
ZedBoard Tutorial

EEL 4720/5721 – Reconfigurable Computing

1

Introduction:

In this lab, you will be learning how to create a custom peripheral in the programmable
logic on the ZedBoard and how to communicate with that peripheral from software
running on the ARM processor.

UPDATE: You will be working in groups of 2 on this project. Unless you are an EDGE
student or have special permission from the instructor, you must work in a group of 2.
Note that those in the overflow section are not EDGE students, and must work in a
group of 2. Please only submit once per group.

Part 1 – Base project and peripheral tutorials

1) See the pdf links on the lab website. Step through these examples yourself until
you have the resulting bitfile. Note that some of the steps are no longer needed,
so I advise you to do the tutorial yourself and then watch the lecture where I
repeat the process to see what steps I skip. Make sure to select the ZedBoard
when creating the project.

2) Find the generated bitfile in:

project_path\project_name.runs\impl_1

Note that project_path is the path of your Vivado project. Project_name is the
name of that project. The bitfile will be called block_diagram_name_wrapper.bit,
which is likely design_1_wrapper.bit if you accepted the defaults values when
creating your block diagram.

Rename the bitfile to part1.bit. Place it in the same directory as the provided C++
code for part1 and transfer the directory to your account on reconfig.ece.ufl.edu.
See the class emails for instructions on how to do this.

3) From reconfig.ece.ufl.edu (i.e., using an ssh client like putty), compile the code
using “make”. Make sure there are no errors or warnings.

4) Run your code on a ZedBoard using:

zed_schedule.py ./zed_app part1.bit

zed_schedule is a scheduling script that connects to the board server and finds
an available board. If a board is available, the script copies your current directory
to the selected board and then runs the specified executable (e.g., ./zed_app).
This application takes the name of the bitfile as a command line input, so make
sure to include part1.bit.

5) Verify there are no errors. The output should look similar to this:

Starting job "./zed_app part1.bit" on board 192.168.1.102:

Application completed successfully!

ZedBoard Tutorial

EEL 4720/5721 – Reconfigurable Computing

2

6) Take a screenshot of the software output.

7) Find and save the IP directory for your peripheral. This directory should have a
component.xml file, in addition to various other directories (e.g., src, hdl, drivers,
example_designs, etc.). Its location depends on the path of the IP repository that
was specified when you created the peripheral.

8) Submission requirements: IP directory, screenshot of software output, and
part1.bit. See submission instructions at the end of the document for details.

Part 2 – Create your own custom peripheral

In part 2, you will be using what you learned in part 1 to create a new peripheral.

1) Start a new project for the ZedBoard, following the same steps you did in part 1.
2) Create a new AXI peripheral called part2. On the Add Interfaces dialog box,

select 8 registers instead of the 4 registers you used in part 1.
3) Download the provided entity peripheral_test.vhd. Instantiate this entity within the

AXI peripheral code (part2_v1_0_S00_AXI.vhd) in a similar way as the multiplier
in part 1. Registers 0-3 should connect to inputs 0-3. Registers 4-7 should
connect to outputs 0-3. For the generic width, use a value of 32 bits to match the
width of the registers.

4) Modify the AXI peripheral code to prevent registers 4-7 from having multiple
sources by commenting out every assignment to those registers. This
modification is required because in the generated code the AXI bus writes to all
the registers. We only want peripheral_test to write to registers 4-7, so we have
to remove the generated code that writes to these registers. After these
modifications, you are actually removing registers 4-7 and are just reusing those
signals to act as wires. If you want, you could rename the signals to be more
accurate, but this is not required.

5) Fill in the default architecture for peripheral_test.vhd with the following
functionality. You can use either signed or unsigned for the arithmetic; the
output is identical for these operations:

out0 = in0 * in1 (ignore overflow by only using the lower width bits)

out1 = in0 + in1

out2 = in2 - in3

out3 = in2 xor in3

6) Create a testbench peripheral_test_tb.vhd that demonstrates the correctness of
peripheral_test. You do not need a simulation screenshot. It is up to you do
determine the thoroughness of the testbench.

7) Synthesize the IP to make sure there are no errors.
8) Package your peripheral IP and connect it the Zynq in the block diagram (see

tutorials in part 1).
9) Generate a bitfile.

ZedBoard Tutorial

EEL 4720/5721 – Reconfigurable Computing

3

10) Find the bitfile and rename it to part2.bit. Copy it into the directory with the
provided C++ code for part2.

11) Transfer the directory with the C++ code and the bitfile to reconfig.ece.ufl.edu.
12) From reconfig.ece.ufl.edu (i.e., using an ssh client like putty), compile the code

using “make”.

13) Run your code on a ZedBoard using:

zed_schedule.py ./zed_app part2.bit

At this point, there should be no errors for out0 and out1. If there are errors, your
peripheral is not working. IMPORTANT: out2 and output3 should be incorrect at
this step.

14) Open main.cpp and find the code that transfers in0 and in1 to the ZedBoard.
Extend the code to write in2 and in3 to the board. Make sure to use the correct
AXI address (see the enum at the top of the file).

15) Find the code that reads results from out0 and out1. Add the code that replicates
this process for out2 and out3.

16) Recompile using “make”.

17) Rerun the code on the ZedBoard. If there are still errors, there is either a problem
with your peripheral or with the C++ code you added. Debug until there no errors.

18) Take a screenshot of the working execution (or of the errors that you received if
you don’t have it working). e.g.:

Out0 Errors: 0

Out1 Errors: 0

Out2 Errors: 0

Out3 Errors: 0

Total Errors: 0

Application completed successfully!

19) Find and save the IP directory for part2_peripheral.

20) Submission requirements: IP directory, screenshot of software output, C++ code,
part2.bit, peripheral_test.vhd, peripheral_test_tb.vhd, and
part2_v1_0_S00_AXI.vhd. See submission instructions at the end of the
document for details.

ZedBoard Tutorial

EEL 4720/5721 – Reconfigurable Computing

4

SUBMISSION INSTRUCTIONS (One submission per group)

Create a directory called lab2. Inside this directory, create a part1 and part 2 directory.
Include a brief readme.txt file in the lab2 directory that specifies the members of the
group, any other relevant information that the grader might need (e.g., if one of the parts
doesn’t work, crashes, doesn’t compile, etc.). The submitted directory structure should
look like this:

lab2/

readme.txt
part1/
 screenshot
 part1_1.0/ // IP core from repository, ok if different name

part1.bit // DON’T FORGET
part2/
 screenshot
 part2_1.0/ // IP core from repository, should have this name
 sw/
 main.cpp
 Board.h
 Board.cpp
 Makefile
 part2.bit // DON’T FORGET
 hdl/
 peripheral_test.vhd
 peripheral_test_tb.vhd

 part2_v1_0_S00_AXI.vhd

Zip the entire lab2 directory and submit the lab2.zip file.

Extra Credit:
In peripheral_test_tb.vhd, create a testbench that exhaustively tests all possible input
combinations for an instance of peripheral_test with a width of 4 bits. Because there are
4 inputs, a width of 4 corresponds to 2^16 = 64k possible combinations. NOTE: Larger
widths will take an extremely long time, so do not try this.

Common Problems:

 If you make a mistake in the IP core, you can’t directly edit the code from within
your project. This occurs because Vivado copies a read-only version of the IP
core into your project. If you need to edit it, right click the core in the block
diagram and select “Edit in IP Packager”. This will open a separate project for the
IP core. From the IP project, modify the code, re-package the IP after any
changes, and then refresh the IP within your original project. This process will get

ZedBoard Tutorial

EEL 4720/5721 – Reconfigurable Computing

5

very annoying, so make sure you have thoroughly tested your IP core code in
simulation before packing it to use with the Zynq.

There actually is a way to edit the read-only copy of the core, but I don’t
recommend that yet. I’ll explain how for later labs.

 Unless you make modifications to the code that are not explained in the
instructions, you will receive a few synthesis warnings for your peripheral. E.g.:

[Synth 8-3331] design part2_v1_0 has unconnected port

s00_axi_awprot[1]

[Synth 8-3332] Sequential element

(\part2_v1_0_S00_AXI_inst/axi_awaddr_reg[0]) is unused and

will be removed from module part2_v1_0.

Although for future labs I would encourage you to get rid of all wanings, these
warnings will not cause any problems for this lab.

