
Optimized Generation of Memory Structure in
Compiling Window Operations onto

Reconfigurable Hardware

Yazhuo Dong, Yong Dou, and Jie Zhou

School of Computer Science, National University of Defense Technology, Changsha,
Hunan, China, 410073

{dongyazhuo,yongdou,zhoujie}@nudt.edu.cn

Abstract. Window operations which are computationally intensive and
data intensive are frequently used in image compression, pattern recog-
nition and digital signal processing. The efficiency of memory accessing
often dominates the overall computation performance, and the problem
becomes increasingly crucial in reconfigurable systems. The challenge is
to intelligently exploit data reuse on the reconfigurable fabric (FPGA) to
minimize the required memory or memory bandwidth while maximizing
parallelism. In this paper, we present a universal memory structure for
high level synthesis to automatically generate the hardware frames for
all window processing applications. Comparing with related works, our
approach can enhance the frequency from 69MHZ to 238.7MHZ.

1 Introduction

FPGA has become the medium of choice for fast hardware prototyping and a
popular vehicle for the realization of custom computing machines that target
multi-media applications. But developing programs that execute on FPGAs are
extremely cumbersome [1]. To deal with the problem, high level synthesis (HLS)
tools are developed to implement the hardware system using behavioral level
languages, as opposed to register transfer level languages.

HLS tools can be classified into two approaches: the annotation and constraint-
driven approach and the source-directed compilation approach. The first ap-
proach preserves the source programs in C or C++ as much as possible and
makes use of annotation and constraint files to drive the compilation process,
such as SPARK [2], Sea Cucumber [3], SPC [4], Streams-C [5], Catapult C [6]
and DEFACTO [7]. The second approach modifies the source language to let
the designer to specify, for instance, the amount of parallelism or the size of
variables, such as ASC [8], C2Verilog [9], Handel-C [10], Handy-C [11], Bach-C
[12] and SpecC [13] etc. All of these design automation tools aim to raise the
level of design.

This paper concentrates on one class of applications called window operations.
This kind of applications are widely used in signal, image and video processing

P.C. Diniz et al. (Eds.): ARC 2007, LNCS 4419, pp. 110–121, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Optimized Generation of Memory Structure 111

and require much computation and data manipulation. Fig.1(a) shows the Sobel
edge detection example code in C and the window operations are depicted in
fig.1(b). All these operations have similar calculation patterns: a loop or a loop
nest operates with array variables. There are multiple references to an array
element in the same or a subsequent iteration. Thus, the memory structure can
be designed to exploit data reuse.

char img[SIZE][SIZE], edge[SIZE][SIZE];
int uh1, uh2, threshold;
for (i=0; i < SIZE - 4; i++) {

for (j=0; j < SIZE - 4; j++) {
uh1 = img[i-1][j+1]+2*img[i][j+1]+img[i+1][j+1]-(img[i-1][j-1]

+2*img[i][j-1]+img[i+1][j-1];
uh2= img[i+1][j-1]+2*img[i+1][j]+img[i+1][j+1])-(img[i-1][j-1]

+2*img[i-1][j]+img[i-1][j+1];
if ((abs(uh1)+abs(uh2))<threshold)

edge[i][j]=”0xff”;
else

edge[i][j]=”0x00;
}

}

* * * * * * * *

* * * * * * * *

* * * * * * * *

* * * * * * * *

* * * * * * * *

one pixel

Window Moving
Direction

window 1

window 2

window 3

One row of the
window

(a) (b)

Fig. 1. Sobel edge detection algorithm in C code and the window operations

One of general-purposed approaches to exploit data reuse is to identify mul-
tiple memory accesses to the same memory location as reused data, and keep
these data in a group of registers called smart buffer. It is an important issue
how to organize the smart buffer and data layout effectively.

A number of efforts have been carried out to deal with the problem [14][15]
[16][17][18]. Some traditional methods use a set of either vertical or exclusively
horizontal queues to realize data reuse. They demand a good deal of registers
which are the critical resources in FPGA. Since most of them ignored system
level scheduling when dealing with external memories, there is a long memory
latency to initialize array elements into the internal RAM blocks before starting
the processing.

In order to overcome these problems, ROCCC [20][21][22] which is a recon-
figurable computing compiler system, presents a new approach to the reuse of
data when compiling window operations [19]. It use less number of registers, but
it did not realize data reuse completely. Since ROCCC has to access the same
location of off-chip memory multiple times, there exist a space for optimization
in clock frequency.

In this paper we put forward a new approach to deal with these problems.
We execute data accessing to off-chip and on-chip memory overlapping with
calculation. We exploit data reuse fully, and at the same time keep the RAM
blocks and smart buffer as small as possible.

This paper makes the following contributions:

– It presents a universal parameterized memory structure and a novel data
scheduling scheme for window operations.

112 Y. Dong, Y. Dou, and J. Zhou

– It gives the algorithms about how to generate VHDL automatically according
to some parameters which are obtained from the compiler.

– It illuminates experimental simulation results for the automatic translation
of a set of window processing applications onto FPGA.

The rest of the paper is structured as follows. We compare different mapping
approaches via an example in section 2. Next we describe the universal memory
structure of our approach. Section 4 describes the VHDL code generation and
the compiler support. Section 5 presents simulation experimental results for a
set of window applications. In section 6 we give a conclusion.

2 Background

We now illustrate the use of different storage and control structures in the au-
tomatic mapping of an example computation onto a FPGA-based computing
engine. The computation is Sobel edge detection written in C as depicted in
fig.1(a).

A traditional strategy to reduce the number of required memory accesses is
shown in fig.2. Smart buffer holds the data input queues to exploit the fact that
consecutive iterations of the inner loop use data that previous iterations have
fetched. This strategy layout all reused data in smart buffer, so it uses a large
number of registers.

 memory input

All data
initialize into
international
RAM blocks

width=(size-4)

smart buffer

Processing results

Fig. 2. Traditional strategy to exploit data reuse

The memory structure generated in ROCCC is illustrated in fig.3(a). The
smart buffer receives data from the input memory directly, which use less number
of registers. The input data used by each outer-loop iteration are loaded only
once, but there are overlaps between adjacent outer iterations since they can not
afford a smart buffer to hold whole rows of data. It has to access the same location
of input memory multiple times which makes the processing speed slow. Fig.3(b)
shows the FSM of smart buffer. We notice that ROCCC arranging data in smart
buffer in different order at each cycle incurs the complex connection between
smart buffer and processing elements. There are twenty-one states needed for
Sobel program.

Optimized Generation of Memory Structure 113

Memory
input

Smart buffer
（3*3）

Contr
oller

Proce
ssing
eleme

nts

Results

* *
*

* * *
* * *
* *

Pro_0 Pro_1 Pro_7

* * *
* * *
* * *
Exp_0

* *
* *
* *

Idl_0

* * *
* *
* *

Idl_1

* * *
* * *

* *
Idl_2

* * *
* * *
* * *
Exp_1

* *
* *
* *
Idl_3

* * *
* *
* *
Idl_4

(a) (b)

Fig. 3. ROCCC’s approach to exploit data reuse and the FSM of smart buffer

Processing
elements

img[i+2,j]

img[i+1,j]

img[i,j]

Dataflow controller 1

Dataflow
controller

2
Off-chip
memory

results

Fig. 4. Our approach to exploit data reuse

In this paper, we propose a novel memory structure, which uses less number
of registers than traditional ways and obtains higher speed than ROCCC. Fig.4
shows our approach to resolve Sobel edge detection problem.

There are three RAM blocks with the depth of the inner loop dimension
(SIZE-4) designed in the target architecture. One of them holds 1-dimensional
img array data. Fig.5 illustrates FSM of the smart buffer. When the data of row
i, i+1 and the first three data of row i+2 are ready, the whole processing can
be started. In case the row i is done, the new input data of row i+3 will take
the place of row i. We use shift registers during the whole processing. It can
be noticed that we do not initialize all array elements into the on-chip memory
before starting the processing. The structure execute in a data driven mode which
means starting current operations as soon as possible. There are still pipelined
off-chip memory accessing during the whole processing.

Comparing with traditional ways, we use less number of RAM blocks and
registers to exploit data reuse. Comparing with ROCCC, we put all reused data
in internal RAM blocks. When the data is used later, we can get it from the
on-chip RAM blocks but not have to access the off-chip memory. Thus, the
processing speed of our approach is faster than ROCCC.

114 Y. Dong, Y. Dou, and J. Zhou

controller

Idle

0,0

controller

On_chip Ram
initialization

0,00,1

controller

0,00,10,20,
61

controller

0,0

1,0

0,10,2

controller
0,
610,0

1,0

0,10,2

1,11,2

controller
0,
61

1,
61

On_chip Ram
initialization

On_chip Ram
initialization

On_chip Ram
initialization

On_chip Ram
initialization

0,0

1,0

2,0

0,0

1,0

2,0

0,10,2

1,11,2

controller
0,
61

1,
61

Smart buffer
initialization

0,1 0,0

1,1 1,0

2,1 2,0

0,0

1,0

2,0

0,10,2

1,11,2

2,1

controller
0,
61

1,
61

Smart buffer
initialization

0,1 0,00,2

1,1 1,01,2

2,1 2,02,2

0,0

1,0

2,0

0,10,2

1,11,2

2,12,2

controller
0,
61

1,
61

calculation

0,
60

0,
59

0,
61

1,
60

1,
59

1,
61

2,
60

2,
59

2,
61

0,0

1,0

2,0

0,10,2

1,11,2

2,12,2

controller
0,
61

1,
61

2,
61

1.
0
2,
0
3,
0

3,0

1,0

2,0

0,10,2

1,11,2

2,12,2

controller
0,
61

1,
61

2,
61

Smart buffer
initialization calculation

Fig. 5. FSM of on-chip RAM and smart buffer in our approach

3 Memory Architecture

In window operations, the input and output arrays are separate and therefore
there is no loop-carried dependency on a single array. Fig.6 presents the universal
layout of the target memory structure with which compiler generates VHDL
codes for window operations.

Off-chip
memory

RAM 0

Address generator 0

RAM 1

Address generator 1

RAM n

Address generator n

Data input interface controller

Data
controller

Processing
elements

results

Smart buffer

Fig. 6. Overall window operations execution architecture

Data that will be used in the following interations be kept in the RAM blocks
until it will never be used again. Data to be used in the current iteration shift in

Optimized Generation of Memory Structure 115

the registers of smart buffer. Data input interface controller and data scheduling
controller keep track of which iterations of the loop are currently in execution,
and generate the appropriate control signal to realize the pipelined memory ac-
cesses. The address generation unit is a programmable one with auto-increment
and auto-decrement capabilities.

4 VHDL Code Generation

In this section, we present our approach to generate efficient VHDL code for
the controller and related components. The goal is to minimize run-time control
calculation and maximize input data reuse.

4.1 Compiler Support

Window operations have one or more windows sliding over one or more arrays.
Both addresses of the read and the write are calculated at compiler time. Ac-
cording to the memory load reference and the loop unrolling parameters, the
following parameters are known at compiler time:

1. Starting and ending addresses;
2. The size of array, width and height ;
3. The size of unrolled window, buffer width and buffer height ;
4. The unrolled window’s strides in each dimension, buffer span width and

buffer span height ;
5. The number of RAM blocks and the depth, Ram num, Ram depth;
6. The number of results generated for once interation, Result num;
7. The number of unrolled times of outer loop, Control num;

Fig.7 gives the unrolled C code of 2D lowpass filter. We unroll the loop twice
in both horizontal and vertical directions. Therefore, each iteration computes
four of these 3*3 windows, and produces a 2*2 output window.

for(i=1;i<62;i=i+2) {
for(j=1;j<62;j=j+2) {

 C[i-1][j-1]=(A[i-1][j-1]+A[i-1][j]+A[i-1][j+1]+A[i][j+1]+A[i+1][j-1]+A[i+1][j]+
A[i+1][j+1])>>3+(A[i][j]>>1)-B[i-1][j-1];
 C[i-1][j]=(A[i-1][j]+A[i-1][j+1]+A[i-1][j+2]+A[i][j+2]+A[i+1][j]+A[i+1][j+1]+
A[i+1][j+2])>>3+(A[i][j+1]>>1)-B[i-1][j];
 C[i][j-1]=(A[i][j-1]+A[i][j]+A[i][j+1]+A[i+1][j+1]+A[i+2][j-1]+A[i+2][j]+
A[i+2][j+1])>>3+(A[i+1][j]>>1)-B[i][j-1];
 C[i][j]=(A[i][j]+A[i][j+1]+A[i][j+2]+A[i+1][j+2]+A[i+2][j]+A[i+2][j+1]+A[i+2][j+2])
>>3+(A[i+1][j+1]>>1)-B[i][j];

}
}

Fig. 7. Motion detection C code, 2*2 unrolled loop

For the C code in fig.7, width=62, height=62. And for data array A, there
are (4*4) registers in smart buffer, buffer width=4, and buffer height=4. The

116 Y. Dong, Y. Dou, and J. Zhou

program is 2*2 unrolled, buffer span width=2, buffer span height=2. There are
4 RAM blocks needed, Ram num=4. The depth of RAM is as same as the
width of data array A, Ram width=width=62. For once interation, there would
generate four results, Result num=4. We assume the memory bus in twice the
width of the pixel bit-size, then each memory load reads in two pixels. In this
example, Ram0 and Ram1 receive data at the same clock period, and Ram2
and Ram3 receive data at the same clock period. The outer loop is unrolled
two times, Control num=2. Fig.8 shows the status of array A’s smart buffer at
different clock cycles.

contr
oller

*

* contr
oller

* *

* * contr
oller

* * * *

* * * * contr
oller

*

*
*
*
*
*

* * * *

* * * *

*

*

contr
oller

*

*
* * * *
* * * *
* * * *
* * * *

* * * *

* * * *

* * * *

* * * *

contr
oller

*

*

(a) (b) (c)

(d)(e)(f)

Fig. 8. FSM Status of 2D Lowpass filter smart buffer

Fig.9 shows the 5-tap FIR in C which is 1D window operations. In this case,
data is only reused in the same loop iteration. We did not design RAM blocks
for 1D applications. Smart buffer is enough to keep the reused data. width=62,
height=1, buffer width=5, buffer height=1, buffer span width=1, buffer span
height=0, Ram num=0, Ram depth=0, Result num=1, Control num=0.

For(i=0;i<62;i=i+1){
B[i]=C0*A[i]+C1*A[i+1]+C2*A[i+2]+C3*A[i+3]+C4*A[i+4];

}

Fig. 9. A 5-tap FIR in C

4.2 FSM Generation

The FSM is in charge of the whole processing, determines when the data initial-
ization is finished, traces which register is expired and would be overwritten by
new data, determines when a window of data is ready to processing elements,
and manages the counterpart relationship between the on-chip RAM and reg-
isters in smart buffer. The FSM is assigned one of the four states as shown
in fig.5.

Optimized Generation of Memory Structure 117

– Idle: Waiting for the start signal. When a procedure is started, go to on-chip
RAM initialization;

– On-chip RAM initialization: On-chip RAM blocks are in a warm-up state;
– Smart buffer initialization: The smart buffer is collecting data to form the

first window. Once all the new data have arrived, the smart buffer goes to
processing;

– Processing: In this state, when a window of data is ready, send data in
smart buffer to processing elements to calculate. In the next clock cycle, the
window data is updated again. The processing keeps going until current row
is finished, then the FSM changes to the smart buffer initialization state
again to collect new data of the next row.

In the four states, processing state needs some complex controls, because
we want to do data transferring and calculation concurrently to speed up the
processing. Fig.10 illustrates the parameterized FSM of data transmission be-
tween off-chip and on-chip memory. The parameters can be obtained from the
compiler as we have discussed in subsection 4.1. Fig.11 gives the parameterized
FSM of sending data from on-chip RAM blocks to smart buffer, then to process-
ing elements, and at the same time receiving the results. The FSM also ensures
that the whole calculation processing carry through accurately.

5 Experiments

This section presents experimental results that characterize the impact of differ-
ent methods. We use four window operations as benchmarks: 5-tap FIR, image
sharpening, Sobel edge detection (SOBEL), and 2D Lowpass filter. These bench-
marks are selected for the diversity of size of smart buffer and control structure.
5-tap FIR is a constant-coefficient finite-impulse (FIR) filter. Its source code is
given in Fig.9. The size of smart buffer is (1*5). Image sharpening program deals
with 2D data array. There are two RAM blocks designed, and the window size
is (2*2). Sobel edge detection is shown in fig.1, (3*3) registers are used in smart
buffer. The code of 2D Lowpass filter is given in fig.7, and the size of smart
buffer is (4*4). The input data set of all 1D examples is 256 and the input data
set size of all 2D examples is 64*64.

Table 1 shows the number of registers used in smart buffer to exploit data
reuse in three methods.

Table 1. Number of registers in smart buffer

Benchmarks 5-tap FIR Image sharpening Sobel 2D Lowpass filter
Traditional approaches 5 128 192 256

ROCCC 5 4 9 16
Ours 5 4 9 16

118 Y. Dong, Y. Dou, and J. Zhou

case (sending states)
1: Primal state: set the Token-Ring to the RAM block of number

Ring_counter, if the current RAM is the number (height-Control_num), set the
Token-Ring to the first RAM block again;

2: Send data request signal to the off-chip memory. Ready to receive a new
data;

3: Receive a data and keep it in the current on-chip RAM block who has the
Token-Ring. The counter increase to note how many data has been received for the
current RAM: counter_num<=counter_num+1;

4: Check.
if (counter_num< width) goto2;
else the current RAM block is full,
Ring_counter<=Ring_counter+Control_num, goto 1;

endcase

Fig. 10. The FSM of sending data from off-chip memory to on-chip memory

case (control states)
1:Idle state.

Wait for (height-Control_num) rows of RAM blocks being initialized;
2: Send data.

Send data of smart buffer to the processing elements;
3: Wait for the results;
4: Send results.

Increase the result counter,
result_counter<=result_counter+Result_num;

If (result_counter== width*buffer_span_height)
result_counter<=0;

Increase the row counter which registers how many rows have
been done;

row_done<=row_done+buffer_span_height;
5: Increase counter and shift the registers in smart buffer.

RAM_current_do<=RAM_current_do+1;
// RAM-current-do records which RAM blocks data is currently being

dealt with.
If (RAM_current_do==Ram_num/buffer_span_height)

RAM_current_done=1;
6. Receive the next data.

If(row_done==height) finish,
goto 1;
else goto 2;

endcase

Fig. 11. The FSM of data transmission from on-chip RAM blocks to smart buffer and
then to processing elements

Optimized Generation of Memory Structure 119

Traditional appraches hold all reused data in smart buffer. Thus, they need
a big smart buffer with a good many registers. ROCCC and our approach only
keep calculational data in smart buffer, so the smart buffer is small.

We use the Xilinx ISE 7.1i tool chain to do synthesis and place-and-route
reports. The generated VHDL codes are simulated using ModelSim 5.8. The
target architecture of all synthesis is Xilinx XC2V8000-5. ROCCC also take 5-
tap FIR and 2D lowpass filter as benchmarks. Table 2 below gives the simulation
results of ROCCC and ours.

Table 2. The synthsis and simulation results of 5-tap FIR and 2D Lowpass filter

5-tap FIR 2D Lowpass filter Image Sobel
sharping

ROCCC Ours ROCCC Ours Ours Ours
Smart buffer’s statues 14 5 18 4 2 3
Control area (slices) 210 262 542 514 131 210

Clock rate(MHz) 94 238.664 69 238.664 238.664 238.664
Execution time(cycles) 262 263 5980 2057 4042 4108

Throughput(results number/cycles) 0.96 0.96 0.64 1.87 0.98 0.94

Area is the number of slices obtained from place-and-route reports. State is
the number of states in the smart buffer’s FSM. Clock rate is the clock rate
of the whole placed-and routed circuit. Execution time is the number of cycles
obtained from the simulation waveforms.

The shift registers in smart buffer of our approach make the connection be-
tween smart buffer and processing elements simpler. Thus, the smart buffer’s
status of ours is less than ROCCC. The whole control area of our approach and
ROCCC are almost equal. Our approach can exploit data reuse completely, so
the processing speed of ours is much faster than ROCCC, and the clock fre-
quency is much higher than ROCCC. The clock frequency of our approach for
the four benchmarks are almost same. It is because we bring forward a uni-
versal parameterized memory structure for the window operations. There are
only some parameters need to be changed for a different design, and the control
components are almost equivalent for all applications.

6 Summary and Conclusions

In this paper, we present a optimization generation memory structure for window
operations. We exploit data reuse to reduce the number of accesses to the off-chip
memory. We design special control unit to dominate the dataflow which makes
it possible to store a small part of the data in internal RAM blocks and smart
buffer while still providing sufficient memory bandwidth for the custom data
path. We have applied our technique to a set of window processing tasks, and

120 Y. Dong, Y. Dou, and J. Zhou

do some comparisons with related works. The results show that the generated
memory structure can speed up the processing using less number of memory
resources.

Acknowledgement

This work is sponsored by the National Science Foundation of China under the
grant NO. 60633050.

References

1. Byoungro So, Mary W. Hall, Pedro C. Diniz: ’A Compiler Approach to Fast Hard-
ware Design Space Exploration in FPGA-based Systems’. PLDI 2002, 165-176.

2. Gupta, S., Dutt, N.D., Gupta, R.K., and Nicolau, A.: ’SPARK: a high-level syn-
thesis framework for applying parallelizing compiler transformations’. Proc. Int.
Conf. on VLSI Design, January 2003.

3. Justin L. Tripp, Preston A. Jackson, and Brad L. Hutchings: ’Sea Cucumber: A
Synthesizing Compiler for FPGAs’. M. Glesner, P.Zipf, and M. Renovell(Eds.),
FPL 2002, LNCS 2438, pp. 875-885, 2002. Springer-Verlag Berlin Herdelberg 2002

4. Weinhardt, M., and Luk, W.: ’Pipeline vectorization’, IEEE Trans. Comput.-Aided
Des., 2001, 20, (2), pp. 234-248.

5. Jan Frigo, Maya Gokhale, Dominique Lavenier: ’Evaluation of the StreamsC C to
FPGA Compiler: An Applications Perspective’. FPGA 2001, February 11-13, 2001,
Monterey, CA.

6. http://www.mentor.com/products/c-based design/catapult c synthesis/index.cfm.
7. Heidi Ziegler and Mary Hall: ’Evaluating Heuristics in Automatically Mapping

Multi-Loop Applications to FPGAs’. FPGA’05, February 20-22, 2005, Monterey,
California, USA.

8. Mencer, O., Pearce, D.J., Howes, L.W., and Luk, W.: ’Design space exploration
with a stream compiler’. Proc. IEEE Int. Conf. on Field Programmable Technology,
2003.

9. Donald Soderman and Yuri Panchul: ’Implementing C algorithms in reconfigurable
hardware using C2Verilog’. In Proceedings of the IEEE Symposium on FPGAs for
Custom Computing Machines (FCCM), pages 339-342, Los Alamitos, CA, April
1998.

10. Celoxica, ’Handel-C Language Reference Manual for DK2.0’, Document RM-1003-
4.0, 2003.

11. De Figueiredo Coutinho, J.G., and Luk, W.: ’Source-directed transformations for
hardware compilation’. Proc. IEEE Int. Conf. on Field-Programmable Technology,
2003.

12. Takashi Kambe, Akihisa Yamada, Koichi Nishida, Kazuhisa Okada, Mitsuhisa
Ohnishi, Andrew Kay, Paul Boca, Vince Zammit, Toshio Nomura,: ’A C-based
Synthesis System, Bach, and its Application’.

13. Daniel D. Gajski, Jianwen Zhu, Rainer Domer, Andreas Gerstlauer, and Shuqing
Zhao. ’SpecC: Specification Language and Methodology’. Kluwer, Boston, Massa-
chusetts, 2000.

14. Byoungro So, HMary W. HallH, HHeidi E. ZieglerH: ’Custom Data Layout for
Memory Parallelism’. CGO 2004, 291-302.

Optimized Generation of Memory Structure 121

15. Gwenole Corre, Eric Senn, Pierre Bomel, Nathalie Julien, Eric Martin:’Memory
Accesses Management During High Level Synthesis’ CODES+ISSS 2004: 42-47.

16. Pedro C. Diniz, Joonseok Park: ’Automatic Synthesis of Data Storage and Control
Structures for FPGA-Based Computing Engines’. FCCM 2000: 91-100.

17. Nastaran Baradaran, Pedro C. Diniz, Joonseok Park: ’Extending the Applicability
of Scalar Replacement to Multiple Induction Variables’. LCPC 2004: 455-469.

18. Andersson P.H and Kuchcinski K.H ’Automatic Local Memory Architecture Gen-
eration for Data Reuse in Custom Data Paths’, in Proc. of Engineering of Recon-
figurable Systems and Algorithms, 2004.

19. Z. Guo, B. Buyukkurt and W. Najjar. ”Input Data Reuse In Compiling Window
Operations Onto Reconfigurable Hardware”, Proc. ACM Symp. On Languages,
Compilers and Tools for Embedded Systems (LCTES 2004), Washington, DC,
June 2004.

20. Z. Guo, B. Buyukkurt, W. Najjar and K. Vissers. ”Optimized Generation of Data-
path from C Codes for FPGAs”, Int. ACM/IEEE Design, Automation and Test in
Europe Conference (DATE 2005), Munich, Germany, March, 2005.

21. A. Mitra, Z. Guo and W. Najjar. ””Dynamic Co-Processor Architecture for Soft-
ware Acceleration on CSoCs”, Int. Conference on Computer Design (ICCD 2006),
San Jose, California, 2006.

22. Z. Guo, W. Najjar and B. Buyukkurt. ”Efficient Hardware Code Generation for
FPGAs”, ACM Transaction on Architecture and Code Optimizations (TACO),
(Accepted 2006).

	Introduction
	Background
	Memory Architecture
	VHDL Code Generation
	Compiler Support
	FSM Generation

	Experiments
	Summary and Conclusions

