.

Figures 8 and 9, respectively, present different measures of
L2 for adversarial examples crafted using DF and C&W to
attack both a conventional CNN and an approximate CNN.

Fig. 8: L2 values measuring distance between different clean
samples from MNIST and the generated adversarial examples
using DeepFool attack for approximate and exact classifiers.

We notice that the distance between a clean image and the
adversarial example generated for the approximate classifier
is much larger than the distance between a clean sample and
the adversarial example generated for the exact classifier. On
average, a difference of 5.12 for L2-DeepFool attacks and
1.23 for L2-C&W attack. This observation confirms that DA
is more robust to adversarial perturbations since the magnitude
of the adversarial noise has to be significantly higher for DF
to fool DA successfully.

To understand the implication of this higher robustness in
terms of observable effects on the input image, we also show
the Peak Signal to Noise Ratio (PSNR) and the Mean Square
Error (MSE) in Figures 10 and 11; these are two common
measures of the error introduced in a reconstruction of an
image. Specifically, MSE represents the average of the squares
of the ”errors” between the clean image and the adversarial
image. The error is the amount by which the values of the
original image differ from the distorted image. The PSNR is
an expression for the ratio between the maximum possible
value (power) of a signal and the power of distorting noise
that affects the quality of its representation. It is given by the
following equation: PSNR = 20 log10

(
MAXx√
MSE

)
. The lower

the PSNR, the higher the image quality degradation is.
We notice that the adversarial examples generated on the

approximate classifier have a substantially lower quality than
adversarial examples generated for an exact classifier. The
PSNR difference reaches 4dB for C&W and 7.8dB for
DeepFool. Moreover, on average, the approximate classifier-
dedicated adversarial examples have 6 times, and 3 times more
MSE than the exact classifier-dedicated adversarial examples
for C&W and DeepFool attacks, respectively.

We can conclude that DA provides substantial built-in
robustness for all three attack models we considered. Attacks
generated against an exact model do not transfer successfully
to DA. Black-box attacks also achieve a low success rate
against DA. Finally, even white-box attacks require substantial
increases in the injected noise to fool DA. In the next section,

Fig. 9: L2 values measuring distance between different clean
samples from MNIST and the generated adversarial examples
using C&W attack for approximate and exact classifiers.

we probe deeper into DA’s internal behavior to provide some
intuition and explanation for these observed robustness advan-
tages.

Fig. 10: MSE and PSNR values for the generated adversarial
examples using DeepFool method when attacking the approx-
imate and the exact classifiers.

Fig. 11: MSE and PSNR values for the generated adversarial
examples using L2 C&W method when attacking the approx-
imate and the exact classifiers.

VI. HOW DOES DA HELP CNN ROBUSTNESS?
In this section, we probe into the DA classifier’s operation

to attempt to explain the robustness advantages we observed
empirically in the previous section. While the explainability
of deep neural networks models is a known hard problem, es-
pecially under adversarial settings [50], we attempt to provide

an overview of the mechanisms that we think are behind the
defensive approximation impact on security. We first study the
impact of the approximation on CNNs’ confidence and gener-
alization property. We follow this analysis with a mathematical
argument explaining the observed robustness based on recent
formulations by Lecuyer et al. [14].

A. Impact of approximation on model confidence

The output of the CNN is computed using the softmax
function, which normalizes the outputs from the fully con-
nected layer into a likelihood value for each output class.
Specifically, this function takes an input vector and returns
a non-negative probability distribution vector of the same
dimension corresponding to the output classes, and whose
components sum to 1. In this section, we examine the impact
of approximation on the observed classifier confidence. We
compare the output scores of an exact and an approximate
classifier for a set of 1000 representative samples selected from
the MNIST dataset: 100 randomly selected from each class.
We define the classification confidence, C, as the difference
between the true class l’s score and the ”runner-up” class
score, i.e., the class with the second-highest score. C is
expressed by Equation 10. The confidence ranges from 0 when
the classifier gives equal likelihood to the top two or more
classes, to 1 when the top class has a likelihood of 1, and all
other classes 0.

C = output[l]−maxj 6=l{output[j]} (10)

Figure 12 shows a scatter-plot representation of the confi-
dence of both classifiers for the 1000 image sample set. On
each point on the x-axis, we plot the confidence of that the
DA classifier and the exact classifier for a particular image.
It is clear the confidence of the approximate classifier is
substantially higher, clustering near 1. In fact, for 97.6% of
the images, DA has increased the confidence in the true class
compared to other classes. We also plot the same results as a
cumulative histogram in Figure 13. DA images have higher
confidence; for example, in images classified by the exact
classifier, less than 20% had more than 0.8 confidence. On
the other hand, for the approximate classifier, 74.5% of the
images reached that threshold.

Compared to the baseline feature maps generated from an
exact convolution operation, for the same pre-trained weights,
our approximate convolution highlights further the features.
Recall that the multiplier injected noise is higher when input
numbers are higher (i.e., there is a high similarity between
the kernel and the input data) and lower when the inputs are
lower (when the similarity is small), as shown in Figure 4.
We believe that these enhanced features continue to propagate
through the model resulting in a higher probability for the
predicted class.

B. Theoretical Analysis

We now explore the impact of approximation on the classi-
fier robustness leveraging some formulations from Differential
Privacy (DP) [51]. Our formulation is based on recent similar

Fig. 12: Difference in confidence of exact and approximate
model for clean image samples from MNIST.

Fig. 13: Cumulative distribution of confidence.

formulations for certified robustness analysis [13], [14]. These
prior works studied the impact of randomization on robustness
by adding random Gaussian noise to all layers of a CNN.While
the noise injected by DA follows a different distribution and
is input dependent rather than stochastic, we believe that
the theoretical analysis provides insights into the possible
mechanisms that improve the robustness of DA.

In this analysis, we formally model the problem as follows:
Let x be an input sample and h a conventional classifier. We
denote ĥ(x) = h(x) + 4(x) the defender implementation
where 4(x) is the data dependent randomness added by
the approximate circuit. In this analysis, we use the concept
of Differential Privacy (DP) [51], [52], which is concerned
whether the output of a computation over a given database can
reveal information about individual records in the database.
To prevent such data leakage, randomness is introduced in the
computation, and DP is accordingly defined as follows:

Definition 1: A randomized algorithm A that takes as input
a database d and outputs a value in a space O is said to satisfy
(ε, δ)-DP w.r.t. a metric ρ if, for any databases d and d′ with
ρ(d, d′) 6 1, and for any subset of possible outputs S ⊆ O,

we have:

P (A(d) ∈ S) ≤ eεP (A (d′) ∈ S) + δ (11)

Out of this definition, Expected Output Stability Bound, a
key property of DP is deduced; the expected value of an (ε,
δ)-DP algorithm with bounded output is not sensitive to small
changes in the input.

The intuition behind using the analogy with DP in the
context of robustness to adversarial examples is to create an
approximate classifier such that, given an input example, the
predictions are DP with regards to the features of the input
(e.g., the pixels of an image). In this setting, we can derive
stability bounds for the expected output of the randomized
classifier, i.e., the approximate classifier. The bounds can
be interpreted as a certification for robustness to adversarial
examples. In our method, the added approximate noise 4(x)
for a given input x has a similar effect to randomization.

Formally, to frame the DP into our setting, regard the
feature values (e.g., pixels) of an input x as the records in
a database. Let Bp(r) := {α ∈ Rn : ‖α‖p ≤ r} be the p-
norm ball of radius r. For a given classification model, h,
and a fixed input, x ∈ Rn, an attacker is able to craft
a successful adversarial example of size L for a given p-
norm if they find α ∈ Bp(L) such that h(x + α) 6= h(x).
Now, consider an approximate classifier ĥ that, on input x,
outputs scores (y1(x), . . . , yK(x)) (with yk(x) ∈ [0, 1] and∑K
k=1 yk(x) = 1).
Combining Lemma 1 and Corollary 1 in [14] directly

implies bounds on the expected output on an approximate
classifier:

Theorem 1: Suppose an approximate function ĥ satis-
fies (ε, δ)-DP w.r.t. a p-norm metric, and where ĥ(x) =
(y1(x), . . . , yK(x)) , yk(x) ∈ [0, 1]:

∀k,∀α ∈ Bp(1).ĥk(x) ≤ eεĥk(x+ α) + δ. (12)

Now, consider α ∈ Bp(1), and let x∗ = x + α. From
Equation 12, we have: (i) ĥk(x) 6 eεĥk(x∗) + δ, and (ii)
ĥi6=k(x∗) 6 eεĥi 6=k(x) + δ.

Practically, (i) gives a lower-bound on ĥk(x∗) and (ii) gives
an upper-bound on ĥi 6=k(x∗).

These elements confirm a theoretically verifiable bounded
impact of an adversarial perturbation in the input on the
approximate classifier’s output.

To further investigate the robustness guarantee, suppose that
when the base classifier h classifies an input x the most
probable class k is returned with probability pk, and the
runner-up class is returned with probability pi 6=k < pk. Based
on [13], our approximate classifier is robust around x within
the `2 radius R = σ

2

(
Φ−1 (pk)− Φ−1 (pi)

)
, where Φ−1 is

the inverse of the standard Gaussian CDF. This result also
holds if we replace pk with a lower bound pk and we replace
pi with an upper bound pB . Hence, based on Theorem 1 in
[13]:

Theorem 2: Let h : Rd → Y be any baseline classifier, and
let ε ∼ N

(
0, σ2I

)
. Let ĥ be the approximate implementation

of h. Suppose ck ∈ Y and pk, pi ∈ [0, 1] satisfy:

P (h(x+ ε) = ck) ≥ p
k
≥ pi ≥ max

c6=ck
P(h(x+ ε) = c) (13)

Then ĥ(x+ δ) = ck for all ‖δ‖2 < R, where

R =
σ

2

(
Φ−1

(
pk
)
− Φ−1(pi)

)
(14)

Notice that Theorem 2 insures a certified radius R that is
large when: (1) the noise level σ is high, (2) the probability of
the top class ck is high, and (3) the probability of each other
class ci 6=k is low.

Conditions (2) and (3) of high radius basically mean a
higher confidence in the sense of Equation 10. This is coherent
with the results obtained in terms of robustness, given Figures
12 and 13.

The randomization technique proposed in [14] and [13] uses
a totally random noise that is uncorrelated to the input. This
led them to use heavy Monte Carlo simulations to estimate the
randomized classifier’s output, which induces a considerable
time overhead limiting the applicability of these techniques,
especially in time critical applications. In our approach, the
noise is injected at circuit-level through the approximate
design and is not artificially generated from an outside source.
Moreover, the correlation to the input that highlights useful
features in the convolution output gives higher confidence and
thereby ensures a higher robustness radius in the sense of
Theorem 2.

VII. PERFORMANCE IMPLICATIONS

A. Impact on model Accuracy

It is important for a defense mechanism that aims to
enhance robustness against adversarial attacks to keep at
least an acceptable performance level for clean inputs. In
fact, considerably reducing the baseline accuracy, or creating
an exploding or vanishing gradient impact that makes the
model sensitive to other types of noise undermines the model
reliability. In our proposed approach, we maintain the same
level of recognition rate even with the approximate noise in
the calculations. Counter-intuitively, this data-dependent noise
helps to better highlight the input’s important features used in
the recognition and does not affect the classification process. A
drop of 0.01% in the recognition rate for the case of LeNet-5
and 1% for AlexNet is recorded as mentioned in Table VI.

TABLE VI: Accuracy results of the LeNet-5 and AlexNet
CNNs.

Used Multiplier LeNet5 AlexNet

Exact multiplier 97.78% 81%
Ax-FPM 97.77% 80%

B. Defensive approximation and sensitivity

To further investigate the stability of the approximate clas-
sifier, we explored the inference results under input random
perturbation. In Table VII, random Gaussian noise (mu = 0,

Fig. 14: Energy, delay and EDP of AMA5-based 24× 24 ap-
proximate multiplier normalized to a conventional multiplier.

std = 0.01, 0.05, 0.1) was added to the input images and fed to
both exact and approximate model in order to evaluate their
sensitivity to random white noise (Note that noise added to
a grey-scaled input image with a standard deviation equal to
0.1 is considered as aggressive noise). Measuring the accuracy
of both classifiers, we notice that the approximate classifier
is more robust to white Gaussian noise, and this could be
explained by the fact that the introduced approximation is
pushing the decision boundary further from the input image
making it harder for this input to cross the boundary. Our pro-
posed approximate classifier is not only resilient to adversarial
perturbations but also to white Gaussian noise.

TABLE VII: Accuracy results when adding Gaussian noise to
input images from the MNIST dataset.

Classifier std = 0.01 std = 0.05 std = 0.1

Exact 96% 95.5% 93%
Approximate 96% 95.5% 94%

C. Impact on performance and energy consumption

This subsection shows the additional benefit of using AC,
especially in the context of power-limited devices such as
mobile devices, embedded devices and, Edge devices. The
experiments evaluate normalized energy and delay achieved
by the proposed approximate multiplier compared to a con-
ventional baseline multiplier. Multipliers are implemented
using 45 nm technology via the Predictive Technology Model
(PTM) using the Keysight Advanced Design System (ADS)
simulation platform [53].

Figure 14 compares the energy, delay, and energy delay
product (EDP) for the 24×24 approximate multiplier normal-
ized to a conventional multiplier. The AMA5-based mantissa
multiplier achieves a considerable gain in performance and
energy saving, with power-saving reaching 67% of the total
power consumption. The approximate circuit also achieves
about 75% reduction in delay. AMA5 uses only eight tran-
sistors rather than 28, leading to a corresponding 72% savings
in area.

Unlike most of the state-of-the-art defense strategies that
lead to power, resource, or timing overhead, our approach
results in saving energy and resources.

VIII. DISCUSSION

This work tackles the problem of robustness to adversarial
attacks from a totally new perspective: approximating the
underlying hardware. DA exploits the inherent fault tolerance
of deep learning systems [12], by building an approximation
technique that improves robustness to adversarial noise, along
with the by-product gains of AC in terms of energy and
resources. Our empirical study shows promising results in
terms of robustness across a wide range of attack scenarios.
We notice that AC-induced noise tends to help the classifier
generalize and enhances its confidence. While we do not claim
a full and definitive explanation of this mechanism, we believe
that the circuit-level approximate mantissa multiplier has a
positive effect on the features highlighting. In fact, the AC-
induced noise in the convolution layer is shown to be higher in
absolute value when the inputs are similar to the convolution
filter. This observation at the feature map propagates through
the model and results in enhanced classification confidence,
i.e., the difference between the 1st class and the ”runner-up”.
This aspect of confidence enhancement is comparable to the
smoothing effect created by the randomization techniques and
theoretically ensures a higher robustness guarantee.

We think that this work opens a new research direction in
tackling the deep learning security problem and encourages
researchers to investigate further the use of AC as a potential
defense mechanism against adversarial attacks. Besides, we
believe that the AC-induced noise can also be useful in a
privacy preserving context.

Furthermore, we believe that the robustness enhancement
introduced by hardware-supported approximation is orthog-
onal some other existing robustness approaches (e.g., input
reprocessing and adversarial training) and hence could be used
in parallel. However, further investigation needs to be done.

IX. RELATED WORK

Several defense mechanisms were proposed to combat the
effect of adversarial attacks and can be categorized as follows:

Adversarial training. Adversarial training is one of the
most explored defenses against adversarial attacks. The main
idea can be traced back to [19], in which models were
hardened by including adversarial examples in the training
data set of the model. As a result, the trained model will
classify evasive samples with higher accuracy. Various at-
tempts to combine adversarial training with other methods
have resulted in better defense approaches such as cascade
adversarial training [54], principled training [55]. Nonetheless,
adversarial training is not effective when the attacker uses
a different attack strategy than the one used to train the
model [56]. Moreover, adversarial training is much more
computationally intensive than training a model on the training
data set only because generating evasive samples needs more

computation and model fitting is more challenging (takes more
epochs) [57].
Input Preprocessing: Input preprocessing depends on ap-
plying transformations to the input to remove the adver-
sarial perturbations [58], [59]. Examples of transformation
are denoising auto-encoders [60], the median, averaging, and
Gaussian low-pass filters [59], and JPEG compression [58].
However, it was shown that this group of defenses is insecure
under strong white-box attacks [61]; if the attacker knows
the specific used transformation, the attacker can take this
into account when creating the evasive sample. Furthermore,
preprocessing every input requires additional computation on
every input.
Gradient masking: Gradient masking relies on applying
regularization to the model to make its output less sensitive
to input perturbations. Papernot et al. proposed defensive dis-
tillation [30], which is based on increasing the generalization
of the model by distilling knowledge out of a large model
to train a compact model. Nonetheless, defensive distillation
was found weak against the C&W attack [24]. Nayebi and
Surya [62] purposed to use saturating networks that use a loss
function that promotes the activations to be in their saturating
regime. Ross and Doshi-Velez [63] proposed to regularize the
gradient input by penalizing variations in the model’s output
with respect to changes in the input during the training of
differentiable models, such as neural networks. Nonetheless,
gradient masking approaches found to make white-box attacks
harder and vulnerable against black-box attacks [64], [57].
Furthermore, they require re-training of pre-trained networks.
Randomization-based defenses. These techniques are the
closest to our work [14], [13], [65], [66], [15]. For example,
Liu et al. [66] suggest to randomize the entire DNN and predict
using an ensemble of multiple copies of the DNN. Lecuyer et
al. also suggest to add random noise to the first layer of the
DNN and estimate the output by a Monte Carlo simulation.
These techniques offer a bounded theoretical guarantee of ro-
bustness. Unlike our implementation, they assume introduction
of random noise at different stages of the classifier. From a
practical perspective, none of these works have been evalu-
ated at scale or with realistic implementations. For example,
Raghunathan et al. [15] evaluate only a tiny neural network.
Other works [13], [14] consider scalability but require high
overhead to implement the defense (specifically, to estimate
the model output which requires running a heavy Monte Carlo
simulation involving a number of different runs of the CNN).
Our approach is different since not only our AC-injected
noise does not require overhead but comes naturally from the
simpler and faster AC implementation. Moreover, while these
techniques require additional training, our implementation is a
drop-in replacement of the hardware without specific training
requirements, and with no changes to the architecture nor the
parameters of the CNN.

X. CONCLUSIONS

To the best of our knowledge, this is the first work that
proposes the use of hardware-supported approximation as a

defense strategy against adversarial attacks for CNNs. We
propose a CNN implementation based on Ax-FPM, an energy-
efficient approximate floating-point multiplier. While AC is
used in the literature to reduce the energy and delay of
CNNs, we show that AC also enhances their robustness to
adversarial attacks. The proposed defense is, on average, 87%
more robust against strong grey-box attacks and 87.5% against
strong black-box attacks than a conventional CNN for the
case of MNIST dataset, with negligible loss in accuracy. The
approximate CNN achieves a significant reduction in power
and EDP of 67% and 75%, respectively.

In future work, we plan to further mitigate the impact
of the adversarial example; we intend to design and deploy
randomly reconfigurable approximate computing elements to
enhance the resiliency of the CNN. We also intend to study
the generalization of our observations to more complex CNN
architectures.

REFERENCES

[1] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” 2014.

[2] J. Redmon and A. Farhadi, “Yolo9000: Better, faster, stronger,” 2016.
[3] L. Deng and Y. Liu, Deep learning in natural language processing.

Springer, 2018.
[4] H. A. Pierson and M. S. Gashler, “Deep learning in robotics: a review

of recent research,” Advanced Robotics, vol. 31, no. 16, pp. 821–835,
2017.

[5] M. Al-Qizwini, I. Barjasteh, H. Al-Qassab, and H. Radha, “Deep
learning algorithm for autonomous driving using googlenet,” in 2017
IEEE Intelligent Vehicles Symposium (IV). IEEE, 2017, pp. 89–96.

[6] R. Miotto, F. Wang, S. Wang, X. Jiang, and J. T. Dudley, “Deep
learning for healthcare: review, opportunities and challenges,” Briefings
in bioinformatics, vol. 19, no. 6, pp. 1236–1246, 2018.

[7] A. Kurakin, I. J. Goodfellow, and S. Bengio, “Adversarial examples
in the physical world,” CoRR, vol. abs/1607.02533, 2016. [Online].
Available: http://arxiv.org/abs/1607.02533

[8] I. Evtimov, K. Eykholt, E. Fernandes, T. Kohno, B. Li, A. Prakash,
A. Rahmati, and D. Song, “Robust physical-world attacks on
machine learning models,” CoRR, vol. abs/1707.08945, 2017. [Online].
Available: http://arxiv.org/abs/1707.08945

[9] V. Venceslai, A. Marchisio, I. Alouani, M. Martina, and M. Shafique,
“Neuroattack: Undermining spiking neural networks security through
externally triggered bit-flips,” 2020.

[10] Y. Deng, “Deep learning on mobile devices - A review,” CoRR, vol.
abs/1904.09274, 2019. [Online]. Available: http://arxiv.org/abs/1904.
09274

[11] M. A. Neggaz, I. Alouani, S. Niar, and F. Kurdahi, “Are cnns reliable
enough for critical applications? an exploratory study,” IEEE Design
Test, pp. 1–1, 2019.

[12] M. A. Neggaz, I. Alouani, P. R. Lorenzo, and S. Niar, “A reliability study
on cnns for critical embedded systems,” in 2018 IEEE 36th International
Conference on Computer Design (ICCD), 2018, pp. 476–479.

[13] J. Cohen, E. Rosenfeld, and Z. Kolter, “Certified adversarial robustness
via randomized smoothing,” in Proceedings of the 36th International
Conference on Machine Learning, ser. Proceedings of Machine
Learning Research, K. Chaudhuri and R. Salakhutdinov, Eds., vol. 97.
Long Beach, California, USA: PMLR, 09–15 Jun 2019, pp. 1310–1320.
[Online]. Available: http://proceedings.mlr.press/v97/cohen19c.html

[14] M. Lecuyer, V. Atlidakis, R. Geambasu, D. Hsu, and S. Jana, “Certified
robustness to adversarial examples with differential privacy,” in 2019
IEEE Symposium on Security and Privacy (SP), 2019, pp. 656–672.

[15] A. Raghunathan, J. Steinhardt, and P. Liang, “Certified defenses against
adversarial examples,” 2018.

[16] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Proceedings of the 25th
International Conference on Neural Information Processing Systems -
Volume 1, ser. NIPS12. Red Hook, NY, USA: Curran Associates Inc.,
2012, p. 10971105.

[17] D. C. Ciresan, U. Meier, J. Masci, and J. Schmidhuber, “Multi-column
deep neural network for traffic sign classification,” Neural networks :
the official journal of the International Neural Network Society, vol. 32,
pp. 333–8, 2012.

[18] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,
and R. Fergus, “Intriguing properties of neural networks,” 2013.

[19] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” 2014.

[20] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” CoRR, vol. abs/1512.03385, 2015. [Online]. Available:
http://arxiv.org/abs/1512.03385

[21] J. Lu, H. Sibai, E. Fabry, and D. Forsyth, “No need to worry about
adversarial examples in object detection in autonomous vehicles,” 2017.

[22] A. Boloor, X. He, C. Gill, Y. Vorobeychik, and X. Zhang, “Simple
physical adversarial examples against end-to-end autonomous driving
models,” 2019.

[23] X. Yuan, P. He, Q. Zhu, R. R. Bhat, and X. Li, “Adversarial examples:
Attacks and defenses for deep learning,” CoRR, vol. abs/1712.07107,
2017. [Online]. Available: http://arxiv.org/abs/1712.07107

[24] N. Carlini and D. Wagner, “Towards evaluating the robustness of neural
networks,” 2016.

[25] M. B. A. Miah, M. A. Yousuf, M. S. Mia, and M. P. Miya, “Article:
Handwritten courtesy amount and signature recognition on bank cheque
using neural network,” International Journal of Computer Applications,
vol. 118, no. 5, pp. 21–26, May 2015, full text available.

[26] S. K. Moore, “Another step toward the end of moore’s law: Samsung
and tsmc move to 5-nanometer manufacturing - [news],” IEEE Spectrum,
vol. 56, no. 6, pp. 9–10, June 2019.

[27] F. Betzel, K. Khatamifard, H. Suresh, D. J. Lilja, J. Sartori, and
U. Karpuzcu, “Approximate communication: Techniques for reducing
communication bottlenecks in large-scale parallel systems,” ACM
Comput. Surv., vol. 51, no. 1, pp. 1:1–1:32, Jan. 2018. [Online].
Available: http://doi.acm.org/10.1145/3145812

[28] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,
and R. Fergus, “Intriguing properties of neural networks,” 2013.

[29] N. Papernot, P. McDaniel, and I. Goodfellow, “Transferability in ma-
chine learning: from phenomena to black-box attacks using adversarial
samples,” 2016.

[30] N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami, “Distillation
as a defense to adversarial perturbations against deep neural networks,”
in 2016 IEEE Symposium on Security and Privacy (SP), May 2016, pp.
582–597.

[31] D. Hendrycks and K. Gimpel, “Early methods for detecting adversarial
images,” 2016.

[32] N. Akhtar and A. Mian, “Threat of adversarial attacks on deep learning
in computer vision: A survey,” IEEE Access, vol. 6, pp. 14 410–14 430,
2018.

[33] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards
deep learning models resistant to adversarial attacks,” 2017.

[34] N. Papernot, P. D. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik,
and A. Swami, “The limitations of deep learning in adversarial
settings,” CoRR, vol. abs/1511.07528, 2015. [Online]. Available:
http://arxiv.org/abs/1511.07528

[35] N. Carlini and D. A. Wagner, “Towards evaluating the robustness
of neural networks,” CoRR, vol. abs/1608.04644, 2016. [Online].
Available: http://arxiv.org/abs/1608.04644

[36] S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “Deepfool: a simple
and accurate method to fool deep neural networks,” 2015.

[37] N. Narodytska and S. P. Kasiviswanathan, “Simple black-box adversarial
perturbations for deep networks,” CoRR, vol. abs/1612.06299, 2016.
[Online]. Available: http://arxiv.org/abs/1612.06299

[38] W. Brendel, J. Rauber, and M. Bethge, “Decision-based adversarial
attacks: Reliable attacks against black-box machine learning models,”
2017.

[39] J. Chen and M. I. Jordan, “Boundary attack++: Query-efficient
decision-based adversarial attack,” CoRR, vol. abs/1904.02144, 2019.
[Online]. Available: http://arxiv.org/abs/1904.02144

[40] I. Alouani, H. Ahangari, O. Ozturk, and S. Niar, “A novel heterogeneous
approximate multiplier for low power and high performance,” IEEE
Embedded Systems Letters, vol. 10, no. 2, pp. 45–48, 2018.

[41] A. Guesmi, I. Alouani, M. Baklouti, T. Frikha, M. Abid, and A. Rivenq,
“Heap: A heterogeneous approximate floating-point multiplier for error
tolerant applications,” in Proceedings of the 30th International
Workshop on Rapid System Prototyping (RSP’19), ser. RSP ’19.

http://arxiv.org/abs/1607.02533
http://arxiv.org/abs/1707.08945
http://arxiv.org/abs/1904.09274
http://arxiv.org/abs/1904.09274
http://proceedings.mlr.press/v97/cohen19c.html
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1712.07107
http://doi.acm.org/10.1145/3145812
http://arxiv.org/abs/1511.07528
http://arxiv.org/abs/1608.04644
http://arxiv.org/abs/1612.06299
http://arxiv.org/abs/1904.02144

New York, NY, USA: ACM, 2019, pp. 36–42. [Online]. Available:
http://doi.acm.org/10.1145/3339985.3358495

[42] “Ieee standard for floating-point arithmetic,” IEEE Std 754-2008, pp.
1–70, 2008.

[43] J. Y. F. Tong, D. Nagle, and R. A. Rutenbar, “Reducing power by
optimizing the necessary precision/range of floating-point arithmetic,”
IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 8, no. 3, pp. 273–286, June 2000.

[44] R. Hrbacek, V. Mrazek, and Z. Vasicek, “Automatic design of approx-
imate circuits by means of multi-objective evolutionary algorithms,” in
2016 International Conference on Design and Technology of Integrated
Systems in Nanoscale Era (DTIS), April 2016, pp. 1–6.

[45] V. Gupta, D. Mohapatra, A. Raghunathan, and K. Roy, “Low-power
digital signal processing using approximate adders,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 32,
no. 1, pp. 124–137, Jan 2013.

[46] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, Nov 1998.

[47] Y. LeCun and C. Cortes, “MNIST handwritten digit database,” 2010.
[Online]. Available: http://yann.lecun.com/exdb/mnist/

[48] A. Krizhevsky, “Learning multiple layers of features from tiny images,”
Tech. Rep., 2009.

[49] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kpf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-
performance deep learning library,” 2019.

[50] W. Samek, Explainable AI: interpreting, explaining and visualizing deep
learning. Springer Nature, 2019, vol. 11700.

[51] C. Dwork and A. Roth, “The algorithmic foundations of differential
privacy,” Foundations and Trends in Theoretical Computer Science,
vol. 9, no. 34, pp. 211–407, 2014. [Online]. Available: http:
//dx.doi.org/10.1561/0400000042

[52] C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov, and M. Naor, “Our
data, ourselves: Privacy via distributed noise generation,” in Advances
in Cryptology - EUROCRYPT 2006, 25th Annual International
Conference on the Theory and Applications of Cryptographic
Techniques, St. Petersburg, Russia, May 28 - June 1, 2006,
Proceedings, ser. Lecture Notes in Computer Science, S. Vaudenay,
Ed., vol. 4004. Springer, 2006, pp. 486–503. [Online]. Available:
https://doi.org/10.1007/11761679 29

[53] N. Integration and M. N. Group. (2012, Jan.) Predictive technology
model (ptm) website. [Online]. Available: http://ptm.asu.edu

[54] T. Na, J. H. Ko, and S. Mukhopadhyay, “Cascade adversarial machine
learning regularized with a unified embedding,” 2017.

[55] A. Sinha, H. Namkoong, and J. Duchi, “Certifying some distributional
robustness with principled adversarial training,” 2017.

[56] P. Samangouei, M. Kabkab, and R. Chellappa, “Defense-gan: Protecting
classifiers against adversarial attacks using generative models,” arXiv
preprint arXiv:1805.06605, 2018.

[57] F. Tramèr, A. Kurakin, N. Papernot, I. Goodfellow, D. Boneh, and
P. McDaniel, “Ensemble adversarial training: Attacks and defenses,”
arXiv preprint arXiv:1705.07204, 2017.

[58] N. Das, M. Shanbhogue, S.-T. Chen, F. Hohman, L. Chen, M. E.
Kounavis, and D. H. Chau, “Keeping the bad guys out: Protecting
and vaccinating deep learning with jpeg compression,” arXiv preprint
arXiv:1705.02900, 2017.

[59] M. Osadchy, J. Hernandez-Castro, S. Gibson, O. Dunkelman, and
D. Pérez-Cabo, “No bot expects the deepcaptcha! introducing immutable
adversarial examples, with applications to captcha generation,” IEEE
Transactions on Information Forensics and Security, vol. 12, no. 11, pp.
2640–2653, 2017.

[60] S. Gu and L. Rigazio, “Towards deep neural network architectures robust
to adversarial examples,” arXiv preprint arXiv:1412.5068, 2014.

[61] J. Chen, X. Wu, V. Rastogi, Y. Liang, and S. Jha, “Towards under-
standing limitations of pixel discretization against adversarial attacks,”
in 2019 IEEE European Symposium on Security and Privacy (EuroS&P).
IEEE, 2019, pp. 480–495.

[62] A. Nayebi and S. Ganguli, “Biologically inspired protection of deep
networks from adversarial attacks,” 2017.

[63] A. S. Ross and F. Doshi-Velez, “Improving the adversarial robustness
and interpretability of deep neural networks by regularizing their input

gradients,” in Thirty-second AAAI conference on artificial intelligence,
2018.

[64] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and
A. Swami, “Practical black-box attacks against machine learning,” in
Proceedings of the 2017 ACM on Asia conference on computer and
communications security, 2017, pp. 506–519.

[65] G. S. Dhillon, K. Azizzadenesheli, Z. C. Lipton, J. Bernstein,
J. Kossaifi, A. Khanna, and A. Anandkumar, “Stochastic activation
pruning for robust adversarial defense,” CoRR, vol. abs/1803.01442,
2018. [Online]. Available: http://arxiv.org/abs/1803.01442

[66] X. Liu, M. Cheng, H. Zhang, and C.-J. Hsieh, “Towards robust neural
networks via random self-ensemble,” 2017.

http://doi.acm.org/10.1145/3339985.3358495
http://yann.lecun.com/exdb/mnist/
http://dx.doi.org/10.1561/0400000042
http://dx.doi.org/10.1561/0400000042
https://doi.org/10.1007/11761679_29
http://ptm.asu.edu
http://arxiv.org/abs/1803.01442

	I Introduction
	II Background
	II-A Convolutional neural networks
	II-B Adversarial attacks
	II-C Approximate Computing

	III Threat Model
	III-A Transferability attacks
	III-B Adversary knowledge (attacks scenarios)
	III-C Adversarial example generation

	IV Defensive Approximation: Implementing Approximate CNNs
	IV-A Approximate Floating Point Multiplier
	IV-B Approximate Convolution

	V Can DA help in defending against adversarial attacks?
	V-A Experimental setup
	V-B Do adversarial attacks on an exact CNN transfer to an approximate CNN ?
	V-C Can we attack an approximate CNN?

	VI How does DA help CNN robustness?
	VI-A Impact of approximation on model confidence
	VI-B Theoretical Analysis

	VII Performance Implications
	VII-A Impact on model Accuracy
	VII-B Defensive approximation and sensitivity
	VII-C Impact on performance and energy consumption

	VIII Discussion
	IX Related Work
	X Conclusions
	References

